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Abstract: This paper proposes a reinforcement learning-based approach that optimises bus and
line control methods to solve the problem of short circuit currents in power systems. Expansion of
power grids leads to concentrated power output and more lines for large-scale transmission, thereby
increasing short circuit currents. The short circuit currents must be managed systematically by
controlling the buses and lines such as separating, merging, and moving a bus, line, or transformer.
However, there are countless possible control schemes in an actual grid. Moreover, to ensure
compliance with power system reliability standards, no bus should exceed breaker capacity nor
should lines or transformers be overloaded. For this reason, examining and selecting a plan requires
extensive time and effort. To solve these problems, this paper introduces reinforcement learning
to optimise control methods. By providing appropriate rewards for each control action, a policy is
set, and the optimal control method is obtained through a maximising value method. In addition,
a technique is presented that systematically defines the bus and line separation measures, limits the
range of measures to those with actual power grid applicability, and reduces the optimisation time
while increasing the convergence probability and enabling use in actual power grid operation. In the
future, this technique will contribute significantly to establishing power grid operation plans based
on short circuit currents.

Keywords: bus separation method; short circuit current; short circuit current reducing method; line
separation method; reinforcement learning

1. Introduction

The regional imbalance between generation and load will inevitably intensify in South Korea
because generation is more concentrated in the non-metropolitan areas and load is more concentrated
in the metropolitan areas. Generation is planned to be increased from 8.2 to 18 GW in the east coast
region, 8 to 15 GW in the west coast region, and 6.5 to 10 GW in the south coast region [1]. However,
because of the concentration of the metropolitan area, loads are also continuously concentrated there.

Alleviating this imbalance requires large-scale, long-distance transmission, necessitating the
installation of additional power facilities such as transmission lines and transformers. The stability of
the power grid increases with the number of power facilities, owing to a decrease in the transmission
impedance of the grid. Furthermore, transmission loss decreases alongside transmission impedance,
thereby enhancing the voltage stability and transient stability of the grid.

Conversely, when the transmission impedance decreases, the short circuit current magnitude
increases. This is a natural phenomenon that occurs as the power grid expands, power output becomes
concentrated, and cities become overpopulated. Left unchecked, the short circuit current magnitude
will increase to unforeseen levels, with the currently available breakers being unable to block such
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currents. Indeed, when the Korea Electric Power Corporation (KEPCO) grids are completely integrated
without bus separation or line separation, the operating short circuit current of 154 kV buses increases
to 187 kA, and the short circuit current of 345 kV buses increases to 86 kA [2]. The maximum current of
breakers developed thus far is 80 kA; as such, they are insufficient to prevent the short circuit currents
developed at either 345 kV or 154 kV. Moreover, even if capable breakers are developed, they would be
so large that installation would be impossible.

For this reason, there is no alternative to systematically managing the short circuit currents
of power grids. There are various techniques for reducing short circuit current, among which the
traditional and basic methods are bus separation and line separation [3–5]. These methods allow
existing facilities to be used and only require changing operation methods. This enables flexibility
in terms of grid operation because it can be employed immediately in the current situation without
additional costs. However, while using these methods to reinforce the power grid, the facilities installed
in the grid are not used in isolation. As a result, overload can occur in nearby lines and transformers,
and the stability of the grid can be degraded. Nevertheless, these are the most widely used methods to
reduce short circuit current, as they require effectively no additional time or expense. Related research
has been conducted on methods of separating the grid using the “splitting” function, which cuts a
grid connected in ring-bus form into its optimal form [6–8]. Developed a very long time ago, it is
the most economical approach for separating short circuit current and takes into account the number
of breakers required to divide the grid. However, this measure was primarily chosen for economic
feasibility and does not account for the reduction of short circuit current or the overload of nearby
lines and transformers. Moreover, rather than use computational techniques, such as determining the
impedance resulting when splitting the grid, it presents only the results of repeated performance.

Another traditional approach for reducing short circuit current is to install a current-limiting
reactor, which forcibly increases the line impedance. The current-limiting reactor forces the inductor (L)
component in the transmission line to increase the impedance of the grid and reduce the short circuit
current. Increasing the impedance of a line through which a large amount of short circuit current is
expected to flow reduces the inflow of short circuit current and spreads it to other lines with relatively
low impedance. Related research on this technique is ongoing. These studies generally investigate how
much capacity can be installed at various locations to obtain the optimal effect [9–17]. The installation
of a current-limiting reactor is practiced widely owing to its relatively low cost and short construction
period. However, because impedance is input in series, it has an operational disadvantage in that the
transmission line must be cut for input and removal. Furthermore, the stability of the grid is reduced
owing to the increased impedance.

Various special facilities enabling the reduction of short circuit current have recently emerged.
The most representative of these is the back-to-back (BTB) system using High Voltage Direct Current
(HVDC). As the short circuit current of AC lines generally does not pass through DC lines, the BTB
system is installed on a line with significant short circuit current flow to reduce the short circuit
current [18–21]. BTB is a very powerful method for reducing short circuit current and does not
reduce the stability of the grid. This is because the short circuit current theoretically never passes
through the installation side. However, BTB is very expensive and has a long construction timeline.
The characteristics of each fault current reduction method introduced above are summarized in Table 1.

Table 1. Features of each fault current reduction method.

Method Systemic Influence Cost Installation Time

Bus/Line separation Stability declined Very low No
Current-limitting reactor Stability declined Low Few months
Replacing circuit breaker Increase capacity Medium Few years

Back-to-back system Additional space High Several years
High impedance transformer Increase loss Medium Few months



Sustainability 2020, 12, 9333 3 of 18

This study applies reinforcement learning (RL) [22–34] to conduct bus and line separation more
systematically; these are the most widely used techniques for grid operation as they can be performed
immediately and without additional cost. Because there are many buses and lines in a grid, there
are numerous ways to reduce short circuit current. As the effects of bus separation vary in how
the transformers and lines are separated and connected afterward, there exist even more measures
for reducing short circuit current. Therefore, in carrying out bus separation and line separation,
only practically possible measures should be selected [35]. These many bus and line separation
measures cause difficulty in determining the optimal method for reducing short circuit current, and
they also consume large amounts of computation time. Accordingly, rather than simply configuring
groups of all bus and line separation measures, this study determines the overload of the transformers
and lines and selects only measures that effectively reduce short circuit current. The selected measures
can be applied in actual power grids by configuring the policy for use in RL. It is very important
how to set the action and reward in order to obtain the optimal result in performing any control [36].
This method can accurately determine the optimal solution for reducing short circuit current, and it
also substantially reduces the computation time.

The remainder of this paper is organised as follows: Section 2 defines the necessary elements
for RL configuration. Section 3 defines the simulation conditions and discusses the results. Section 4
provides concluding remarks.

2. Materials and Methods

RL is an area of machine learning concerned with how software agents ought to take actions in an
environment to maximise the notion of cumulative reward. RL differs from supervised learning in
that it does not need the presentation of labelled input and output pairs nor the explicit correction
of sub-optimal actions. Instead the focus is on finding a balance between exploration (of uncharted
territory) and exploitation (of current knowledge) [22]. The environment is typically stated in the form
of a Markov decision process (MDP), because many RL algorithms for this context utilise dynamic
programming techniques [23]. The main difference between the classical dynamic programming
methods and RL algorithms is that the latter do not assume knowledge of an exact mathematical model
of the MDP and they target large MDPs where exact methods become infeasible.

In the typical framing of an RL scenario, an agent performs actions in an environment that are
interpreted into a reward and a representation of the state and fed back into the agent. This is illustrated
in Figure 1. Here, the agent is the learner and the decision-maker. The environment is the system that
it interacts with, comprising everything outside the agent. The action is all the possible moves that
the agent can make. The state is the current situation returned by the environment. The reward is an
immediate return sent back from the environment to evaluate the last action by the agent.
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At every time step t, the agent executes action at, receives state st, and receives scalar reward rt.
The environment receives action at, emits state st+1, and emits reward rt+1 at every time step. Each
action influences the agent’s future state. Success is measured by a scalar reward signal. RL selects
actions to maximise future reward. The strategy, policy(π), is employed by the agent to determine
the next action based on the current state. A policy written π(s, a), describes a way of acting. It is a
function that takes in a state and an action and returns the probability of taking that action in that state.

π : A× S→ [0, 1]
π(a, s) = P(at = a

∣∣∣ st = s),
(1)

where P is the probability of doing action a in state s.
The value function Vπ(s) is defined as the expected return starting with state s, i.e., s0 = s, and

successively following policy π. Hence, the value function estimates how good it is to be in a given state.

Vπ(s) = Eπ{Rt|st = s} = Eπ

 ∞∑
k=0

γkrt+k+1|st = s

, (2)

where E is expected (future) cumulative reward, R is the sum of future discounted rewards, rt is
immediate reward, and γ is discount factor (which is less than 1, as a particular state becomes older, its
effect on the later states becomes progressively less; thus, its effect is discounted).

The Q-value function at state s and action a is the expected cumulative reward from taking action
a in state s. The Q-value function estimates the adequacy of a state–action pair.

Qπ(s, a) = Eπ{Rt|st = s, at = a } = Eπ

 ∞∑
k=0

γkrt+k+1

∣∣∣∣∣∣∣st = s, at = a

. (3)

The optimal Q-value function Q*(s, a) is the maximum expected cumulative reward achievable
from a given state–action pair. The concept of optimal Q-value function is shown in Figure 2.

Q∗(s, a) = max
π

E

∑
t≥0

γtrt|st = s, at = a,π

 (4)

To obtain the optimal Q-value, RL breaks the decision problem into smaller sub-problems.
Bellman’s principle of optimality describes how to do this [23].

The principle of optimality: An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.

The Bellman equation is classified as a functional equation, because solving it means finding
the unknown function V, which is the value function. Recall that the value function describes the
best possible value of the objective, as a function of the state s. By calculating the value function,
the function that describes the optimal action as a function of the state is also found; this is called the
policy function. Equations (5)–(8) express this process.

Vπ(s) = R(s,π(s)) + γ
∑

s,
P(s,

∣∣∣s,π(s))Vπ(s′) (5)

Vπ∗(s) = max
a

R(s, a) + γ
∑

s,
P(s,
|s, a)Vπ∗(s′)

 (6)

Vπ(s) =
∑
a∈A

π(a|s) ∗ qπ(s, a) (7)
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qπ(s, a) = γ
∑

s,
Pπ(ss,)Vπ(s′) (8)

By expressing the above equations as a recursive function and calculating it repeatedly, the optimal
value could be obtained.
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In power system operation, the agent is the system operator, and the environment is the power
system. There are many actions to reduce the short circuit current, but in this study, the separation
or merging of bus and line, and movement of the transformer are defined as actions. Agents in the
environment that change accordingly can be classified into three categories: short circuit current,
overload, and radial system. For these three agents, the state changed after the action is executed can
be classified into three categories: decrease in number, increase in number, and no change.

2.1. Action

Before proceeding with the plan to reduce short circuit current using RL, it is necessary to define
the action. This study uses bus and line separation actions to reduce short circuit current. The subjects
for analysis are 154 kV buses and transmission lines in which excessive short circuit current in the
KEPCO grid is greatest. As of 2020, there were 1,213,154 kV buses and 2784 transmission lines
(including transformers) in the KEPCO grid. Selecting an action that separates all of these would result
in too many possible actions. For bus separation in particular, an additional option involves choices
for dividing and connecting the transformer and line after bus separation; this would result in even
more actions.

To obtain good results, it is necessary to define the action plan clearly. For the bus separation
action, the choice should be limited to actions that effectively reduce the short circuit current while
considering the transformer’s capacity and spare capacity. For the line separation action, the choice
should be limited to actions that divide the grid into independent grids without making them radial
and do not cause overload. Using these conditions, the action set is selected. The bus separation action
and line separation action are discussed separately below [36].

2.1.1. Bus Separation Action

Before establishing the action for short circuit current reduction, it is necessary to examine why the
short circuit current of the bus is large. As the short circuit current magnitude is inversely proportional
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to the impedance magnitude, the maximum short circuit current generally occurs at the voltage level
for which there are the most transmission lines. In the KEPCO grid, the largest short circuit current
occurs at the 154 kV voltage level [36]. Examining the inflow path of short circuit current in 154 kV
buses shows that the short circuit current flowing through the transformers is largest at the high voltage
level of 345 kV. To reduce this, it is important to separate the 154 kV buses to separate the connected
345/154 kV transformers. For example, if there are a total of four 345/154 kV transformers, the 154 kV
buses are separated into the 1st and the 2nd, and two transformers for each are connected to reduce
the short circuit current flowing into each 154 kV bus.

Attention should be paid to whether the transformer is overloaded when disconnecting it in this
manner. As the transformers are split for each bus, the total amount of power that each can withstand
must be sufficient to cover even a single transformer failure. This is specified in the Korean power grid
reliability standards, which states that there must be no problems in operation with an N-1 failure.
To satisfy this condition, the transformer must have spare capacity relative to the existing power
consumption. If there is spare capacity, then the two transformers can be split while also independently
configuring the 154 kV voltage level, resulting in a much greater reduction in short circuit current.
However, if there is no spare capacity, transformer failure may result in a violation of the reliability
standards. Therefore, the rear end must be connected with a 154 kV level transmission line to eliminate
any potential problems. This is illustrated in Figures 3 and 4.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 18 

to separate the connected 345/154 kV transformers. For example, if there are a total of four 345/154 
kV transformers, the 154 kV buses are separated into the 1st and the 2nd, and two transformers for 
each are connected to reduce the short circuit current flowing into each 154 kV bus. 

Attention should be paid to whether the transformer is overloaded when disconnecting it in this 
manner. As the transformers are split for each bus, the total amount of power that each can withstand 
must be sufficient to cover even a single transformer failure. This is specified in the Korean power 
grid reliability standards, which states that there must be no problems in operation with an N-1 
failure. To satisfy this condition, the transformer must have spare capacity relative to the existing 
power consumption. If there is spare capacity, then the two transformers can be split while also 
independently configuring the 154 kV voltage level, resulting in a much greater reduction in short 
circuit current. However, if there is no spare capacity, transformer failure may result in a violation of 
the reliability standards. Therefore, the rear end must be connected with a 154 kV level transmission 
line to eliminate any potential problems. This is illustrated in Figures 3 and 4. 

 

Figure 3. Bus separation action when the transformer capacity is sufficient. 

 
Figure 4. Bus separation action when the transformer capacity is insufficient. 

In Figure 1, the transformer has spare capacity. As such, the 154 kV substation can be 
independently configured to block the additional inflow path of the short circuit current, thereby 
substantially reducing the short circuit current. In addition, grid stability can be maintained even if a 
transformer fails, thus complying with the reliability standards. Therefore, if the transformer has 
spare capacity, an additional line separation action is implemented in a suitable location to prevent 
the connection of the lower end, and the action to reduce the short circuit current of the grid is 
selected. 

In Figure 2, the transformer does not have spare capacity. Hence, configuring the 154 kV 
substation independently would violate the reliability standards if a single transformer failed. The 
lower end should, therefore, be linked to maintain grid stability. When implementing bus separation 
as above, and as additional line separation is not conducted, separating the transformer can 

Figure 3. Bus separation action when the transformer capacity is sufficient.

Sustainability 2020, 12, x FOR PEER REVIEW 6 of 18 

to separate the connected 345/154 kV transformers. For example, if there are a total of four 345/154 
kV transformers, the 154 kV buses are separated into the 1st and the 2nd, and two transformers for 
each are connected to reduce the short circuit current flowing into each 154 kV bus. 

Attention should be paid to whether the transformer is overloaded when disconnecting it in this 
manner. As the transformers are split for each bus, the total amount of power that each can withstand 
must be sufficient to cover even a single transformer failure. This is specified in the Korean power 
grid reliability standards, which states that there must be no problems in operation with an N-1 
failure. To satisfy this condition, the transformer must have spare capacity relative to the existing 
power consumption. If there is spare capacity, then the two transformers can be split while also 
independently configuring the 154 kV voltage level, resulting in a much greater reduction in short 
circuit current. However, if there is no spare capacity, transformer failure may result in a violation of 
the reliability standards. Therefore, the rear end must be connected with a 154 kV level transmission 
line to eliminate any potential problems. This is illustrated in Figures 3 and 4. 

 

Figure 3. Bus separation action when the transformer capacity is sufficient. 

 
Figure 4. Bus separation action when the transformer capacity is insufficient. 

In Figure 1, the transformer has spare capacity. As such, the 154 kV substation can be 
independently configured to block the additional inflow path of the short circuit current, thereby 
substantially reducing the short circuit current. In addition, grid stability can be maintained even if a 
transformer fails, thus complying with the reliability standards. Therefore, if the transformer has 
spare capacity, an additional line separation action is implemented in a suitable location to prevent 
the connection of the lower end, and the action to reduce the short circuit current of the grid is 
selected. 

In Figure 2, the transformer does not have spare capacity. Hence, configuring the 154 kV 
substation independently would violate the reliability standards if a single transformer failed. The 
lower end should, therefore, be linked to maintain grid stability. When implementing bus separation 
as above, and as additional line separation is not conducted, separating the transformer can 

Figure 4. Bus separation action when the transformer capacity is insufficient.

In Figure 1, the transformer has spare capacity. As such, the 154 kV substation can be independently
configured to block the additional inflow path of the short circuit current, thereby substantially reducing
the short circuit current. In addition, grid stability can be maintained even if a transformer fails, thus
complying with the reliability standards. Therefore, if the transformer has spare capacity, an additional
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line separation action is implemented in a suitable location to prevent the connection of the lower end,
and the action to reduce the short circuit current of the grid is selected.

In Figure 2, the transformer does not have spare capacity. Hence, configuring the 154 kV substation
independently would violate the reliability standards if a single transformer failed. The lower end
should, therefore, be linked to maintain grid stability. When implementing bus separation as above,
and as additional line separation is not conducted, separating the transformer can considerably reduce
the short circuit current, even though the reduction amount is limited. Accordingly, this is utilised for
the bus separation action.

2.1.2. Line Separation Action

Although line separation is an effective means for reducing the short circuit current of the
corresponding bus, separating the line may also result in degraded stability. Moreover, transformer
overload and line overload may also occur, which would violate reliability standards. Line separation
should, therefore, be minimised. An action used in conjunction with the transformer separation action
is effective in this case [36]. If there are no problems with the transformer capacity, then an action is
selected that separates the line of the bus where the short circuit current is the greatest at the lower end
and independently configures the grid; this maximises the reduction in short circuit current. The action
is then selected based on this action. This concept is shown in Figure 5.
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2.1.3. Transformer Movement Action

Figure 6 shows the transformer movement action used when the capacity of the transformer
is insufficient. If the transformer capacity is insufficient, then the transformer is driven to one side
while performing bus separation, the lines are separated at the lower end, and the grid is configured
independently and does not violate the power grid reliability standards.
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2.1.4. Bus/Line Merging Action

Bus or line merging action is simpler than separation action. It is only necessary to reconnect
the separated bus or the open line. If this action is performed, the overload is generally reduced,
but conversely, the short circuit current increases.

Figure 7 shows the overall concept of separation, including the separation action for the
transformers and lines. By performing separation as below, grid stability in compliance with reliability
standards can be obtained along with a substantial reduction in short circuit current. The buses and
lines that can be separated from the grid are thus selected based on this action, through which the
action is selected.
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2.2. Agents and State

In terms of reducing short circuit current, the agents can be classified into three categories: Short
circuit current violation (SCCV), overflow violation (OFV), and radial grid violation (RGV). Each item
is considered a violation and the number is considered. The closer to zero each item is, the more
optimal is the environment. Therefore, the state after taking any action can be classified into three
categories according to whether the number of violations increases, decreases, or remains the same.

Figure 8 shows the degree of reward according to state change for each agent. In each agent, it is
best to go in the direction of decreasing number of violations. Therefore, when an action is performed
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in the direction that decreases each number, the reward is provided as a positive value. If the number
does not change after taking the action, the reward is given as zero. In addition, if one action instead
increases the number of violations, the reward is provided as a negative number. By varying the degree
of reward, the policy is configured so that the RL can take more effective actions.
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The degree of reward for each agent can be the same, but it can also be varied so that more
reinforced results can be obtained for the desired environment. As shown in Figure 9, it is possible to
lead the direction of the result to the other side by changing the reward according to each agent without
setting the degree of reward to a fixed value, or to reinforce the result in the direction the agent wants.
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As described above, if the degree of reward is classified into nine types, and the value is different
for each agent, the compensation degree for each action, state, and environment can be varied and
reinforced in a desired direction to obtain a result.

2.3. Deep Q-Network Algorithm

Before explaining the deep Q-network, Q-learning will be described. Each agent repeats the
following steps to maximise the Q-value.

• Choose an action a to perform in the current state, s.
• Perform action and receive reward R(s, a).
• Observe the new state, S(s, a).
• Update: Q’(s, a)← R(s, a) + γmax{Q’(S(s, a),a)}

Through the above process, an action that maximises the Q-value is selected, which is called greedy
action selection. However, if the action that maximises the Q-value is only taken here, the opportunity
to learn about various environmental changes would be lost. This would result in optimisation failure,
called local optimum. Therefore, to obtain the global optimum, a certain non-greedy action needs
to be selected. In other words, choosing an action that gives a rather small reward rather than an
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action that gives the maximum reward has to be learned. This is called explore, and the method of
performing explore with a certain probability (ε) is called the ε-greedy method. Therefore, using the
ε-greedy method, non-greedy actions can be explored with a certain probability (ε) to learn about
various situations. At this time, it is very important to maintain a balance between greedy action and
non-greedy action to obtain optimal results.

The deep Q-network can be thought of as a form that combines artificial intelligence learning by
combining a neural network with Q-learning. To formulate this in order to create an algorithm, the
Q-value function is first approximated to the Q-network:

Q(s, a,θ) ≈ Qπ(s, a). (9)

If the objective function is developed in the direction of reducing the difference between the current
Q-value and the target Q-value in a mean-square error (MSE) method, the equation is as follows:

Li(θi) = E
(s,a,r,s′)∼U(D)[((PredictedmaxQvalue)−(current Qvalue))2]

(10)

Li(θi) = E
(s,a,r,s′)∼U(D)[(r+γmax

a′
Q(s′,a′;θ−i )−Q(s,a;θi)

2]
(11)

where U(D) is replay memory, θ is the parameter of the neural network, and θ− is the old parameter.
Using the above equation, the gradient descent method is applied to find the optimum value.

Replay memory D appearing here is called experience replay, which stores a dataset of the agent’s
experience excluding other relationships. If the reward rt is received after selecting action at in state st

and the new state being observed is st+1, the transition (st, at, rt, st+1) is stored in replay memory D.
The transitions stored in the memory are used for the optimised MSE, and in some cases, the minibatch
is partially executed to improve the speed and the optimisation result. The process for this is expressed
in Algorithm 1.

Algorithm 1 Deep Q-Network algorithm

Initialise replay memory D to capacity N
Initialise action–value function Q with θ
Initialise target action–value function Q with θ− = θ

For episode = 1 to num episodes do
For t = 1 to T do
With probability ε select a random action at, otherwise select at = maxaQ(s, a; θ)
Execute action at in emulator and observe reward rt and state st

Store transition (st, at, rt, st+1) in D
Sample random minibatch of transitions (sj, aj, rj, sj+1) from D
Perform a gradient descent step on Lj(θ) with respect to the network parameters θ
End For
End For

As there are three types of agents in this study, the state and reward according to the action are
also divided into three types. Every action causes a change in the environment and a different effect
on each agent. Therefore, one action is executed, and each pair of agent state and reward is given
accordingly. This concept is shown in Figure 10.

Accordingly, the objective function is also transformed, and the form that adds the optimisation
function for each agent becomes the final objective function. This is shown in the following equation:

Ltotal(θi) = Li,SCCV(θi) + Li,OFV(θi) + Li,RGV(θi). (12)
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3. Results

3.1. Applied System and Simulation Conditions

The 8th power grid supply and demand plan was used for grid analysis to minimise the sites
exceeding the fault capacity, and the power grid data from 2018 to 2025 were used to verify the
effectiveness of the proposed method. In the grid data, minimal bus separation and line separation
should be performed in advance for 345 kV buses to ensure that there is no excessive short circuit
current for these buses. For the 154 kV buses, both bus separation and line separation were removed,
and an integrated grid was created. Additionally, for short circuit current analysis, all generators in
the power grid were turned on, and sub-transient impedance was used for generator impedance to
generate the maximum short circuit current.

To yield meaningful optimisation results from various simulations that can be applied to actual
power grids, the range for each variable must be set. First, the number of buses with short circuit
current that exceeds the breaker capacity must be zero to comply with the reliability standards. Second,
the number of overloaded lines and transformers must also be zero to comply with the reliability
standards. Third, radial systems should not be created after line separation or bus separation. As these
three contents are implemented with an agent, it moves in the optimal direction as RL is executed.

The number of separable buses and lines used for each year are shown in Table 2. The number of
merged buses and lines, and the number of transformers to be moved can be considered to be included
in the separation plan, so values are not set separately.

Table 2. Number of bus separation actions and line separation actions for each year.

Year No. of Bus Separation Actions No. of Line Separation Actions

2018 1210 2780
2019 1210 2782
2020 1213 2784
2021 1216 2788
2022 1217 2792
2023 1220 2801
2024 1222 2805
2025 1225 2813

The results obtained in this study were compared with the results manually generated when
making the 8th power grid supply and demand plan before verifying the effect [2].

3.2. Simulation Results

Simulations were performed for the eight years from 2018 to 2025 and the purpose of RL was to
maximise reward which is to make the number of violations (SCCV OFV and RGV) of each agent zero.
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In practice in a situation where all violations are zero the number of bus separations and the
number of line separations should be minimised. Therefore, even if the reward continues to increase
the best result in system operation is to adopt the bus separation actions and the line separation actions
at the moment when the violation becomes zero rather than selecting the value thereafter.

As shown in Figures 11–18 the numbers of violations could be reduced to zero in all graphs with
the RL. Table 3 shows the final number of bus separation actions and line separation actions obtained
for each year. To compare the results of the RL with the optimal results the number of bus and line
separations applied to the 8th basic plan were imported and compared [2]. In the 8th basic plan when
separating the bus and lines they were all manually heuristically executed.Sustainability 2020, 12, x FOR PEER REVIEW 12 of 18 
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As a result of performing the RL even though the number of violations was made all zeros the
number of separate buses and lines could be reduced compared to the existing results. This can be said
to be the result of obtaining the highest stability without violating the reliability.

There are numerous methods for reducing short circuit current and reducing the number of buses
exceeding the breaker capacity. To solve this problem many simulations must be performed manually.
However, as shown in this study, defining equations in RL form that can be applied to actual grids’
optimal results can be obtained via the deep Q-network. RL can be used to create effective short circuit
current reduction methods systematically for the 9th power grid supply and demand plan in the future
and this plan can also be continuously utilised.
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Table 3. Comparison of the results of RL versus the number of bus and line separations applied to the
8th basic plan.

Year
Final Number of Bus Separation Methods Final Number of Line Separation Methods

8th Plan RL 8th Plan RL

2018 60 57 56 54
2019 58 52 59 57
2020 60 55 56 55
2021 64 59 64 63
2022 64 58 64 63
2023 69 62 63 62
2024 68 61 63 61
2025 66 61 64 63

4. Conclusions

This paper proposed an RL-based optimisation technique that finds the optimal bus and line
separation actions for reducing short circuit current in a power grid. This is accomplished by defining
the bus and line separation actions systematically which are the traditional techniques for reducing
short circuit current. In this manner optimisation is performed to find the optimal short circuit current
reduction method from among numerous possibilities. In particular this paper presented a technique
for selecting the bus and line separation actions that can be applied to actual power grids. Using this
technique to reduce the number of actions and required replay memory decreases the time required to
obtain the RL optimisation result.

RL is effective in determining a method when there is no ideal solution. In particular it is highly
suitable for reducing short circuit current using bus and line separation measures. Future studies can
enhance the performance of RL by further improving its reward function and further refining and
limiting the actions with policy. This technique will contribute greatly to the creation of a power grid
supply and demand plan database that will be frequently used in the future.
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