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Abstract: Urban parks have been considered as an effective measure to mitigate the urban heat island
(UHI) effects. Many studies have investigated the impacts of shape, size and interior components on
the cold island effect (CIE) of parks, while little attention has been given to the impact of neighboring
buildings. Thus, taking twenty-two parks in Beijing as samples, this study investigated the impacts
of the neighboring building on the CIE of central parks. The results showed that the average land
surface temperature (LST) of parks are 30.98 ◦C in summer and −1.10 ◦C in winter. Parks have a
strong CIE in summer, and average cold island footprint (CIF) and LST difference are 0.15 km2 and
2.01 ◦C higher than that in winter. The components of the building in the CIF of parks are dominated
by middle-rise building (MRB), followed by low-rise building (LRB), and high-rise building (HRB) is
the least dominant. The percentage of landscape (PLAND) and landscape shape index (LSI) of MRB,
and perimeter area fractal dimension (PAFRAC) of LRB are significantly related to CIF in summer
and winter. This study could extend scientific understanding of the impacts of neighboring buildings
on the CIE of central parks, and could guide urban planners in mitigating the UHI effects through the
rational allocation of buildings.
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1. Introduction

Urbanization transforms the natural surface into impervious surface, while a high population
in urban area accelerates this transformation [1–3]. This transformation was considered as one of
the major causes for the phenomenon of urban heat island (UHI) [4,5]. The UHI refers to urban
temperatures being higher than those in rural areas [6]. This negatively affects the quality and health
of inhabitants [7,8]. Thus, how to mitigate the UHI effects has attracted wide concern from scholars
and government managers.

The urban thermal environment has been extensively investigated by scholars, and the UHI
effects is influenced by many factors [9–12]. It is widely accepted that greater absorption of solar
radiation, lower efficiency of longwave radiation emission, energy storage by buildings and paved
surface, lower evaporative cooling, and anthropogenic heat release in the urban area together lead
to the UHI effects [13]. In addition, many studies have investigated relationships between urban
(e.g., water bodies, roads, and built-up areas) and geographic (e.g., Normalized Difference Vegetation
Index (NDVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Water
Index (NDWI)) indicators and urban thermal environment [8,14–18]. Most of the existing research
emphasized that built-up areas could increase the UHI effects, while water bodies and vegetation lands
decrease it [1,17,19,20].
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Urban parks, which mainly consist of grasses, trees, and water, are effective measures to mitigate
the UHI effects [14,21–23]. They not only reduce the interiors’ temperature, but also reduce the
surrounding area’s temperature [24]. The UHI mitigation improvement achieved by urban parks also
attracted the attention of many scholars [21,25–29]. Several scholars have investigated the relationship
between park size and the cold island effect (CIE) based on site data and remote sensing data, noting that
the CIE is stronger as the park size increases [24,30]. Park shape also affects the land surface temperature
(LST) of the park [24]. Generally, the more compact the shape, the better the CIE of the park [24,31].
Moreover, many scholars have pointed out that the CIE of the park is not only influenced by size and
shape, but is also related to the interior landscape components [31,32]. Xu et al. (2017) emphasized that
different landscape compositions and configurations of parks can affect the LST, and water bodies ratio
and woodlands aggregation are considered to be the key influencing factors [24]. Furthermore, the CIE
of the park is influenced by the characteristics of the area around the park [33,34]. Lin et al. (2015)
investigated the cooling extent of parks in Beijing, and pointed out that the characteristics of the area
around the park is also a key factor affecting the CIE of the parks [33]. Dai et al. (2018) also pointed
out that landscape factors can affect the LST within or around parks [34]. However, although many
studies have investigated the relationship between shape, size and interior components and the CIE of
parks, the impact of the neighboring landscape on the CIE of parks is still lacking.

Due to data availability, current research explored the influence of the surrounding
two-dimensional surface elements, such as impervious surface and built-up areas, but little attention
has been paid to three-dimensional surface elements, such as buildings. Fortunately, the development
of high-resolution remote sensing imagery and Light Detection And Ranging (LiDAR) enables the
requirement of building data, including building outline and height [35,36]. These data could provide
data support for exploring the impacts of building on thermal environment [37]. They could also
provide fundamental data for investigating the impacts of neighboring buildings on the CIE of parks.

Most of the existing research has pointed out that buildings have different effects on LST [38].
Buildings can affect LST by modifying the surface characteristics and regional radiation energy
balance [20,38–40]. Buildings with different height and form also have different effects on LST [29,41,42].
However, it is unclear that the impacts of the neighboring buildings (especially different types of
buildings) on the CIE of parks. Thus, the impacts of neighboring buildings on the CIE of parks need to
be investigated.

The objects of this study were (1) to investigate the LST difference among different parks; (2) to
analysis the cool island footprint (CIF) of parks; (3) to further examine the composition of building
neighboring parks; (4) to analyze LST difference between park and CIF; and (5) to investigate the effect
of neighboring buildings on the CIE of parks. This study could provide guidance to urban planners on
how to mitigate the UHI effects through the rational allocation of buildings.

2. Materials and Methods

2.1. Study Area

Beijing, the capital of China, is located in the northern of the country (39◦26′–41◦03′ N,
115◦25′–117◦30′ E). It covers an area of 164,100 km2, with a population of 21.71 million as of 2015
(Figure 1). This region has a typical warm-temperate, semi-humid continental monsoon climate,
with hot and rainy weather in summer and a cold and dry winter. The annual mean temperature and
precipitation are 12.3 ◦C, and 300 to 800 mm, respectively. Beijing has experienced rapid urbanization
since the 1978 economic reform and opening up policy. It is also one of the cities with serious UHI
effects in China. The study area is located within the 3rd ring road of Beijing metropolitan area,
which covers an area of approximately 80,000 km2 (Figure 1). There are also many parks inside this
region. Twenty-two parks were chosen to investigate the impacts of neighboring buildings on the CIE
of central parks.
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Figure 1. Location of the study area.

The spatial distribution and details of parks can see in Figure 1 and Table 1, respectively.
Eleven parks are distributed in the 2nd ring, and the others are distributed in the 3rd ring. The area of
parks ranged from 0.04 km2 (WS) to 1.95 km2 (TT), with an average area of 0.39 km2.

Table 1. Characteristics of parks.

Name Abbreviation Latitude (◦) Longitude (◦) Area (km2)

Beihai BH 39.93 116.38 0.68
Beijing Zoo BZ 39.94 116.33 0.66

Daguanyuan DGY 39.87 116.35 0.09
Ditan DT 39.95 116.41 0.32

Dongdan DD 39.90 116.41 0.05
Jingshan JS 39.92 116.39 0.28

Lianhuachi LHC 39.89 116.31 0.46
Liuyin LY 39.96 116.40 0.15

Longtan LT 39.88 116.44 0.42
Nanguan NG 39.94 116.42 0.04

Qingnianhu QNH 39.95 116.40 0.15
Rendinghu RDH 39.96 116.38 0.10
Shichahai SCH 39.94 116.38 0.42
Shuangxiu SX 39.96 116.37 0.06
Taoranting TRT 39.87 116.38 0.52

Tiantan TT 39.88 116.40 1.95
Wanfangyuan WFY 39.86 116.37 0.12

Wanshou WS 39.88 116.36 0.04
Xuanwu XW 39.89 116.35 0.08

Yuyuantan YYT 39.92 116.32 1.51
Yuetan YT 39.91 116.35 0.07

Zizhuyuan ZZY 39.94 116.31 0.42

2.2. Data Sources

Building dataset, Gaofen2 images, and Landsat 8 image were used in this study, as shown in
Table 2.

Table 2. Data sources.

Name Time Data Types Scale/Resolution Data Sources

Building dataset 2015 vector - Resources and Environmental Scientific Data Center
(RESDC), Chinese Academy of Sciences (CAS)

Gaofen2(GF2) images 2015 Raster 0.61 × 0.61 m RESDC
Landsat 8 OLI 2015 Raster 30 × 30 m USGS
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Building dataset was derived from Resources and Environmental Scientific Data Center (RESDC),
Chinese Academy of Sciences (CAS). It provides building datasets in Chinese major cities, such as
Beijing, Tianjin and Jinan. Some parameters, such as building outline and floors, are included in this
dataset. It can reflect the two- and three-dimensional characteristics of the building. Taking Baidu
Street View map as criteria, 500 samples were randomly selected to verify the accuracy of this dataset.
The result shows that the overall accuracy of this dataset was approximately 97%, which can guarantee
the accuracy of building classification and subsequent analysis.

The outline of the park was mapped using GF2 images, which were derived from RESDC. To cover
the study area, two GF2 images taken on 2 September 2015, and 12 September 2015, respectively,
were used in this study, with a panchromatic (spatial resolution of 1 m) and four multi-spectral (blue,
green, red, and near infrared, spatial resolutions of 4 m) bands.

To retrieve the LST, two Landsat 8 OLI images were derived from the United States Geological
Survey (USGS) on 22 August 2015, and 14 February 2016, respectively. The thermal infrared band
(band 10, spatial resolution of 120 m), was used to retrieve the LST. The images were selected to be as
cloud-free as possible. Although the cloud cover of this image was 33.33% in summer, the study area
was cloud-free.

2.3. Methods

The flowchart of this study is as follows (Figure 2). First of all, the LST was retrieved from two
Landast 8 OLI images (summer and winter), and the outline of parks were required by GF2 images.
Buildings were classified based on the building dataset. Secondly, the LSTs of parks were calculated,
and the LST differences among different parks were analyzed. Thirdly, the CIF of parks were estimated,
and CIF of parks were analyzed. Fourthly, average LST of CIFs were calculated, and LST difference
between park and CIF were analyzed. Fifthly, the composition of the building neighboring the park
was analyzed. Finally, the impacts of neighboring buildings on the CIE of parks was investigated.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 17 
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2.3.1. Retrieval of LST

The image-based method (IBM) is used for retrieval of LST [15]. The equation is as follows

Ts =
T

1 +
(
λT
ρ

)
lnε

(1)

where Ts is the LST, T represents the at-satellite brightness temperature, λ and ε are the wavelengths at
the center of emitted radiance and spectral emissivity, respectively. ρ is a constant value derived from
the headed files of the Landsat 8 OLI image. In this case, ρ equals 1.438 × 10−2 mK.

The estimation of T can divide into two steps. First, the digital number (DN) of thermal band
(band 10) is converted to radiation. The equation is as follows

Lλ = ML×DN + AL (2)

where Lλ is the spectral radiance (W·m−2
·sr−1
·µm−1), ML and AL are rescaled gain (value = 3.342 × 10−4)

and rescaled bias (value = 0.1).
After calculating Lλ, the T can calculate as follows

T =
K2

ln
(K1

Lλ + 1
) (3)

where K1 = 480.89 W·m−2
·sr−1
·µm−1 and K2 = 1201.14 K.

The estimation of ε can also divide into two steps. First, the land surface is classified into three
groups, water, urban, and natural surface. Then, the ε of water is set as 0.995, while for urban and
natural surface, the ε can calculate by fractional vegetation cover (FVC) (Equations (4) and (5)). The FVC
is calculated by NDVI (Equation (6))

εurban = 0.9589 + 0.086FVC− 0.0671FVC2 (4)

εnatural sur f ace = 0.9625 + 0.0614FVC− 0.0461FVC2 (5)

FVC =
NDVI −NDVIs

NDVIv −NDVIs
(6)

where εurban and εnatural sur f ace are the emissivity values for urban and natural surface, respectively.
FVC and NDVI are the fractional vegetation cover and Normalized Difference Vegetation Index.
NDVIs and NDVIv are the NDVI for the vegetation and soil, respectively.

2.3.2. Extraction of Park and Classification of Buildings

The outline of parks was mapped using GF2 images based on the visual interpretation method.
Taking TRT as an example, the outline of TRT was extracted based on GF2 images (Figure 3). In this
study, twenty-two parks were extracted, and the spatial distribution of parks can be seen in Figure 1.
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Figure 3. The outline of TRT.

To evaluate the impact of different building types on the CIE of parks, building dataset was
used in this study. This dataset includes the outline of the buildings, and the number of building
floors. Furthermore, according to Chinese Residential Building Code, buildings were classified into
three types based on building floors, including low-rise building (LRB), middle-rise building (MRB),
and high-rise building (HRB), respectively. The classification standard can be seen in Table 3.

Table 3. Classification standard of building.

Types Floors

LRB 1–3
MRB 4–6
HRB >6

2.3.3. Estimation of CIF

The area where the CIE of parks occurs is defined as the CIF. The greater the CIF, the stronger the
park CIE. According to the urban heat island footprint, the buffer method was used to quantitatively
measure the CIF of parks [43–45].

Firstly, we constructed buffers of the outline of each park with a distance of 50 m. Then, the mean
LST in each buffer were calculated. A scatter plot of the relationship between the buffer number and
average LST was drawn. Finally, the CIF of the park was determined by identifying the breakpoint.

Taking TRT as an example, we first constructed buffers of the outline of this park with a distance
of 50 m, the buffer diagram is shown in Figure 4. Then, the average LST in each buffer were calculated,
and the relationship between the buffer number and average LST was drawn in Figure 5. The result
showed that the average LST of TRT is 29.91 ◦C. As the rings extended outward, the average LST
gradually increases, and reached the highest at the fifth rings (35.10 ◦C). Then, the average LST begins
to decrease. Thus, the fifth ring represents the boundary of change in the LST, the area of the five inner
rings is determined as the CIF of TRT.
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2.3.4. Analytical Methods

Multiple linear regression model was used to explore the effects of neighboring buildings on
CIF of central parks. Three building types, including LRB, MRB and HRB, were also considered in
this study. To illustrate the composition and configuration characteristics of buildings, some metrics,
including percentage of landscape (PLAND), landscape shape index (LSI), perimeter area fractal
dimension (PAFRAC), interspersion juxtaposition index (IJI), and aggregation index (AI), which were
quantified by Fragstats 4.2, has been used in this study. Particular, PLAND is used to quantify
the composition characteristics of buildings, and LSI, PAFRAC, IJI, and AI are used to quantify the
configuration characteristics of buildings.

3. Results

3.1. LST Difference among Different Park

Spatial distribution of LST in the study area is shown in Figure 6. The result shows that the
LST of the study area ranged from 19.76 to 43.52 ◦C in summer, and −20.77 to 8.73 ◦C in winter.
The average LSTs were 33.67 ◦C in summer and −0.33 ◦C in winter in the study area. It is obvious
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that LSTs of parks are much lower than the neighboring area, indicating that parks are cold islands.
Additionally, compared with winter, LSTs of parks in summer are significantly lower than neighboring
areas. This indicates that there are large LST differences between parks and neighboring areas in
summer compared to winter.
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To further investigate LST differences among different parks, average LSTs of parks in different
seasons were calculated (Table 4). In summer, LSTs of parks ranged from 29.25 ◦C (YYT) to 32.84 ◦C
(WS), with an average LST of 30.98 ◦C. It is lower than the average LST (33.67 ◦C) of the study area.
Among them, the LST of five parks, including YYT, ZZY, LT, BH, and TRT, is lower than 30 ◦C.
Additionally, the LST of five parks, including WS, XW, WFY, DD, and DGY, is higher than 32 ◦C.
Interestingly, the areas of these five parks are relatively small. In winter, the LST of parks ranged from
−2.13 ◦C (SCH) to 0.29 ◦C (LHC), with an average LST of −1.10 ◦C. It should be noted that, except for
LHC, the LSTs of other parks are lower than 0 ◦C. Furthermore, compared with summer, there is little
difference in the LSTs of parks.

Table 4. Average LSTs of parks

Park Name
Average LST (◦C)

Summer Winter

BH 29.34 −1.46
BZ 30.82 −0.51

DGY 32.05 −0.47
DT 31.35 −1.60
DD 32.28 −0.86
JS 31.42 −1.36

LHC 31.68 0.29
LY 30.16 −1.51
LT 29.34 −1.68
NG 30.81 −1.74

QNH 30.18 −1.62
RDH 31.96 −0.11
SCH 30.08 −2.13
SX 30.85 −1.36

TRT 29.91 −1.19
TT 31.01 −1.34

WFY 32.42 −0.51
WS 32.84 −0.48
XW 32.72 −0.35
YYT 29.25 −1.28
YT 31.75 −1.48

ZZY 29.33 −1.38
Average 30.98 −1.10
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3.2. CIF of Parks

The CIF of parks is shown in Figure 7. The results show that the CIF of parks ranged from 0.19 to
3.55 km2 in summer, and ranged from 0.11 to 1.87 km2 in winter. The average CIFs were 0.67 in summer
and 0.53 km2 in winter in the study area. In summer, the CIFs of YYT (3.55 km2), BZ (1.10 km2),
and TRT (1.05 km2) are large. In contrast, the CIFs of NG, DD, WS, and QNH are small, which are
all below 0.30 km2. It should be noted that the areas of all four parks are small. In winter, the CIF of
four parks, including LT (1.87 km2), YT (1.30 km2), YYT (1.07 km2) and TRT (1.05 km2), is higher than
1 km2. The CIF of other parks is all below 1 km2. In particular, the CIF of JS is the smallest (0.11 km2).Sustainability 2020, 12, x FOR PEER REVIEW 10 of 17 
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The CIF of parks is different in different seasons. In general, the CIF of parks in summer is larger
than that in winter, with an average area that is 0.14 km2 larger. This indicates that the park has a
better CIE in summer than that in winter. It is also associated with a lower average temperature in
winter. In particular, there are also six parks, such as YRT, SCH, and DT, with consistent CIF in summer
and winter. Additionally, the CIFs of five parks, such as LT, WS, and TT, are smaller in summer than
in winter.

3.3. LST Difference between Park and CIF

After determining the CIF of parks, the average LSTs of CIFs were also calculated, and LST
differences between park and CIF are shown in Table 5. The results show that there is a significant LST
difference between park and CIF. The average LST of CIF is higher than that of park, indicating that
the LST of parks is lower than in the neighboring area.

Table 5. LST difference between park and CIF.

Park Name
LST Difference (◦C)

Summer Winter

BH 4.45 1.21
BZ 3.21 0.40

DGY 2.15 0.59
DT 1.90 0.92
DD 2.07 0.51
JS 1.75 0.59

LHC 3.77 0.62
LY 3.39 0.59
LT 3.10 1.10
NG 1.55 0.29

QNH 2.34 0.51
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Table 5. Cont.

Park Name
LST Difference (◦C)

Summer Winter

RDH 2.49 0.38
SCH 4.04 1.98
SX 2.76 0.09

TRT 4.29 1.31
TT 3.59 1.71

WFY 1.97 0.80
WS 1.81 0.77
XW 2.31 0.87
YYT 3.79 1.16
YT 2.60 1.40

ZZY 3.75 1.06
Average 2.87 0.86

LST difference between park and CIF ranged from 1.55 ◦C (NG) to 4.45 ◦C (BH) in summer,
with an average of 2.87 ◦C. For winter, the LST difference is relatively small, it ranged from 0.09 ◦C (SX)
to 1.98 ◦C (SCH), with an average of 0.86 ◦C. Compared with different seasons, the LST difference in
summer is higher than that in winter. It also indicated that parks have a strong CIE in summer.

3.4. Composition of Building Neighboring Parks

The compositions of the buildings neighboring parks were calculated, as shown in Figure 8.
The results show that the components of the buildings in the CIF of parks are dominated by MRB,
followed by LRB, and HRB is the least dominant (Figure 8). The proportion of buildings in the CIF of
each park ranged from 14.40% to 35.90% in summer and ranged from 14.23% to 37.58% in winter.
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In summer, the components of the buildings in the CIF of parks are dominated by MRB,
which ranged from 4.62% in NG to 21.00% in RDH (Figure 8a). The proportion of LRB ranged from
4.79% to 23.28%, and the proportion of HRB ranged from 0.53% to 14.44%. For all parks, the neighboring
buildings in twelve CIFs are dominated by MRB, such as QNH (18.66%), XW (15.55%), and WS (15.09%),
respectively. Additionally, the neighboring buildings in seven CIFs are dominated by LRB, such as
QCH (23.28%), JS (19.42%), and TT (11.87%), respectively. Furthermore, the neighboring buildings in
three CIFs are dominated by HRB, including DD (14.44%), NG (10.55%), and YT (10.41%).

Similar to summer, the components of the buildings in the CIF of parks are dominated by MRB in
winter (Figure 8b). The proportions of MRB, LRB and HRB ranged from 2.04% to 22.35%, 5.11% to
23.26%, and 0.53% to 14.90%. Neighboring buildings in eleven CIFs are dominated by MRB, such as
NG (22.35%), LT (18.66%), and TT (15.52%), respectively. Additionally, neighboring buildings in nine
CIFs are dominated by LRB, such as QNH (23.26%), YYT (18.16%), and BH (14.68%), respectively.
Furthermore, neighboring buildings in two CIFs are dominated by HRB, including DD (14.90%) and
TRT (11.16%).

3.5. Impacts of Neighboring Buildings on CIE of Parks

Five metrics, including one composition metric (PLAND), and four configuration metrics
(LSI, PAFRAC, IJI and AI), were used to quantitatively investigate the impacts of different types of
neighboring buildings on CIE of parks. The impact of composition and configuration variables of
buildings on CIE of central parks is shown in Table 6. The results show that there some differences in the
key variable between summer and winter. For summer, both composition and configuration variables
of MRB, including PLAND and LSI, are significantly related to CIF, suggesting that neighboring
MRBs with low density and complex patch shape lead to increased CIE of parks. For winter, only one
configuration variable of LRB (PAFRAC) is significantly related to CIF, suggesting that neighboring
LRBs with complex patch outline lead to increased CIE of parks.

Table 6. Impacts of composition and configuration variables of buildings on CIF of central parks.

Season Building Types

Variables

Composition Configuration

PLAND LSI PAFRAC IJI AI

Summer
LRB 0.29 −0.66 0.18 0.29 0.01
MRB −0.54 * 1.60 * −0.03 −0.27 0.28
HRB 0.15 −0.11 −0.15 0.06 0.91

Winter
LRB 0.59 −2.12 1.39 * −0.26 0.40
MRB 0.40 0.47 −0.76 −0.26 −0.48
HRB 0.82 1.04 1.21 0.60 0.71

* p < 0.05.

4. Discussion

4.1. Scale Effects

IB method was used to retrieve the LST in this study, which has a resolution of 30 m. Inevitably,
there are scale effects when carrying out the integration analysis between vector (parks and CIF) and
raster data (LST), which can lead to some uncertainties [24]. However, the average area of parks and
CIFs are approximately 0.39 and 0.67 km2 in summer and 0.53 km2 in winter, respectively. This indicates
that park LSTs were extracted based on enough LST pixels, which could ensure the accuracy of the
results. Furthermore, Liu et al. (2009) pointed out that 30 m was the optimal resolution for investigating
the relationship between land use and LST at the patch level in previous studies [46]. Thus, though this
may have scale effects, it does not invalidate our results.
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4.2. The Relationship between CIF and Park Area

Many studies have pointed out that the CIE of a park is related to its size. In this study,
the relationship between the CIF and park area was also evaluated. Figure 9 shows the relationship
between CIF and park area. The result shows that the CIF has a positive relationship with park area.
This result is consistent with other research [24].Sustainability 2020, 12, x FOR PEER REVIEW 13 of 17 
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Figure 9. The relationship between cool island footprint and park area.

Regardless of summer and winter, the CIF has a positive relationship with park area, indicating that
the larger the park area, the better the CIE. 48% (summer) and 25% (winter) of CIF variation can be
explained by park area, and both models passed the significance test. Compared with different seasons,
the result also shows that parks have a stronger CIE in summer than that in winter. This is mainly
related to the LST differences between parks and neighboring area in winter.

4.3. Implications for Designing Buildings Neighboring the Park for Urban Cooling

Urban parks are considered an effective measure to mitigate the UHI effects [24,31,34]. However,
the CIE varied in shape, size, interior components, and neighboring environments [24,33]. Due to
rapid urbanization, urban surface elements, especially three-dimensional buildings, have changed
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drastically, resulting in changes in urban regional climate [41]. It inevitably has effects on the CIE
of parks.

The composition and configuration of neighboring buildings affect the park’s CIE. However,
the influence is different in different building types. Thus, we suggest that the spatial composition and
configuration of the buildings neighboring parks should be emphasized. For MRB, the lower the density
and more complex the patch shape, the higher contribution they make to increased CIF in summer.
Particularly, due to the high building density and uniform distribution of MRB, it can be considered
as the key heat source [38]. For LRB, the more complex patch outline, the higher the contribution
they make to increased CIF in winter. Although high building density of LRB in few CIFs can absorb
and emit a lot of energy, the density of LRB in most of CIFs are relatively low. Unlike LRB and MRB,
HRB can create more shade, and large interval of HRB also can be beneficial for ventilation [11,27,38,47].
However, there is no significant contribution to CIF in different seasons. Given that the UHI effect is
strongest in summer, the CIF is relatively small in winter. Thus, reasonable planning of the density
and shape of MRB neighboring parks should be taken into account in the future, which can be a key
factor to increase the CIE of parks.

4.4. Limitations

In this study, the impacts of neighboring buildings on CIE of parks were explored during
summer and winter daytimes. However, due to a lack of nighttime LST data, the impacts and diurnal
variation could not be explored. Additionally, this study was carried out in the Beijing metropolitan
area, and results may vary in different cities (e.g., coastal cities and industrial cities) or climate
conditions (e.g., tropical monsoon climate and subtropical monsoon climate). Therefore, other cities
should be further investigated. Furthermore, this study focuses on characterizing the impacts of
neighboring buildings on the CIE of central parks. However, many other landscape factors in CIF,
including vegetation, pavements and water, can affect a park’s CIE. These factors should be considered
in future research to comprehensively understand the impacts.

5. Conclusions

This study investigated the impacts of neighboring building on the CIE of central parks based on
Landsat 8 OLI images, GF2 images, and building dataset. The key characteristics of buildings which
influence parks’ CIE were identified in summer and winter. Thus, this study could extend scientific
understanding of degree to which CIE of central parks are affected by neighboring buildings (especially
different types of buildings), and could provide guidance to urban planners on how to mitigate the
UHI effects through the rational allocation of buildings.

The average LSTs of parks are 30.98 ◦C in summer and −1.10 ◦C in winter, respectively. LSTs of
parks in summer are significantly lower than neighboring areas. CIF of parks in summer is higher than
that in winter, with an average area of 0.15 km2 larger than that in winter. Average LST differences
between park and CIF are 2.87 ◦C in summer and 0.86 ◦C in winter, indicating that parks have a strong
CIE in summer. The components of the building in CIF of parks are dominated by MRB, followed by
LRB, and HRB is the least dominant. Furthermore, the PLAND and LSI of MRB, and PAFRAC of
LRB are significantly related to CIF in summer and winter. This study demonstrated that parks
have a stronger CIE in summer than that in winter, which can effectively mitigate the UHI effects.
This study also demonstrated that the CIE of parks can vary in different types of neighboring buildings,
especially MRB. It is emphasized that reasonable planning of different types of neighboring buildings
(spatial composition and configuration) should be designed based on the characteristics of parks
in the future. Our findings are a good theoretical contribution to the urban thermal environment
research, providing useful guidance on optimizing buildings for urban planners and administrators.
The findings can provide new insights into further exploration of how to improve the CIE of parks.
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