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Abstract: The aim of this research is to assess corrosion in natural atmospheric conditions, based on
exposure of material samples and periodic monitoring, and to determine the size of corrosion
losses, their form and appearance, as well as changes in physical properties at regular time intervals.
Atmospheric corrosion tests were ultimately carried out in order to determine the corrosion resistance
of a cement concrete airfield pavement, as well as to assess the type of corrosion and research data in
order to determine and estimate the corrosivity of the atmosphere. Atmospheric corrosivity is one
of the parameters characterizing the technical condition of airfield pavement functional elements;
it makes it possible to estimate a suitable frequency of airfield periodic inspections. Assessments of
concrete corrosion and atmospheric corrosivity enable appropriate countermeasures to be taken in
order to maintain the airport functional elements in a constant state of technical readiness. In the
following study, the prepared samples were exposed to atmospheric conditions in designated places
located at selected military airport facilities. Corrosion samples in the form of 50 mm × 100 mm
standard samples, 1 mm to 3 mm in thickness, were placed on special frames located within fenced
corrosion stations. The corrosion rate rcorr of a specific metal, expressed as a corrosion loss, depends on
the environmental conditions. This article presents an atmosphere corrosivity category assessment
for low-carbon steel, zinc, copper and aluminum reference samples, taking into account weight or
thickness loss after one year of exposure.

Keywords: atmosphere; corrosion; corrosion station; cement concrete pavement; corrosion rate

1. Introduction

Atmosphere corrosivity is one of the parameters characterizing the airfield pavement’s technical
condition of the airport functional elements. Concrete corrosion phenomena are related to processes
in aircraft construction. Research in this field is based on analyses of the influence of atmospheric
conditions on the technical conditions of airfield pavements [1]. A condition analysis in which
the surfaces of an airport’s functional elements (EFL) are examined should be carried out taking
into account the adverse influence of the atmospheric environment in which the pavement is used.
Atmospheric environments differ in terms of insolation, temperature, humidity and the presence of
pollutants [2]. Aircraft constructions with specific corrosion resistance in one respect may not be
resistant in another.

Having the test results for the defined period and knowing the correlations with the parameters
characterizing the atmospheric conditions, it is possible to limit the collection of environmental data,
so that their impact can be determined on the basis of the corrosion losses of reference samples [3].
It is possible to develop a mathematical model for forecasting atmosphere corrosivity with established
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relationships between laboratory test results (accelerated tests) and natural (field tests within the
relevant airport) conditions. Scientists from China [4,5] have presented their approach for assessing
corrosion rates, both in laboratory and field corrosion tests.

Assessments of atmospheric corrosion are extremely complicated due to environmental parameters,
concentrations of anthropogenic and natural pollutants, and constantly changing climate parameters,
such as temperature, pressure, insolation, humidity and many others. The impact of the natural
environment, as well as concentrations of air pollution, on the corrosion process is highlighted
in [6,7]. According to these sources, nowadays, we are facing a so-called “multipollutant atmospheric
environment” that directly affects corrosion processes.

The main purpose of this work is to present atmosphere corrosivity category assessments of
low-carbon steel, zinc, copper and aluminum reference samples, including weight or thickness losses,
after one year of exposure. The results of weight and thickness losses included all analyzed metal alloys
excluding aluminum, as aluminum alloys, in conditions of atmospheric corrosion, preserve relatively
high corrosion resistance due to the formation of an oxide coating on their surface which protects them
from further oxidation [8]. The authors of [9–11] present atmospheric corrosion test results of metals
including aluminum, copper, carbon steel, galvanized steel and zinc on the basis of reference samples
tests, while further aluminum corrosion and product assessments were comprehensively presented
by [12–14]. An attempt to model atmosphere corrosivity was made using mechanistic models and
experiments in [15]. Finally, statistical indicators of the reliability of predicting the corrosion losses of
metals were calculated for various categories of atmosphere corrosivity in [16].

Currently used methods of the technical pavement condition assessments mostly rely on visual
assessments of pavement deterioration. The authors of the present research propose a method based
on the impact of atmosphere corrosivity on cement concrete pavements. In the following sections,
the authors will present test results, and will discuss the possibility of including the vulnerability
of pavements to corrosion deterioration and atmosphere corrosivity in a model characterizing the
pavement usage process, in order to assess the technical conditions thereof. Lastly, the authors will
discuss results and present the conclusions of the paper.

2. Materials and Methods

Atmospheric corrosion is the most common material deterioration process [17]. Taking into
account the atmosphere type and the process mechanism, corrosion can be categorized as:
dry atmosphere corrosion (i.e., where chemical corrosion takes place), humid atmosphere corrosion
(i.e., where electrochemical corrosion with oxygen depolarization occurs), or wet atmosphere corrosion
(in which water vapor condenses on the surface of the material, creating a water film [18]). The climate
and, above all, the microclimate conditions (e.g., sea microclimate, forested area microclimate) have a
direct impact on the atmosphere. Anthropogenic activity also introduces pollutants into the atmosphere
in the form of dust and gases, which increase electrolyte concentrations and aggressiveness towards
metal surfaces [19,20].

The nondestructive methods of recognizing corrosion signs are widely discussed in the literature.
In the construction of roads and airport pavements, these methods are used primarily to detect signs
of reinforcing steel corrosion. One of the modern approaches is the GPR (ground-penetrating radar)
method to diagnose the effects of corrosion in reinforced structures [21]. Different levels of corrosion of
reinforcing steel lead to the detection of different signals from the GPR. The authors of [22] presented an
assessment of the corrosion of reinforcing steel using GPR in combination with infrared thermography
(IRT). The combination of these two methods allowed for an even more accurate analysis of reinforced
concrete in the context of the reinforcing steel corrosion. While nondestructive techniques of corrosion
detection are gaining popularity [23,24], the atmosphere corrosivity parameter may be one of the
elements on the basis of which it is possible to determine the degree of pavement deterioration, not only
according to the level of corrosion of reinforcing steel, but also considering the corrosion of cement
concrete in specific corrosive atmospheric conditions. This will make it possible to estimate the duration
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of safe operation of a specific airport functional element (after which it would be advisable to carry out
renovations), thus allowing the transition to the use of airport functional elements in accordance with
its technical condition, thus keeping them in constant technical readiness [25].

Corrosion in natural atmospheric conditions on the basis of exposure of samples,
periodic observations and determination of the corrosion losses, their form and appearance, as well as
changes in physical properties at regular time intervals, is being assessed [26,27].

Permanent corrosion stations, where reference samples are exposed, are located in selected military
airport facilities, i.e., in Lask, Minsk Mazowiecki, Malbork, Krakow, Powidz, Swidwin, Miroslawiec,
Poznan-Krzesiny, Gdynia, Darlowo and Radom. Corrosion stations are fenced places with metal frames
on which corrosion samples are located. The frames are attached to concrete floor. The vegetation in
the immediate vicinity of the frame was removed or mowed. The reference samples are attached with
grips to the frame.

There are no objects nearby the frames that would reflect solar radiation. Figures 1 and 2 present
an example of a corrosion station placed at one of the airport facilities.

Figure 1. Corrosion station including low-carbon steel, zinc, copper and aluminum standard samples
located at one of the polish military airport facilities.

Figure 2. Low-carbon steel standard samples after 1 year of atmospheric exposure.

Standard samples (reference samples) are of 50 mm × 100 mm dimensions and 1 mm to 3 mm in
thickness. The plates were not protected with any anti-corrosion agent. They were properly marked
by stamping sequence of characters on the front (tested) side of the sample. Atmospheric corrosion
tests were carried out from October 2016 to November 2017. Data were obtained from permanent
corrosion stations listed in this chapter. The samples were prepared according to the EN ISO 8565:
2012 [3] standard. Before the sample exposure, all samples were cleaned with an organic solvent or
alkaline degreasing liquids. Old samples at corrosion stations were replaced with new ones.

The samples were weighed and measured after they were brought to the laboratory of Airfield
Division. Then, corrosion products were removed in accordance with EN ISO 8407 [28]. Samples were
weighed and measured once again. Samples were weighed with an analytical balance; the thickness
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measurement at five points was made with a digital micrometer. The corrosion rate was calculated
with Formula (1), according to EN ISO 9226 [29]. The atmosphere in the area of the analyzed objects
was classified in terms of the atmosphere corrosivity category according to EN ISO 9223: 2015 [28].

rcorr =
∆m

A× t
(1)

where:

rcorr—corrosion rate;
∆m—mass loss (g);
A—sample surface area, (m2);
t—exposure time of the corrosive sample, (years).

3. Results

Figure 3 presents the ranking of corrosion stations with the highest thickness losses of standard
samples. Further, Figure 4 presents the ranking of corrosion stations with the highest weight losses
of standard samples. Numbering 1 to 11 applies, where 1 is the corrosion station with the highest
registered losses of all analyzed metal alloys, excluding aluminum.
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Figure 3. The ranking of corrosion stations with the highest thickness losses of standard samples.
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Figure 4. The ranking of corrosion stations with the highest weight losses of standard samples.

Figures 5–8 present the correlation between weight and thickness losses for different metal alloys.
Table 1 also presents the r-Pearson coefficients, r2 and the probability p. The significant correlation
coefficients for which the probability of the first type error was less than the assumed α = 0.05 are
marked red. It corresponded to the confidence interval of 95%.

Figure 5. Correlation of weight and thickness losses for aluminum alloy.
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Figure 6. Correlation of weight and thickness losses for copper alloy.

Figure 7. Correlation of weight and thickness losses for zinc alloy.

Figure 8. Correlation of weight and thickness losses for low-carbon steel alloy.
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Table 1. The results of the statistical analysis of the correlation between the weight loss and the thickness
of the samples.

Metal Alloy R-Pearson Coefficient r2 p

Aluminum 0.41 0.010 0.018

Copper 0.22 0.086 0.224

Zinc 0.29 0.047 0.098

Low-carbon steel 0.10 0.169 0.581

Considering the above, the satisfactory value of Pearson’s r index was not obtained in any of the
cases. It was assumed as 0.8 for purposes of the analysis with the assumed confidence interval of 95%.
The highest value of r-Pearson coefficient was obtained for steel (r = 0.41); however, it was still much
lower than the assumed. In conclusion, there is no clear correlation between the results of thickness
and weight losses of the reference samples.

Table 2 presents the corrosivity categories determined on the basis of corrosion rates (rcorr) of
low-carbon steel, zinc, copper and aluminum reference samples, after the first year of exposure
according to EN ISO 9223: 2015.

Table 2. Corrosion rates rcorr after first year of exposure for each corrosivity category.

Corrosivity Category
Corrosion Rates

rcorr

Unit Low-Carbon Steel Zinc Copper Aluminum

C1
g/(m2

× a) rcorr ≤ 10 rcorr ≤ 0.7 rcorr ≤ 0.9 not relevant

µm/a rcorr ≤ 1.3 rcorr ≤ 0.1 rcorr ≤ 0.1 -

C2
g/(m2

× a) 10 < rcorr ≤ 200 0.7 < rcorr ≤ 5 0.9 < rcorr ≤ 5 rcorr ≤ 0.6

µm/a 1.3 < rcorr ≤ 25 0.1 < rcorr ≤ 0.7 0.1 < rcorr ≤ 0.6 -

C3
g/(m2

× a) 200 < rcorr ≤ 400 5 < rcorr ≤ 15 5 < rcorr ≤ 12 0.6 < rcorr ≤ 2

µm/a 25 < rcorr ≤ 50 0.7 < rcorr ≤ 2.1 0.6 < rcorr ≤ 1.3 -

C4
g/(m2

× a) 400 < rcorr ≤ 650 15 < rcorr ≤ 30 12 < rcorr ≤ 25 2 < rcorr ≤ 5

µm/a 50 < rcorr ≤ 80 2.1 < rcorr ≤ 4.2 1.3 < rcorr ≤ 2.8 -

C5
g/(m2

× a) 650 < rcorr ≤ 1500 30 < rcorr ≤ 60 25 < rcorr ≤ 50 5 < rcorr ≤ 10

µm/a 80 < rcorr ≤ 200 4.2 < rcorr ≤ 8.4 2.8 < rcorr ≤ 5,6 -

CX
g/(m2

× a) 1500 < rcorr ≤ 5500 60 < rcorr ≤ 180 50 < rcorr ≤ 90 rcorr > 0.6

µm/a 200 < rcorr ≤ 700 8.4 < rcorr ≤ 25 5.6 < rcorr ≤ 10 -

Table 3 lists the corrosivity categories for the analyzed corrosion stations, determined on the basis
of the corrosion rate rcorr (g/m2) measurements.

Based on the research results, the least favorable conditions in terms of atmospheric corrosivity are
at corrosion stations located in Krakow, Miroslawiec and Powidz. The Krakow location characterizes
the highest corrosion rate (rcorr = 167.5) of low-carbon steel, whereas the highest copper corrosion
rate (rcorr = 12.8) was reported at the Miroslawiec station. The highest corrosion rate (rcorr = 15.3) of
zinc alloy was reported at Powidz station. Overall, the atmosphere corrosivity category in all three
locations was defined at the C4 level. On the other hand, the lowest corrosion rates were reported at
Malbork, Poznan-Krzesiny and Gdynia stations with the atmosphere corrosivity category determined
at the C3 level.

The variation of corrosion rate results may be caused by various atmospheric conditions, as well
as pollution of local low emissions (pollutant emission from households with high emission from coal
heating installations), in relationship with variable conditions of pollutant dispersion and, especially in



Sustainability 2020, 12, 9560 8 of 13

the case of Krakow station, the presence of agglomeration traffic pollutants. Commonly available
pollutant emissions data are insufficient for the purposes of the research due to their local nature.

Table 3. Categories of the atmosphere corrosivity.

Corrosion Station

Low-Carbon Steel Zinc Copper Aluminum Atmosphere
Corrosivity

Category
rcorr
g/m2

Corrosivity
Category

rcorr
g/m2

Corrosivity
Category

rcorr
g/m2

Corrosivity
Category

rcorr
g/m2

Corrosivity
Category

Radom 123 C2 12.8 C3 7.5 C3 0.0 C1 C3

Krakow 167.5 C2 12.0 C3 12.1 C4 0.4 C2 C4

Miroslawiec 97.3 C2 12.3 C3 12.8 C4 0.8 C3 C4

Swidwin 73.3 C2 12.1 C3 9.3 C3 1.1 C3 C3

Malbork 99.5 C2 9.4 C3 9.3 C3 0.5 C2 C3

Minsk Maz. 88.5 C2 12.2 C3 11.1 C3 0.9 C3 C3

Poznan-Krzesiny 120.8 C2 13.6 C3 8.3 C3 0.1 C2 C3

Lask 127 C2 12.5 C3 11.1 C3 0.4 C2 C3

Powidz 105.4 C2 15.3 C4 10.6 C3 0.6 C2 C4

Gdynia 134.7 C2 8.6 C3 7.7 C3 0.5 C2 C3

Darlowo 149.8 C2 9.3 C3 10.8 C3 0.7 C3 C3

4. Discussion

During the usage process, airfield pavements are constantly degraded. Degradation is a process
in which properties of the pavement structure are reduced due to influence of external factors,
causing changes in pavement’s structure. It is a process that is slow and spread over a period of time.

The basic external factors affecting cement concrete airfield pavement include, among others,
atmospheric and climatic conditions and the influence of chemicals. These chemicals can come
from various sources, including winter airfield maintenance (de-icing agents) or leak of hazardous
substances from vehicles or aircraft moving on the pavement. Signs of premature deterioration of
airfield pavement surface (for instance a characteristic pattern of cracks) due to use of de-icing agents
(based on sodium acetate, potassium acetate, sodium formate and potassium formate which are
commonly used in Poland) are observed [30].

It may result in the formation of point, linear and area pavement deteriorations. According to
the adopted nomenclature, point deteriorations include marl spalls, fractures/chipping of edges and
corners, deep cavities and boreholes. Linear deteriorations consist of slotted and wide slotted cracks,
loss or excess of joint sealant mass and thresholds. Area deteriorations include shallow and deep flaking,
capillaries cracks, frost cracks and slabs for replacement. Any types of surface repairs, including area,
point repairs, as well as filling cracks, are also classified as deteriorations. Examples of pavement
deteriorations are shown in Figure 9 below.

The current pavement condition can be determined by its degradation degree [31,32]. The degree
of degradation is marked with symbol D and is given as a percentage, where 0% means the pavement
is in perfect condition, while 100% means the pavement is completely degraded. The degree of
degradation is calculated according to Formula (2).

D MF
BC w

= w U
BC ×W wUF

BC + w N
BC × W wNF

BC (2)

W wUF
BC =

13∑
i=1

(
wU

Ob

)
i
×

(
ObU

BC

)
i
×

(
pU

BC

)
i

F
× 100

/ 13∑
i=1

(wU
Ob)i (3)

W wcNF
BC =

13∑
i=1

(
wN

Ob

)
i
×

(
ObN

BC

)
i
×

(
pN

BC

)
i

F
× 100

/ 13∑
i=1

(wN
Ob)i (4)
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where:

DMF
BC—degradation of cement concrete airfield pavement of an airport functional element;

pi—conversion factor of the parameter characterizing pavement surface deterioration or repair,
including damaged or repaired areas;
wi

BC—statistical weight of the importance of deteriorations and repairs in the evaluation of pavement
degradation of an EFL;
wi

Obi—the statistical weight of the importance of specific deteriorations and repairs in the evaluation
of pavement degradation of an EFL;
Obi—dimensions of deteriorations and repairs of the EFL pavement;
F—total area of the tested EFL pavement;
U—deteriorations of the EFL pavement;
N—repairs of the EFL pavement.

Figure 9. Examples of cement concrete airfield pavement deteriorations ((a) marl spalls, (b) crack,
(c) corner fractures, (d) deep flaking).

Model data are obtained due to inventory of deteriorations and repairs during periodic inspections
of airfield pavements. Experts measure surface deteriorations and repairs, writing down the collected
information on specially prepared forms. The data are illustrated graphically. Each damage corresponds
to a predetermined symbol mapped on a functional element being evaluated. Next to the symbol,
a number characterizing deterioration harmfulness is applied. The legend of measurements of cement
concrete airfield pavement deteriorations and repairs (Figure 10) defines the method of applying
deteriorations and repairs, which are classified to various groups, on cement concrete operational
airport’s functional elements, on previously prepared forms along with their measurements. Taking into
account the collected data from the mathematical model (2), the assessed airport’s functional element
degradation degree is calculated. On the basis of the calculated degradation degree and its evaluation
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criteria, the pavement can be qualified to one of the seven classes of the standard scale or to one of the
three classes of the simplified scale [33]. The criteria for the degradation degree assessment of the EFL
pavement surface are presented in Figure 11.

Figure 10. The legend of cement concrete airfield pavement’s deteriorations and repairs measurements.

Figure 11. Criteria for the degradation degree assessment of the EFL pavement surface.
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The model characterizing the pavement usage process of airport functional elements includes,
among others, the pavement exploitation vulnerability to corrosion deterioration and the atmosphere
corrosivity characterizing the area of their exploitation. On the basis of the atmosphere corrosivity
in relation to the airport pavement materials, the air operation’s frequency, pollutants and weather
conditions influence on the pavement, the frequency of airport functional elements periodic pavement
inspections can be estimated. Having test results of the reference samples collected over a regular time
interval and correlations with parameters characterizing atmospheric conditions, it is possible to limit
the collection of environmental data, and their impact can be determined on the basis of the corrosion
rates of the reference samples. Based on the collected data, it is possible to develop a mathematical
model for predicting the atmosphere corrosivity, due to the established relations between the laboratory
test results (accelerated tests) and test results obtained in the natural conditions prevailing in the
ambient airport pavements.

5. Conclusions

The developed system of atmospheric corrosion assessment is designed to support the process of
managing functional elements of military and civil airports by analyzing the parameters characterizing
atmospheric conditions and collecting data from atmospheric corrosivity tests.

The highest category of atmospheric corrosivity was determined at the C4 level, at the corrosion
stations located in Krakow, Miroslawiec and Powidz. On the other hand, the atmosphere corrosivity
category at other stations was determined at the C3 level. The lowest values of corrosion rates (g/m2)
were obtained at Malbork, Poznan-Krzesiny and Gdynia corrosion stations. The variation of corrosion
rates results may be caused by various atmospheric conditions, as well as the pollutants emissions
dispersion. Commonly available pollutant emissions data are insufficient for the purposes of the
research due to their local nature. Therefore, studies of atmospheric corrosion monitoring, as well as
atmospheric conditions and air quality should be continued directly at the facilities with stationary
corrosion stations.

Currently, the Armed Forces of the Republic of Poland have many IT systems supporting the
management of flight operations in the technical field. Data presented in the article are the basis
for development of a method of estimating the durability of concrete pavement structures built in
specific atmosphere corrosivity conditions. In further stages, the authors will attempt to relate the
corrosion progress of the reference samples to the degradation process of airfield pavements not in
relation to the reinforcing steel but to the cement concrete construction. The developed system of
atmospheric corrosion assessment should support the rational management of airport pavements,
for example, by collecting detailed information about the course of the pavement use process from the
day of recording in the system until the end of operation, or conducting a detailed and comprehensive
flight safety analysis including all airport infrastructure personnel, technical condition of the airport
functional elements and supervision over measurement and research devices.

Author Contributions: M.W.: conceptualization, methodology, writing—review and editing; A.R., P.I. and A.P.:
resources, formal analysis, writing—original draft and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: Research financed from the budget of the Ministry of Science and Higher Education as part of the
statutory activity of the Airfield Division of the Air Force Institute of Technology.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.



Sustainability 2020, 12, 9560 12 of 13

References

1. Barszcz, P. Investigations on corrosion of aircrafts in the aspect of prolonged service life and operation driven
by their technical condition. Pr. Nauk. Inst. Tech. Wojsk Lotniczych 2012, 30, 59–72. [CrossRef]

2. Feliu, S.; Morcillo, M.; Chico, B. Effect of Distance from Sea on Atmospheric Corrosion Rate. Corrosion 1999,
55, 883–891. [CrossRef]

3. EN ISO 8565. Metals and Alloys—Atmospheric Corrosion Testing—General Requirements; European Committee
for Standardization: Brussels, Belgium, 2012.

4. Cai, Y.; Yuanming, X.; Zhao, Y.; Xiaobing, M. Atmospheric corrosion prediction: A review. Corros. Rev. 2020,
38, 299–321. [CrossRef]

5. Wang, X.M.; Li, X.G.; Tian, X.L. Influence of temperature and relative humidity on the atmospheric corrosion of
zinc in field exposures and laboratory environments by atmospheric corrosion monitor. Int. J. Electrochem. Sci.
2015, 10, 8361–8373.

6. Kobus, J.; Lutze, R. Atmospheric corrosion risk assessment. Logistyka 2015, 4, 4094–4098.
7. Kreislova, K.; Knotkova, D. The Results of 45 Years of Atmospheric Corrosion Study in the Czech Republic.

Materials 2017, 10, 394. [CrossRef]
8. Bialobrzeski, A.; Czekaj, E.; Heller, M. Corrosive behavior of aluminum and magnesium alloys processed by

die casting technology. Arch. Foundry 2002, 2, 294–313.
9. Mendoza, A.R.; Corvo, F. Outdoor and indoor atmospheric corrosion of carbon steel. Corros. Sci. 1999,

41, 75–86. [CrossRef]
10. Mendoza, A.R.; Corvo, F. Outdoor and indoor atmospheric corrosion of non-ferrous metals. Corros. Sci. 2000,

42, 1123–1147. [CrossRef]
11. Shiri, M.; Rezakhani, D. Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized

Steel, Copper and Aluminum in Iran. Metall. Mater. Trans. A 2020, 51, 342–367. [CrossRef]
12. Schaller, R.F.; Jove-Colon, C.F.; Taylor, J.M.; Schindelholz, E.J. The controlling role of sodium and carbonate

on the atmospheric corrosion rate of aluminum. npj Mater. Degrad. 2015, 1, 1–8. [CrossRef]
13. Sun, S.Q.; Zheng, Q.F.; Li, D.F.; Wen, J.G. Long-term atmospheric corrosion behaviour of aluminium alloys

2024 and 7075 in urban, coastal and industrial environments. Corros. Sci. 2009, 51, 719–727. [CrossRef]
14. Dan, Z.H.; Muto, I.; Hara, N. Role of corrosion products in the suppression of atmospheric corrosion of

aluminum and its alloys. ECS Trans. 2010, 25, 23–33. [CrossRef]
15. Roberge, P.R.; Klassen, R.D.; Haberecht, P.W. Atmospheric corrosivity modeling—A review. Mater. Des. 2003,

23, 321–330. [CrossRef]
16. Panchenko, Y.M.; Marshakov, A.I.; Nikolaeva, L.A.; Igonin, T.N. Estimating the First-year Corrosion Losses

of Structural Metals for Continental Regions of the World. Civ. Eng. J. 2020, 6, 1503–1519. [CrossRef]
17. Portellaa, M.O.G.; Portellaa, K.F.; Pereiraa, P.A.M.; Inonea, P.C.; Brambillaa, K.J.C.; Cabussúc, M.S.;

Cerqueirac, D.P.; Sallesc, R.N. Atmospheric corrosion rates of copper, galvanized steel, carbon steel and
aluminum in the metropolitan region of Salvador, BA, Northeast Brazil. Procedia Eng. 2012, 42, 171–185.
[CrossRef]

18. Ríos-Rojas, J.F.; Aperador-Rodríguez, D.; Hernández-García, E.A.; Arroyave, C.E. Annual atmospheric
corrosion rate and dose-response function for carbon steel in Bogotá. Atmósfera 2017, 30, 53–61. [CrossRef]

19. Surowska, B. Wybrane Zagadnienia z Korozji i Ochrony Przed Korozją; Politechnika Lubelska: Lublin,
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