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Abstract: Conventional tillage (CT) is the main agricultural practice for rainfed sugarcane production
in China. However, subsoil compaction formed by long-term CT is harmful to soil properties
and crop yield. Deep vertical rotary tillage (DVRT) is a novel tillage practice, which can alleviate
subsoil compaction and create a more favorable soil environment for crop growth. This study aims
to compare the effects of DVRT and CT practices on soil properties and sugarcane characteristics.
The results showed that DVRT reduced soil bulk density and increased soil porosity to some extent
in the 0–40 cm soil profile. Soil water storage of DVRT was relatively higher compared with CT
due to the combined effects of soil water holding capacity and vegetation water consumption.
There was significantly higher final aboveground biomass, underground biomass, and plant height
from DVRT compared to CT (p < 0.05), but there were no differences in final root length between
tillage practices. Compared with CT, DVRT with one and two growth-years significantly increased
aboveground biomass by 68.90% and 50.14%, respectively. Generally, the soil properties and sugarcane
characteristics were not significantly different between DVRT with different growth years. DVRT is
recommended as a tillage practice for sustainable agriculture in rainfed regions.

Keywords: deep vertical rotary tillage; conventional tillage; soil properties; sugarcane biomass;
rainfed region

1. Introduction

Sugarcane is an important commercial crop and a source of renewable energy biofuels and
biomaterials, which is critical to livelihood in rural communities [1,2]. Guangxi province is the primary
sugarcane- and sugar-producing area in China as it plants around 1.04 million ha of sugarcane yearly [3].
The total production of sugarcane is about 56.70 million tonnes, which accounts for more than 60% of
the total sugarcane output of China [4]. Sugarcane is mainly planted in rainfed upland fields where
irrigation is not available [5]. However, severe drought and low temperatures often occur (especially in
the spring and autumn) in the major sugarcane growing areas, and these factors constrain sugarcane
and sugar productivity in Guangxi province [2]. Therefore, it is challenging to maintain the sustainable
development of sugarcane agriculture.

The application of nitrogen fertilizer is an important way to improve sugarcane productivity.
However, the amount of nitrogen fertilizer per ha in sugarcane production in China is higher than in
other countries [2]. Excessive fertilization not only decreases crop yield and wastes resources, but also
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causes serious environmental pollution from agro-ecological systems [6,7]. Tillage is one of the most
influential management practices because it modifies soil physical and hydraulic characteristics and
contributes to optimal conditions for plant growth and crop establishment [8–11]. Reduced tillage
or no-tillage can decrease soil disturbance and improve soil properties, aggregate stability and crop
yield [12,13], and affect greenhouse gas emissions [14,15]. Higher soil organic carbon concentration
was observed in the surface soil depth in no-tillage than in conventional tillage (CT) practice [16,17].
However, intense farming operations involving heavy machinery used for planting and harvesting
contribute to the deterioration of soil physical conditions [18,19]. Long-term reduced tillage or no-tillage
farming often lead to increased soil compaction, which results in increased soil bulk density and
reduced soil porosity and impedes root penetration [20–22]. For example, Khorami et al. [23] found that
no-tillage had higher soil bulk density at surface soil, thereby lowering cumulative water infiltration
compared with CT practice. In the study region, CT operations are usually carried out before sugarcane
planting and result in improved crop yield. However, hard plow pan formed by years of CT practice
cannot be broken up because the average tillage depth is only 15 cm. In hard plow pan conditions,
subsoil tillage works to break up plow pans and can significantly increase maize root morphology and
yield [24,25]. Therefore, further optimization of tillage practices is fundamental for improving soil
properties and crop productivity.

An appropriate tillage practice should improve soil structure and increase crop resistance to stresses
such as the amount of water available and sub-optimal temperatures [26–28]. Reduced but adequate
tillage has been found to be extremely useful in improving crop yield and soil physical conditions
without creating negative effects on the edaphic environment [29]. In recent years, deep tillage
has been shown to improve the structure and health of compacted soils [30,31]. Previous research
has shown that deep tillage improves the soil properties in the tilled depth by reducing soil bulk
density and penetration resistance [32] and increasing hydraulic conductivity, soil porosity, and the
infiltration rate [33]. For example, deep tillage can increase the proportion of maize root distributed
below the 20 cm depth compared to no-tillage [32]. Deep tillage was observed to decrease mean
profile penetration resistance compared with surface tillage in a wheat and soybean double-cropped
system [34]. In addition, it has been reported that deep tillage for ameliorative purpose may lessen
the adverse impacts that annual deep tillage can have on earthworms and other beneficial soil
organisms [35]. Thus, deep tillage could create a more beneficial soil environment for root growth and
crop production than shallow tillage.

Deep vertical rotary tillage (DVRT) is a tillage practice that has recently been implemented in
China. Deep tillage machines smash soil vertically to an expected depth with vertical spiral drills
for breaking up the plough pan. The DVRT practice thus can form a unique soil layer which is more
suitable for vegetation growth. So far, DVRT has been applied on soils growing more than 20 crops
across various climate zones in China. However, little is known about the influence of DVRT on
sugarcane yield in rainfed dry-land regions of southern China. In addition, the sugarcane can be
harvested several times from the original planting (ratooned) if the yield does not greatly decline.
Therefore, we hypothesized that the effect of DVRT practice on sugarcane production can last for more
than one year. The specific aims of this study were: (1) to assess the DVRT on soil properties and
sugarcane vegetation characteristics and (2) to determine whether the effects of DVRT can last for more
than one year.

2. Materials and Methods

2.1. Site Description

The experiment was conducted in the town of Natong located within Long’an County
(22◦18′–23◦14′ N, 107◦40′–108◦11′ E), Guangxi province, China. The study area is situated in a
low mountain and hill region with rainfed agriculture across the slope land. Dryland farming is
dominated by monoculture cropping systems that mainly include sugarcane (Saccharum species hybrid),
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maize (Zea mays Linn), and cassava (Manihot esculenta Crantz). The climate is a southern subtropical
humid monsoon, with a mean annual air temperature of 21.8 ◦C and a mean annual precipitation of
1301 mm, which mostly falls from May to September. Daily meteorological data timeseries for 2018 are
shown in Figure 1. The soil is primarily latosolic red soil which originated from sandstone. The surface
soil (0–10 cm) properties of the experimental plots are shown in Table 1.
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Figure 1. Daily precipitation, air temperature, and relative humidity time series in the study area
in 2018.

Table 1. Summary statistics of surface soil (0–10 cm) properties for different tillage practices.

Tillage Practice SBD (g cm−3) SP (%) Clay (%) Silt (%) Sand (%) SOC (g kg−1) STN (g kg−1)

DVRT-1 0.98 ± 0.019 63.18 ± 0.72 21.46 ± 0.89 65.34 ± 1.53 13.21 ± 0.79 11.80 ± 0.87 3.11 ± 0.05
CT-1 1.10 ± 0.013 58.88 ± 0.48 24.27 ± 1.12 63.59 ± 2.60 12.15 ± 2.34 10.42 ± 0.29 3.53 ± 0.10

DVRT-2 0.90 ± 0.087 66.20 ± 3.27 24.24 ± 1.63 67.83 ± 1.58 7.94 ± 2.12 10.63 ± 0.54 2.97 ± 0.12
CT-2 1.12 ± 0.101 57.91 ± 3.82 29.23 ± 0.84 56.56 ± 2.70 14.21 ± 3.53 12.06 ± 0.68 2.72 ± 0.07

Note: CT-1, conventional tillage with one growth-year; DVRT-1, deep vertical rotary tillage with one growth-year;
CT-2, conventional tillage with two growth-years; DVRT-2, deep vertical rotary tillage with two growth-years; SBD,
soil bulk density; SP, soil porosity; SOC, soil organic carbon; STN, soil total nitrogen.

2.2. Experimental Design

The experiment was arranged in a randomized block design with three replicates for each
treatment. The plot size was 60 m × 8 m, the row spacing was 1.2 m, and the buffer row between
treatments measured was 1.5 m. The sugarcane variety known as Guitang 42 was used as test crop due
to its high-yield, high-sugar, lodging-resistance, and suitability for mechanized production. There were
two tillage practices: CT to a depth of approximately 20 cm, and DVRT to a depth of approximately
40 cm. The machinery used for the two tillage practices are shown in Figure 2, and details of their
operation schedule are presented in Table 2. Two growing years were selected: a one growth-year
and two growth-years. For the one growth-year, the CT and DVRT treatments were performed in
experimental plots, respectively, then the sugarcane were planted in late March 2018. For the two
growth-years, the same tillage treatments and cultivation measures were conducted in late March
2017. The sugarcane was cut down at the end of December 2017, then the sugarcane could grow in the
next year. Therefore, there were four treatments: deep vertical rotary tillage with one growth-year
(DVRT-1), conventional tillage with one growth-year (CT-1), deep vertical rotary tillage with two
growth-years (DVRT-2), and conventional tillage with two growth-years (CT-2). For each experimental
plot, sugarcane was planted at a density of 10.5 × 104 buds per hectare in each experimental plot.
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Phosphorus fertilizer was applied as basal fertilizer at a rate of 750 kg ha−2 (P2O5 12%), and organic
fertilizer was applied at a rate of 1125 kg ha−2 (N + P2O5 + K2O = 5%). Topdressing fertilizer was
applied in late May as urea at a rate of 300 kg ha−2 (N 46.4%) and potassium sulfate compound fertilizer
at a rate of 1500 kg ha−2 (N, P, and K 15%, respectively). Irrigation was not applied.
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Figure 2. Soil cultivating machinery adopted in the two different tillage practices. The left (A) is
conventional tillage (CT, 20 cm), the right (B) is deep vertical rotary tillage (DVRT, 40 cm).

Table 2. Main operation schedule conducted annually for the two tillage practices.

Treatment Operation Procedure

CT

Conventional rotary tillage to 20 cm depth was performed by a rotavator→
land leveling→ planting trench (0.5 m wide and 0.3 m deep) was implemented
with a tractor→ the sugarcane setts were manually placed overlapping in the

fertilizer-filled furrow and then covered with soil (the row spacing was 1.2 m)→
no other tillage practice was performed in the later sugarcane growth period

DVRT

Deep vertical rotary tillage to 40 cm depth was performed by a newly-developed
deep rotary tiller→ land leveling→ planting trench (0.5 m wide and 0.3 m deep)

was implemented with a tractor→ the sugarcane setts were manually placed
overlapping in the fertilizer-filled furrow and then covered with soil (the row

spacing was 1.2 m)→ no other tillage practice was performed in the later
sugarcane growth period

Note: CT, conventional tillage; DVRT, deep vertical rotary tillage.

2.3. Sampling and Measurements

2.3.1. Soil Water Storage

Soil samples were collected once a month from July to December 2018. Soil samples were collected
using a soil auger (4.5 cm diameter) at 10 cm increments to a depth of 40 cm in all experimental plots to
determine gravimetric soil water content. The soil samples were oven-dried at 105 ◦C for 24 h to constant
weight. Gravimetric soil water content was then determined according to the following equation:

SWCg =
W f resh −Wdry

Wdry
·100 (1)
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where SWCg is gravimetric soil water content (%) and Wfresh and Wdry are soil fresh weight and soil dry
weight (g), respectively.

The volumetric soil water content was calculated based on gravimetric soil water content at a
specific depth and corresponding soil bulk density as follows:

SWCv = SWCg·SBD (2)

where SWCv is volumetric soil water content (cm3 cm−3) and SBD is soil bulk density (cm3 cm−3).
The soil water storage at a specific depth was calculated as:

S = SWCv·h·10 (3)

where S is the soil water storage at a specific depth (mm) and h is the soil depth increment (10 cm).

2.3.2. Other Soil Properties

Five cutting rings (5 cm in height; 20 cm2 cross section) were used to obtain soil cores at 10 cm
increments to a depth of 40 cm in all experimental plots for soil bulk density determination by the
oven-drying method. Soil porosity can be computed as follows:

SP =
(
1−

SBD
2.65

)
·100 (4)

where SP is soil porosity (%) and SBD is soil bulk density (cm3 cm−3).
From each experimental plot, a soil corer was used to collect disturbed soil samples from each of the

four layers corresponding to those used for soil water content measurements. The disturbed soil samples
were air-dried and divided into two sub-samples. One sub-sample was passed through a 1 mm sieve to
analyze soil particle size distribution using a MS 2000 particle size analyzer (Malvern Instruments Ltd.,
Malvern, UK). The other sub-sample was passed through a 0.25-mm sieve for the determination of soil
organic-carbon content by the dichromate oxidation method and soil total nitrogen using the Kjeldahl
digestion method.

2.3.3. Vegetation Characteristics

For each experimental plot, ten plants were randomly selected and cut at ground level each
month from July to December 2018. The plants were separated into underground and aboveground
components. The underground and aboveground biomass were heated at 105 ◦C for 30 min and then
oven-dried at 75 ◦C to a constant weight. Aboveground biomass and underground biomass were
weighed using an electronic balance. The plant height and root length were measured by a meter ruler.

2.3.4. Meteorological Factors

The meteorological factors were monitored during the experimental period by a solar-powered
automatic weather station (HOBO U30 station made by Onset Computer Corp., MA, USA), and data
were recorded automatically using a data logger. In this study, the 15 min meteorological measurements
were averaged daily for air temperature and relative humidity. Precipitation is presented as daily
accumulated values.

2.3.5. Increase Rate

The increase rate was used to compare the differences in measured values between tillage practices:

IR =
VDVRT −VCT

VCT
·100 (5)



Sustainability 2020, 12, 10199 6 of 19

where IR is the increase rate (%) and VDVRT and VCT were the observed value of variables in a specific
month for deep vertical rotary tillage and conventional tillage, respectively.

2.4. Statistical Analysis

Mean values were calculated for each of the measured variables, and one-way analysis of
variance (ANOVA) was used to assess the treatment effects. When the F-values were significant,
multiple comparisons of mean values were conducted by the least significant difference method (L.S.D.).
Statistical analyses were performed using SPSS software (version 22.0). Plots were designed using
OriginPro (version 9.1).

3. Results

3.1. Soil Bulk Density and Soil Porosity

DVRT can decrease soil bulk density compared with CT (Figure 3). Specifically, the soil bulk
density of DVRT-1 was significantly lower at 30–40 cm depth than CT-1. DVRT-2 had significantly
lower soil bulk density than CT-2 at depths of 0–10, 20–30, and 30–40 cm (p < 0.05). The soil bulk
density in the DVRT-1, CT-1, DVRT-2, and CT-2 treatments were 0.98 ± 0.02, 1.09 ± 0.01, 0.89 ± 0.09,
and 1.12 ± 0.10 g cm−3 in 0–10 cm depth, respectively (Figure 3). The decrease in soil bulk density
under DVRT corresponded to an increase in soil porosity (Figure 4). The soil porosity ranged from
52.01 ± 2.63% to 66.20 ± 3.27% under different tillage treatments. The soil porosity in the DVRT-1, CT-1,
DVRT-2, and CT-2 treatments were 63.18 ± 0.72%, 58.88 ± 0.48%, 66.20 ± 3.27%, and 57.90 ± 3.82% in
0–10 cm depth, respectively (Figure 4). There were no significant differences in soil bulk density and soil
porosity when comparing values from the same practice with different growth years (Figures 3 and 4).

3.2. Soil Water Storage

Precipitation is the only water source for sugarcane growth in rainfed dry-land areas. The soil
water storage decreased gradually from July to September, increased rapidly in October, and then
maintained at high values for different tillage treatments (Figure 5). Soil water storage of DVRT-1,
CT-1, DVRT-2, and CT-2 treatments were 91.01 ± 9.35, 82.83 ± 6.43, 105.75 ± 10.44, and 96.12 ± 9.09 mm
in September throughout the 0–40 cm soil profile, respectively (Figure 5). However, the soil water
storage values were highest for different tillage treatments in December, with values of 180.68 ± 7.50,
176.32 ± 4.01, 190.42 ± 10.38, and 179.83 ± 3.43 mm for DVRT-1, CT-1, DVRT-2, and CT-2 treatments,
respectively, throughout the 0–40 cm soil profile (Figure 5). Soil water storage of DVRT was relatively
higher compared to CT during the sampling period, but the observed difference in soil water storage
was not significant. There were significant differences in soil water storage between the same tillage
practices with different growth years in September, whereas the differences in soil water storage were
not significant in other sampling months (Figure 5). Compared with CT-1, the increase rate of soil
water storage ranged from 2.47% to 9.88% under DVRT-1 (Table 3). Likewise, the increase rate of soil
water storage ranged from 3.01% to 10.03% under DVRT-2 compared to CT-2 (Table 3).
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significant at p < 0.05 level.

Table 3. The rate of increase for select variables during the sampling period for DVRT compared
with CT.

Increase Rate (%) Variable July August September October November December

SWS (mm) 3.97 6.93 9.88 4.04 5.13 2.47
AGB (g) 146.84 54.39 92.50 94.71 64.84 68.90

DVRT-1/CT-1 UGB (g) 68.78 20.33 138.78 42.23 44.75 46.58
PH (cm) 20.83 14.47 15.03 11.24 10.84 7.55
RL (cm) 15.38 5.26 5.84 9.89 10.27 9.11

SWS (mm) – a 3.20 10.03 3.01 4.76 5.89
AGB (g) – 50.77 89.25 74.94 51.50 50.14

DVRT-2/CT-2 UGB (g) – 44.05 117.48 101.55 79.05 69.67
PH (cm) – 5.80 15.27 10.54 5.88 5.51
RL (cm) – 12.08 12.22 12.09 10.12 7.17

Note: CT-1, conventional tillage with one growth-year; DVRT-1, deep vertical rotary tillage with one growth-year;
CT-2, conventional tillage with two growth-year; DVRT-2, deep vertical rotary tillage with two growth-year; SWS,
soil water storage; AGB, aboveground biomass; UGB, underground biomass; PH, plant height; RL, root length.
a No value.
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3.3. Sugarcane Characteristics

Sugarcane biomass increased with growth period for each tillage treatment (Figures 6 and 7).
DVRT significantly increased sugarcane aboveground biomass compared to CT during the sampling
period (p < 0.05, Figure 6). The increase rate of aboveground biomass ranged from 54.39% to
146.84% under DVRT-1 compared to CT-1, and the increase rate of aboveground biomass ranged
from 50.14% to 89.25% under DVRT-2 compared to CT-2 (Table 3). The final aboveground biomasses
were 1038.13 ± 141.07, 614.63 ± 42.74, 955.73 ± 144.28, and 636.55 ± 63.88 g for DVRT-1, CT-1, DVRT-2,
and CT-2 treatments, respectively (Figure 6). The final aboveground biomasses were increased by
68.90% and 50.14% for DVRT-1 and DVRT-2 treatments compared to CT-1 and CT-2 treatments,
respectively (Table 3). There were no significant differences in aboveground biomass between the
same tillage practice with different growth years during the whole sampling period (p > 0.05, Figure 6).
However, the increase effects of DVRT on underground biomass were not significant in the earlier
sampling period (July and August), but significant in the later sampling period (from September to
December) compared to CT. The increase rate of underground biomass ranged from 20.33% to 138.78%
under DVRT-1 compared to CT-1, and from 44.05% to 117.48% under DVRT-2 compared to CT-2 (Table 3).
The final underground biomasses were 27.15 ± 2.42, 18.52 ± 0.48, 25.70 ± 3.22, and 15.15 ± 1.17 g for
DVRT-1, CT-1, DVRT-2, and CT-2 treatments, respectively (Figure 7). The final underground biomasses
were increased by 46.58% and 69.67% for DVRT-1 and DVRT-2 treatments compared to the CT-1 and
CT-2 treatments, respectively (Table 3). There were no differences in underground biomass between
DVRT-1 and DVRT-2, while CT-1 exhibited significantly higher underground biomass than CT-2 from
September to December (p < 0.05, Figure 7).

The plant height increased gradually with growth period for all the treatments (Figure 8). The plant
height from the DVRT treatment was significantly higher than the CT during most of the sampling
period (p < 0.05, Figure 8). The increase rate of plant height ranged from 7.55% to 20.83% under
DVRT-1 compared to CT-1, and the increase rate of plant height ranged from 5.51% to 15.27% under
DVRT-2 compared to CT-2 (Table 3). The final plant heights were 7.55% and 5.51% higher for the
DVRT-1 and DVRT-2 treatments than the CT-1 and CT-2 treatments, respectively (Table 3). The final
plant heights of DVRT-1, CT-1, DVRT-2, and CT-2 treatments were 522.00 ± 26.53, 485.33 ± 5.82,
509.83 ± 3.66, and 483.17 ± 14.67 cm, respectively (Figure 8). No significant differences in plant height
were observed between the same tillage management with different growth years during the whole
sampling period (p > 0.05, Figure 8). DVRT increased sugarcane root length to some extent compared
to CT, but a significant difference was only observed in November (Figure 9). The increase rate of root
length ranged from 5.26% to 15.38% with the final increase rate of 9.11% under the DVRT-1 treatment
compared to the CT-1 treatment, and the increase rate of root length ranged from 7.17% to 12.22%
with the final increase rate of 7.17% under the DVRT-2 treatment compared to the CT-2 treatment
(Table 3). The final root lengths of DVRT-1, CT-1, DVRT-2, and CT-2 treatments were 32.75 ± 1.75,
30.01 ± 3.96, 32.15 ± 3.50, and 30.00 ± 3.57 cm, respectively (Figure 9). The differences in root length
were not significantly different between the same tillage practices with different growth years over the
entire sampling period (p > 0.05, Figure 9). Figure 10 presents the growth characteristics of sugarcane
under different tillage treatments in December, and the influence of DVRT practice on plants and roots
can be acquired visibly.
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Figure 10. Growth characteristics of sugarcane for different tillage practices.

4. Discussion

Soil tillage is a fundamental agrotechnical operation in agriculture because of its influence on soil
properties, the soil environment, and crop growth [36]. In the present study, DVRT decreased soil bulk
density and increased soil porosity to some extent compared with the CT practice (Figures 3 and 4),
which is in agreement with other studies [19,32,37,38]. However, the significant differences in soil bulk
density were mainly observed in deeper soil layers (20–40 cm), which indicated that DVRT can break
up the deeper dense soil layer, thereby creating a more favorable soil structure for root growth and
spatial distribution compared with CT. Similarly, subsoiling tillage can decrease soil bulk density by
10% in comparison with CT during the summer maize growth season in the North China Plain [39].
It was reported that cone indices were 1.50 MPa higher for non-deep tilled treatments compared to
deep tilled treatments for high strength southeastern USA Coastal Plain soils [40].
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Soil moisture is a key variable affecting hydrological, ecological, and climatic processes on various
spatial and temporal scales [41–44]. Soil water storage during the growing season is therefore critically
important for promoting grain yield. The observed soil water storage in the DVRT treatment was
relatively higher than in the CT treatment, but the differences between the tillage treatments were
not significant. These results are similar to previous research [19,45]. The reason for the relative
increase in soil water storage can be attributed to the combined effects of soil water holding capacity
and vegetation water consumption. On the one hand, DVRT can increase soil porosity (Figure 4)
and rainfall interception and enlarge the profile storage and deep distribution of soil water by increasing
hydraulic conductivity and infiltration, thereby improving subsoil soil water storage [29,30,46,47].
On the other hand, due to its higher biomass, the sugarcane under DVRT consumes more water
compared to sugarcane under CT (Figures 6 and 7), which mutes the differences in soil water storage
between tillage treatments. The increase rate in soil water storage was the largest in a relatively
dry month. The increase rate reached the maximum values of 9.88% and 10.03% for the DVRT-1
and DVRT-2 treatments compared to their corresponding CT treatments in September, respectively
(Figure 5). However, the relatively higher soil water storage was extremely important for crop
production under water deficit conditions. In our study, the greatest increase rate in soil water
storage occurred in September and resulted in the greatest observed increase rate of both aboveground
biomass and underground biomass for the DVRT-2 treatment, with the values of 89.25% and 117.48%,
respectively (Table 3). Higher soil water was found to increase the grain filling rate of winter wheat
during the grain filling period [48]. The water that is stored in the soil after sugarcane harvest under
DVRT will be beneficial to next year’s crop cultivation. These results support that soil water storage is
an important restrictive factor for vegetation growth in rainfed dry slope land, but DVRT can increase
resistance to drought and water available stresses.

The final plant height and root length were lower than 10% for DVRT compared to CT. However,
the final underground biomasses for DVRT-1 and DVRT-2 were 46.58% and 69.67% higher than CT-1
and CT-2, respectively. Similar results have been observed in other studies [24,32,37,49]. It was
reported that subsoil tillage to 50 cm depth significantly increased spring maize root development
especially for the proportions of roots in deeper soil [21]. The root length density of maize under deep
mouldboard ploughing to 30 cm depth was found to be relatively higher compared to no-till [37].
These results demonstrated that DVRT provided a less restricted soil physical environment for root
growth compared to CT. The improved soil environment and root growth helped improve crop yield.
In our study, the final aboveground biomasses for DVRT-1 and DVRT-2 were 1038.13 ± 141.07 and
955.73 ± 144.28 g, which were 68.90% and 50.14% higher than CT-1 and CT-2, respectively. The final
increase rate for DVRT in our study was higher than observed in other studies. For example, it was
reported that subsoiling and deep ploughing increased spring maize yield by 13–16% compared with
CT [50]. Deep mouldboard ploughing to 30 cm depth can increase grain yield by 6.0% in wheat and by
8.7% in maize in comparison to mouldboard ploughing to 15 cm depth [38].

Intensive tillage practice may result in a reduction in soil macro-aggregates and an increase in
nitrogen and carbon mineralization rates as well as increased soil erosion [51,52]. There are also
several negative effects of deep tillage such as higher fuel consumption and cost [53]. Therefore, it is
necessary to evaluate whether the effects of DVRT could last for more than one year. In the current
study, however, the differences in soil properties and sugarcane characteristics were not significant
between DVRT-1 and DVRT-2 treatments during the entire sampling period. Our results indicated that
the influence of DVRT can last for at least two years. Nevertheless, it is necessary to identify how many
years the effects of DVRT on crop yields last in future studies. The implication of implementing DVRT
may reduce fertilizer use as well as potential soil contamination and improve soil quality. DVRT can
be used to improve soil properties and crop yield, especially in rainfed agriculture.
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5. Conclusions

In this study, we evaluated the impact of DVRT on soil properties and sugarcane characteristics
compared to CT. The soil bulk density, soil porosity, and soil water storage were determined in the 0–10,
10–20, 20–30, and 30–40 cm soil depths. The aboveground biomass, underground biomass, plant height,
and root length were measured each month from July to December 2018. The following conclusions
can be drawn:

(1) DVRT favored soil bulk density and soil porosity especially in deep soil, resulting in an improved
soil environment for root growth and increased sugarcane biomass.

(2) DVRT increased soil water storage to some extent (p > 0.05) compared with CT, which can
be attributed to the combined effects of increased soil water holding capacity and increased
vegetation water consumption under DVRT.

(3) DVRT significantly (p < 0.05) increased the final aboveground biomass, underground biomass,
and plant height compared to CT except for the final root length. The final increase rate of DVRT
in aboveground biomass ranged from 50.14% to 68.90% compared to CT.

(4) The differences in soil properties and sugarcane characteristics were not significantly different
between DVRT with different growth years when considering the entire sampling period,
indicating that the effect of DVRT can last for at least two years.
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