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Abstract: Zhalantun city is located in a severely cold region of China. The cold climate and long
winter bring challenges to the energy-saving design of rural dwellings in this area, while the poor
economic conditions restrict the application of energy-saving technology. This paper aims to propose
an optimal combination of passive design parameters by investigating, testing, and analyzing
simulations of Zhalantun rural dwellings, which have a particular architectural pattern. Field
measurements during winter show that the indoor temperature of a traditional house is low and
fluctuates greatly, and the inner surface is prone to easy condensation. Through thermal comfort
surveys, neutral and acceptable temperature ranges were obtained to provide indoor calculation
parameters for an energy-saving design. Numerical simulations of heating energy consumption
were conducted on the typical building models using DesignBuilder. The influence of different
design factors on energy consumption was evaluated. Orthogonal experiments were designed to
optimize a series of design parameter combinations to reduce the energy consumption of Zhalantun
rural houses and to determine the sequence and significance of the effect of these design factors on
energy consumption. Results show that the optimal parameter combination based on orthogonal
experiments can obviously reduce energy consumption and have better economic benefits without
considering mechanical methods. This can provide a basis for improved energy-saving designs and
indoor thermal environments in such rural dwellings.

Keywords: severe cold region; rural dwellings; energy-saving design; indoor thermal environment;
orthogonal experiment

1. Introduction

Building is one of the most important fields in which to address energy saving, emission reduction,
and global climate change. Developing green buildings is important in the face of climate change
challenges [1]. Since the energy crisis of the 1970s, countries and international organizations have
realized the importance of energy conservation in buildings and have committed to formulating related
policies and standards for energy efficiency; also, many energy-saving technologies have been studied
and come into effect [2–8]. In China, by 2010, rural buildings accounted for more than 50% of the total
building area [9], and their design and operating patterns are significantly different from those of
urban residences. Most rural houses rely on self-built and self-sufficient energy supplies based on
preference and traditional experience rather than construction codes, so the levels of building design
and performance are lower than those in cities. With the development of urban and rural integration in
China, rural residents’ requirements for their living environment are increasing. Meanwhile, this also
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brings about an energy problem: Energy consumption (standard coal) per unit area of a rural house
increased from 2.80 kg/m2 in 2001 to 5.17 kg/m2 in 2014, a 1.8-times increase and an average annual
growth of 4.8% [10]. In 2015, rural residential energy consumption reached 197 million tons, accounting
for 23% of the total energy consumption of civil buildings [11]. Rural residential energy conservation
and sustainable development have already become key issues for the Chinese government [12].

A number of studies have been carried out on energy-saving design strategies for rural residences
to reduce energy consumption and enhance indoor thermal comfort by means of climate analysis,
questionnaire investigation, field testing, and numerical simulation. For example, Hamdy et al. [13],
looking at two-story houses in Finland, adopted the method of combing NSGA-II and IDA ICE
simulation software to optimize building performance, obtaining the best parameter combinations to
minimize carbon emissions and investment costs. Wang et al. [14] discussed the influence of design
parameters (orientation, window–wall ratio, exterior wall heat transfer coefficient, etc.) on energy
consumption by means of EnergyPlus software and provided design strategies for a zero-energy
house in Cardiff, UK. Similarly, Lai et al. [15] and Setiawan et al. [16] discussed the effects of roof
construction, windowpanes, and forms of shading on energy consumption for multistory residences
in Taiwan and two-story houses in Indonesia. Because of the different climates and building types,
the design parameters that had the greatest impact on energy consumption were not identical; they
were, respectively, windowpanes and forms of shading. Çay et al. [17] analyzed the optimum thickness,
energy-saving effect, and payback period of an exterior wall insulation layer in four climates of Turkey
based on life cycle cost and heating degree days. Skarning et al. [18] studied the window energy-saving
design of nearly zero-energy houses in Rome and Copenhagen, and analyzed the effect of window size,
heat transfer coefficient, and frame material on energy consumption by means of EnergyPlus software.
Monge Barrio et al. [19], through field testing and simulation analysis of six houses with additional
sunspace in Spain, concluded that solar energy could be fully applied in an additional sunspace in
winter to reduce heating energy consumption. Jermyn et al. [20] proposed that windows are the key
factor for energy-saving renovation through research on energy-saving renovation strategies of three
types of independent houses in Toronto. When the energy-saving rate reached 88%–89%, it met the
energy-saving design standards of German passive houses (EnerPHit).

In China, researchers have also been paying more attention to rural houses. It is well known
that rural areas are vast and spread across the country, covering a large latitude and longitude span.
Existing studies of energy-saving design strategies mainly focus on the specific regional environment,
such as rammed earth ecological dwellings in Southern Shaanxi [21], Yaodong dwellings in the Loess
Plateau [22], waterside vernacular dwellings in the Lower Yangtze Basin [23], herdsmen houses in
Qinghai Province [24], rural houses in Sichuan [25] and Lhasa Province [26], vernacular houses in
Northern Hebei Province [27], Tibetan traditional dwellings in cold areas of Gannan [28], swallow
dwellings in Western Hunan [29], yurts in the Mongolian grassland [30], local countryside houses in
extremely cold areas in the northeast [31–33], etc. In terms of indoor thermal comfort, Zhu [34], Zhu [35],
Yang [36], and Wang [37] investigated the thermal comfort temperature of rural residents in Beijing,
Yinchuan, Guanzhong, and Harbin, respectively, and determined a thermal neutral temperature and
acceptable temperature range of 90% in rural houses. Researchers have conducted many studies
on rural house energy conservation, but different geographic and climatic characteristics, economic
conditions, and thermal comfort requirements can produce large differences, leading to the adoption
of different response measures. Research on energy-saving designs of rural houses in Zhalantun, Inner
Mongolia, is rare. There is a lack of quantitative analysis of energy-saving designs; that is, on the
quantitative relationship between design parameters and energy consumption, as well as the primary
and secondary relationships and degree of significance of the impact on energy consumption.

Therefore, the aim of this paper is to study an energy-saving optimization method for rural
dwellings in Zhalantun and provide an energy-saving design model. There are five components: (1) a
typical house is selected for indoor thermal environment testing and analysis in winter; (2) indoor
thermal comfort investigations in winter are carried out to determine the thermal comfort temperature
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threshold of rural residents; (3) the quantified relationship between design parameters and heating
energy consumption is established by DesignBuilder software; (4) an orthogonal experimental design
is used to obtain the parameter combination that results in the lowest heating energy consumption,
as well as the primary and secondary relationships and degree of significance of the impact on energy
consumption; and (5) the benefit–cost ratio and payback period are adopted to evaluate the economic
efficiency of the optimal design parameter combination.

2. Methodology

2.1. Description of Zhalantun Climate and Local Rural Dwellings

Zhalantun is located in the east of Inner Mongolia, at a northern latitude of 47◦5′–48◦36′ and
eastern longitude of 120◦28′–123◦17′. In terms of climate zones, as shown in Figure 1a, it is part of
one of the severely cold regions in China, which are defined as having an average temperature not
higher than −10 ◦C in the coldest month and no fewer than 145 days with a below average temperature
of 5 ◦C [38].

Zhalantun has a longer and colder winter, with a heating period as long as half a year. The weather
is cool in summer, with no need for refrigeration equipment. According to the typical meteorological
year (TMY) of Zhalantun [39], as shown in Figure 1b, the annual average temperature is 2.98 ◦C, with
an average highest temperature of 9.1 ◦C and an average lowest temperature of −3.24 ◦C. In winter
(December–February). The monthly average temperature varies in the range of −24.0 ◦C to −16.5 ◦C
and the monthly average relative humidity ranges from 65.8% to 76.4%. January is the coldest month,
with daily average temperature ranging from −30.24 ◦C to −17.16 ◦C. The monthly total solar radiation
is shown in Figure 1c.
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As shown in Figure 2a, the layout of rural dwellings in Zhalantun is scattered, with the main
building type being single-story detached houses. The structural form of most houses is brick–concrete,
and the layout is the three-compartment type, with an average building area of 60 m2. Restricted by
the farmers’ awareness of energy conservation and economic factors, the thermal performance of the
building envelope is poor. More than 90% of the external walls are solid brick, with the thickness
distributed over 370–620 mm, among which 370 mm wall (U-value = 1.58 W/m2

·K) accounts for 72%,
and only 29% have a thermal insulation layer. External windows are mostly single- or double-glass
windows (84%). As shown in Figure 2b, in order to enhance the thermal insulation performance and
reduce cold air infiltration, farmers will adopt some temporary measures, such as adding a layer of
glass inside the window, adding a layer of plastic film on the wall, or setting up a simple sunspace.
This contributes to heat preservation in winter and can be removed in summer without affecting the
natural ventilation. The roof form is mainly double slope, and the components include suspended
ceiling + wood joist + insulating layer + wood (steel) roof truss + plank + waterproof layer + tiled
roof. The insulation material is usually made of bulk materials, such as rice husk, sawdust, plant ash,
etc., with a thickness of 100–150 mm (Figure 2c). The ground is the most ignored part; only 2.0% have
thermal insulation measures.
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Figure 2. Current situation of rural houses in Zhalantun: (a) overall layout of rural dwellings; (b)
temporary insulation measures for external windows; (c) roof construction.

The fire kang is the main heating equipment with the most rural characteristics; it can be used
for heating at the same time as cooking, making full use of the heat of flue gas. A separate hole is
also set up to refuel without cooking (Figure 3). Although the outdoor temperature reaches −30 ◦C in
winter, the fire kang surface can maintain a certain temperature (Figure 12), but it easily causes an
uneven distribution of the indoor temperature. A hot wall is usually combined with the fire kang, and
there are holes in the wall for smoke to flow. In recent years, a tunuanqi, or a small boiler/hot water
system, has been added to improve the indoor thermal environment, which uses hot water to transfer
energy to each room, thereby increasing the indoor air temperature by radiation and convection.
The arrangement of the radiator is flexible, and the indoor temperature distribution is more even.
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2.2. Measurement of Indoor Thermal Environment

The thermal environment characteristics of typical traditional dwellings were analyzed by field
testing. As shown in Figure 4, the measured house is a south-facing single-story detached building.
The building area is 54.12 m2, with a width of 9.08 m, depth of 5.96 m, and indoor height of 2.70 m.
The building, with three bays, consists of a living room, bedroom, kitchen, and entrance. According
to the living habits of the residents, the living room also serves as a bedroom. The external wall is
370 mm solid brick, with a heat transfer coefficient of 1.58 W/m2

·K. The load-bearing structure of the
roof is a wooden frame, and the heat transfer coefficient is 0.93 W/m2

·K. The south window size is
2.40 m × 1.80 m, and the north window size is 1.2 m × 1.5 m. External windows were transformed
from wooden to single-frame double-glass plastic–steel, and other components of the envelope were
not replaced.
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Considering the climatic characteristics of this area, the indoor thermal environment in winter
requires more attention, and the testing time was selected from 1 to 15 January. The test parameters
included air temperature, relative humidity, globe temperature, and thermal performance of the
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envelope. Table 1 lists the instruments used to measure the indoor thermal environment. All instruments
complied with ISO 7726 [40]. The temperature and humidity recorders and the black globe temperature
instruments were fixed in the center of each room at a height of 1.6 m. Considering the room area and
the uneven radiation caused by fire kang, two points were set in the living room, one above the fire
kang and the other in the center of the room (away from the fire kang). In order to avoid the effect
of solar radiation on the measurement results, the outdoor temperature and humidity instruments
were placed inside a radiation-resistant aluminum hood, and the ends of the hood were open and well
ventilated [41]. The surface temperature instruments were placed on the inner surfaces of the south
and north walls, windows, and fire kang. The heat transfer coefficient recorder was arranged on the
east wall. An infrared thermal imager should be used to judge the thermal bridge of the envelope
beforehand, to avoid influence on the testing results. The interval of automatic data recording of all
instruments was 15 min. The appearance of the tested house and the arrangement of monitoring points
are shown in Figure 4.

Table 1. Instruments used for measurement of the thermal environment.

Parameter Model Range Accuracy

Air temperature (Ta) and
relative humidity (RH) BES-02 −30 to 50 ◦C, 0–99% ±0.5 ◦C, ±3%

Surface temperature (Ts) BES-01 (external sensor) −30 to 50 ◦C ±0.5 ◦C

Globe temperature (Tg) BES-01 (external black
globe, diameter 0.15 m) −30 to 50 ◦C ±0.5◦C

Wind speed (V) KANOMAX 0.01–20 m/s ±0.01 m/s
Heat transfer coefficient (K) BES-Aa −40 to 100 ◦C, 0–±20 mV ±0.2 ◦C, ±0.01 mV
Infrared thermal imaging Fluke −20 to 550 ◦C ±2◦C

2.3. Investigation of Indoor Thermal Comfort

Due to differences in region, climate, and living conditions, the thermal sensation of rural
residents and their adaptability to the indoor thermal environment in various regions are also different.
The thermal environment testing and thermal comfort questionnaire were carried out simultaneously.
The questionnaire was divided into two sections: basic information and thermal survey. The basic
information section included gender, age, clothing, activities, position in the room, etc. The thermal
comfort survey section covered thermal sensation, thermal preference, and thermal acceptability.
According to the preliminary survey, the original 7-point scale (−3, cold; −2, cool; −1, slightly cool;
0, neutral; +1, slightly warm; +2, warm; +3, hot) for thermal sensation was simplified to a 5-point scale
(−2, cold; −1, slightly cold; 0, neutral; +1, slightly hot; +2, hot) because farmers are less educated and
less sensitive to the thermal environment and cannot accurately understand it. Thermal preference
is measured by a preference scale: −1, decrease; 0, no change; +1, rise. Thermal acceptability was
evaluated by a scale of acceptable (1) or unacceptable (−1). In the process of conducting the thermal
comfort survey, the air temperature, relative humidity, globe temperature, and air velocity were
recorded using the instruments listed in Table 1. The measurements were performed once for each
visit. To ensure that the instruments were stabilized, the sensors were placed 1.0 m away from the
occupants. The survey was conducted in the coldest months of the winter, December to February.

There are many indices that measure indoor thermal comfort, such as new effective temperature
(ET*), standard effective temperature (SET), predicted mean vote (PMV), subjective temperature,
operative temperature, etc. [42–47]. Considering the heating mode and building characteristics of rural
houses, operative temperature (to) was selected as the evaluation index in this paper, which takes into
account the influence of air temperature (ta) and mean radiant temperature (tr) on human thermal
sensation. The calculation method is shown in Formula (1):

to =
hrtr + hcta

hr + hc
(1)
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where hr is the radiation heat transfer coefficient and hc is the convective heat transfer coefficient.
The mean radiant temperature (tr) was acquired by calculating the measurement results of air

temperature (ta), globe temperature (tg), and air velocity (v). The calculation method is shown in
Formula (2) [40]:

tr = [(tg + 273)4 + 2.5× 108v0.6(tg − ta)]
1
4 − 273 (2)

When the indoor air velocity is less than 0.2 m/s or the difference between mean radiant temperature
and air temperature is less than 4 ◦C, to can be used in Formula (3) for calculation [42]:

to = (ta + tr)/2 (3)

2.4. Simulation of Energy Consumption

With the development of computer technology, simulation studies of built environments began
in the mid-1960s. Over 50 years, the simulation technology has been used in practical applications
in many fields, and energy consumption simulation software, such as DOE-2, TRNSYS, EnergyPlus,
DesignBuilder, and DeST, has been commonly used. We used DesignBuilder software to simulate
the energy consumption and evaluate the effects of varying design parameters. DesignBuilder is a
graphical interface software developed for EnergyPlus, taking EnergyPlus as the computing kernel,
and includes building construction, lighting, and material databases. The simulation results of
DesignBuilder have been evaluated by ANSI/ASHRAE standard 140-2004 and are consistent with
EnergyPlus running separately [48]. Many building energy-consumption studies have been conducted
using DesignBuilder [49–53].

Meanwhile, the effectiveness of the software simulation results was verified by the measured
data. The weighted average indoor temperature was taken as the software input temperature, then
compared with the simulation result and measured coal consumption. The actual coal consumption on
the test day was about 25.0 kg, and the predicted value was 22.8 kg, 2.2 kg less, with an error of 8.8%
(in the acceptable range). The main reasons for the error include the following: (1) The meteorological
data used in the simulation were standard weather data, which differ from the actual meteorological
data. (2) The running time of the heating equipment cannot run completely according to the theoretical
model, resulting in the deviation of simulation results. (3) Changes in the number of people, human
thermal resistance, metabolic rate, etc., during operation will have an impact on energy consumption,
but the software cannot be set completely in accordance with the actual pattern. In the simulation,
these parameters are set uniformly and as close as possible to the actual situation. In addition, this
paper mainly compares the influence of passive design measures on energy consumption, and the
error will not have a significant impact on the analysis results.

The tested rural house was used as the reference building for the simulation analysis, taking
heating energy consumption as the evaluation index. In the process of simulation, the whole building
was regarded as a single thermal zone, which reduced the simulation time with little effect on the
accuracy of the results [54]. Chinese Standard Weather Data (CSWD) were used for outdoor calculation
parameters, and according to the meteorological data of Zhalantun, the winter heating period was set
as 18 October to 15 April of the following year, for a total of 180 days [39]. The indoor temperature
was determined according to the results of the thermal comfort survey, and the air change rate was
set as 0.5 h−1. The operating time of the heating equipment was 06:00–22:00, with a utilization rate
of 100%, and 22:00–06:00 the next day, with a utilization rate of 50%. The indoor occupant density
was set as 0.04 people/m2, and the mean clothing thermal resistance (clo) in winter was set as 1.23 clo
based on the survey results. The time of turning on lamps was divided into two periods: 6:00–8:00
and 18:00–22:00, and the lighting power density was set as 4.0 W/m2. The heat dissipation of other
non-heating equipment with a low utilization rate was ignored.
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2.5. Orthogonal Experimental Design

Through analyzing the survey results and referring to relative studies [13–33], we found that
there is still great potential to improve the indoor thermal environment and reduce building energy
consumption by adopting appropriate passive energy-saving measures. Energy-saving measures,
such as building orientation and form, building envelope insulation, sunspace, etc., were considered
in evaluating the energy-saving potential. However, the energy-saving effect is subject to the
comprehensive influence of design parameters, which interact. Changing one parameter could affect
the action of other design parameters in building energy consumption. An optimization method thus
needed to be adopted for the analysis.

Commonly used optimization methods include three types: combined simulation software
and optimization algorithm [55], combined machine learning and optimization algorithm [56], and
typical parameter combination optimization (such as an orthogonal experiment) [28]. Although the
first two methods can achieve automatic search and optimization to obtain the optimal parameters,
the whole process is a “black box” model, which can only present the final parameter combination.
In this paper, not only the optimal parameter combination is obtained, but also the primary and
secondary relationships, with the degree of significance of the impact on energy consumption also
being emphasized. Compared with the former two optimization methods, the orthogonal experimental
design can achieve this goal.

2.5.1. Basic Principle

The orthogonal experimental design is a method to study multifactor and multilevel optimization.
According to the orthogonality, some representative points are selected to carry out the experiment,
which have the characteristics of being homeodispersed and neatly comparable [57]. Taking an
experiment with three factors and three levels, for example, a cube can be divided into 27 lattice points.
If all the points undergo experimentation, it is a comprehensive test. The orthogonal experimental
design can adopt an L9 (34) orthogonal table to select the representative lattice points to carry out the
experiments, specifically nine experiments, as shown in Figure 5.
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2.5.2. Schematic Design

The orthogonal experimental design contains two basic parameters: factor and level. Factor refers
to the elements that participate in a trial and have an impact on its outcome. Level refers to the values
of a factor [57]. For the schematic design, a number of factors that have a great impact on evaluation
indicators (such as building energy consumption) but are not clearly understood needed to be selected
for this research. Based on the analysis of simulation results in Section 3.3.1, the appropriate quantity
and value of levels were determined according to the characteristics of each factor and its influence on
the evaluation index.
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After determining the number and level of factors, SPSS software can be used to establish
an orthogonal table. An L64 (411) orthogonal table was designed according to the arrangement of
experiments in this paper; that is, 11 factors (including one blank column, to estimate the random
error) with 4 levels set for each factor. Ignoring the interaction between factors, one factor accounts for
one column, and 64 design schemes can be obtained in this experiment, as shown in Appendix A. If a
comprehensive test is carried out, 410 experiments are required. The orthogonal experimental design
can greatly reduce the number of simulations.

2.5.3. Data Analysis

The data analysis of the orthogonal experimental results mainly includes two methods: range
analysis (intuitive method) and variance analysis.

• Range Analysis

The range can reflect the influence of each factor on the experimental results. The larger the range,
the greater the influence; on the contrary, the smaller the range, the slighter the influence. Thus, the
primary and secondary relationships of factors can be determined. The calculation method is shown in
Formula (4) [58]:

Rj = max{Kij} −min{Kij} (4)

where Rj is the range of column j, Kij is the mean value of experimental results when the factor level in
column j is i, Kij = Kij /s and s is the number of occurrences of factors at level i in column j, and Kij is
the sum of the experimental results when the factor level in column j is i.

For the blank column, if the ranges of all factors are smaller than that of the blank column, it
indicates that there may be a nonnegligible interaction between factors, or other factors that have an
important impact on experimental results are ignored, and the scheme needs to be redesigned. If the
range of one factor is less than that of the blank column, it indicates that this factor has no significance in
the evaluation index. However, the range analysis has limitations, and it is not possible to distinguish
whether the difference in experimental results corresponding to each factor’s level is caused by the
change of level or experimental error, while the variance analysis can achieve this objective.

• Variance Analysis

Analysis of variance (ANOVA) is used to test the significance of the differences in the mean of
two or more samples. It can make up the deficiency of the range analysis. The basic steps are as
follows [59]:

(1) Calculate the quadratic sum of deviations for each factor and error column:

Sj = kj(Ij − y)2 + kj(IIj − y)2 + kj(IIIj − y)2 + . . . (5)

where kj is the number of occurrences of the same levels in each factor; Ij, IIj, and IIIj are the mean
values of the experimental index of each column; and y is the mean value of the experimental index.
Degree of freedom f j is the number of levels in column j minus 1.

(2) Calculate the variance ratio of each factor (F ratio):

Fj = Vj/Vo

where Fj is the variance ratio of column j; Vj is variance, Vj = Sj/f j; and Vo is the variance of the error
column, Vo = So/f o.

(3) Check the F value distribution table for a significance test. The larger the F value, the more
significant the factor and the greater the influence on the experimental results.

The variance analysis can be completed with SPSS software, which can determine whether the
influence of each factor on the evaluation indicator is significant and at what level. The factors with a
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stronger significance should be given more attention in the energy-saving design. For the nonsignificant
factors, the appropriate level can be selected considering other requirements. This provides a reference
for the selection of parameters of design factors for rural dwellings in the Zhalantun area.

To sum up, after simulations for each factor in Section 3.3 were conducted, an orthogonal
experiment was adopted to determine the optimal combination of the design parameters; the primary
and secondary relationships and the degree of significance of the design parameters in building energy
consumption are discussed.

3. Results and Discussion

3.1. Analysis of Testing Results

An analysis of the testing data can reflect the basic characteristics of the thermal environment in
winter. The testing data of 8 January were chosen to analyze the winter situation. As shown in Figure 6,
the average outdoor temperature is −14.04 ◦C. The highest temperature was −5.88 ◦C, occurring at
13:50, and the lowest temperature was −20.68 ◦C at 05:30. The average relative outdoor humidity was
47.07%, varying between 34.70% and 61.01%.
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A “fire kang + tunuanqi” is the main heating mode of rural dwellings in this area. At the
beginning of winter, only fire kang is used for heating, and later the fire kang and tunuanqi are used
together. Indoor temperature is affected by the living routines of rural residents. The heating routine
could be obtained from the temperature change characteristics in the kitchen; that is, heating will
be provided at 06:30 and 15:30, and the temperature will reach a peak value after 1–2 h, then the
indoor temperature presents a gradually decreasing trend. The basic characteristics of the thermal
environment in traditional rural dwellings are shown in Figure 6. The average temperature of the
living room was 11.42 ◦C; the highest temperature was 15.61 ◦C and the lowest temperature was 7.
34 ◦C. Affected by the indoor temperature, the relative humidity was in the range of 51.61%–74.55%.
Benefiting from the room location (less wall contact with outdoors), the temperature in the bedroom
was higher than in the living room, with a mean of 13.20 ◦C, varying between 8.52 ◦C and 16.40 ◦C.
The relative humidity varied between 44.25% and 56.17%. As a heating space, the kitchen had the
highest temperature, with an average indoor temperature of 16.07 ◦C and a range of 9.7–23.27 ◦C.
Affected by cooking, the relative humidity widely fluctuated, from 47.92% to 84.75%. According to the
“Design standard for energy efficiency of rural residential buildings” [60], the indoor temperature was
not lower than 14 ◦C. The temperature variation reflects the larger fluctuation of the indoor thermal
environment in such houses.
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In addition to the indoor temperature, when the interior surface temperature of the building
envelope is lower than the air temperature, cold radiation will be generated, which has a negative
impact on indoor thermal comfort. The basic characteristics of the surface temperature in the living
room are shown in Figure 7.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 33 
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Figure 7. Comparison of surface temperature and indoor temperature.

It can be seen from Figure 7 that the inner surface temperature of the wall was lower than the
indoor air temperature. The mean difference between the surface temperature of the south wall and the
air temperature was 3.5 ◦C, and the max difference reached 11.66 ◦C. For the north wall, the mean and
max were 2.07 ◦C and 7.23 ◦C, respectively, higher than those of the south wall because of proximity to
the fire kang. The surface temperature of the fire kang was high, about 8.4–28.9 ◦C above the indoor air
temperature, which is beneficial to improve the indoor thermal environment through heating radiation.
At the corner of the building envelope, the surface temperature was obviously lower than at the main
part of wall, making it easier to produce condensation, as shown in Figure 8.
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Figure 8. Infrared thermal imaging of the corner of the building envelope.

The globe temperature reflects the actual sensed temperature under the action of radiation and
convection. By comparing indoor air and globe temperatures, the effects of heat and cold radiation
on the thermal environment were analyzed. The results of four measurement points were selected
for analysis (Figure 9); T1, T2, T3, and T4 represent the differences between the indoor air and globe
temperature of four points.
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As shown in Figure 9, T1 was located above the fire kang in the living room and the difference was
negative between 07:40 and 15:40; that is, the globe temperature was higher than the air temperature,
which is affected by the heating radiation of the fire kang. T2 was arranged in the center of the
living room. The difference between 13:50 and 15:30 was negative, mainly affected by solar radiation,
while the other periods were the opposite. T3 collected data from the kitchen (on the north side of
the building), and the difference during the testing period was positive; that is, the air temperature
was higher than the globe temperature. T4 was located in the center of the bedroom. The difference
between 10:50 and 15:40 was negative, which was also mainly affected by solar radiation. Compared
with T2, the position of T4 was closer to the external window, so the time when the difference was
negative increased. Comprehensive analysis shows that due to the poor thermal performance of the
traditional house’s envelope, if there is no solar radiation, the air temperature is usually higher than
the globe temperature; in other words, cold radiation is stronger than thermal radiation. Therefore,
only through the reasonable design of architectural noumena, such as orientation, building form,
thermal performance of the envelope, sunspace, etc., can the problem of energy efficiency and thermal
environment be fundamentally solved.

3.2. Threshold Value of Thermal Comfort Temperature

3.2.1. Characteristics of Respondents and Indoor Environment

The thermal comfort survey was conducted with 200 respondents, and 164 valid questionnaires
were selected for analysis from 98 men and 66 women. The respondents were 18–75 years old, with
an average age of 47.3 years. Their overall clothing thermal resistance (clo) was their accumulated
single clothing thermal resistance [42]. Considering the influence of seating or fire kang on clothing
thermal resistance, 0.15 clo was added [61]. Figure 10 shows the distribution of clothing thermal
resistance in winter, varying between 0.7 clo and 1.9 clo, concentrated in the range of 0.9–1.4 clo, with a
mean value of 1.23 clo. With respect to metabolic rate, the respondents basically sat down to fill in the
questionnaire, and the whole process took about 20–30 min. It was a sitting activity, and the metabolic
rate was 1.2 met [61].
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Table 2 shows the distribution characteristics of indoor thermal environment parameters:
air temperature, mean radiant temperature, relative humidity, and air velocity. As shown in Figure 11,
the distribution of air temperature ranged between 7.0 ◦C and 22.0 ◦C, with an average temperature of
15.0 ◦C, and mainly within 13.0–18.0 ◦C, accounting for 64.0% of the total sample. Air temperature
lower than 13 ◦C accounted for 17.7%, and higher than 18 ◦C accounted for 18.3%. As can be seen from
Figure 12, the mean radiant temperature varied between 3.0 ◦C and 19.0 ◦C, with an average of 11.0 ◦C,
about 4.0 ◦C lower than the average air temperature. For rural dwellings with better insulation of the
envelope, the mean radiant temperature was close to the air temperature.

Table 2. Distribution characteristics of the indoor thermal environment parameters.

Parameter Mean Value Standard Deviation Max Value Min Value

Air temperature (◦C) 15.0 3.39 22.0 7.0
Mean radiant temperature (◦C) 11.0 3.47 19.0 3.0

Relative humidity (%) 51.0 11.04 75.0 22.0
Air velocity (m/s) 0.02 0.01 0.06 0.01
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3.2.2. Thermal Environment Evaluation

The thermal evaluation included three parts: thermal sensation vote, thermal acceptability, and
thermal preference. As shown in Figure 13, a thermal sensation vote of −2, −1, 0, 1, and 2 accounted
for 11.0%, 41.5%, 42.1%, 5.5%, and 0%, respectively. Figure 14 shows the distribution of thermal
acceptability; it can be seen that 87.8% of the respondents accepted the thermal environment. This
indicates that the local residents have adapted somewhat to the severely cold climate. If the thermal
sensation votes −1, 0, and 1 are grouped as “comfort zone,” this indicates that 89.0% of respondents
can adapt to the given indoor thermal environment, which is close to the survey results of thermal
acceptability, while 11.0% still think that the indoor thermal environment is colder (−2). In terms of the
relationship between thermal sensation vote and thermal acceptability, when the thermal sensation
vote is 0 or 1, all selections are “acceptable”, and when the thermal sensation vote is −1, about 96%
of respondents select “acceptable” (secondary axis of Figure 13). It can be seen from Figure 15 that
the most frequent vote was 1, indicating that although adjusting one’s clothing can improve thermal
comfort, still 56.1% of the respondents preferred to change their indoor environment to be a little
warmer. The relationship between thermal sensation vote (TSV) and mean thermal preference is shown
in Figure 16. The regression equation can be expressed as y = −0.413 × TSV + 0.216 (R2 = 0.948),
showing a positive relationship between TSV and average thermal preference.
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3.2.3. Neutral Temperature and Acceptable Temperature Range

Mean thermal sensation (MTS) was adopted to describe people’s thermal sensation, and the bin
method was used to establish a regression model between respondents’ actual thermal sensation and
the operative temperature. Taking operative temperature (to) as an independent variable, with a class
interval of ∆to = 0.5 ◦C and the mean thermal sensation vote within the temperature range as the
dependent variable, the fitting equation MTS = a × to + b can be obtained by linear regression analysis.
Table 3 shows the operative temperature ranges and mean thermal sensation vote.
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Table 3. Operative temperature range and mean thermal sensation vote.

Operating
Temperature MTS Operating

Temperature MTS Operating
Temperature MTS Operating

Temperature MTS

4.75 −2 8.75 −1 12.75 −0.45 16.75 0
5.25 −2 9.25 −1.25 13.25 −0.44 17.25 0
5.75 −2 9.75 −1.25 13.75 −0.63 17.75 0
6.25 −2 10.25 −1 14.25 −0.44 18.25 0
6.75 −2 10.75 −1 14.75 −0.33 18.75 0.4
7.25 −2 11.25 −0.9 15.25 −0.38 19.25 1
7.75 −2 11.75 −1.2 15.75 −0.1 19.75 1
8.25 −2 12.25 −0.7 16.25 0 20.25 1

As shown in Figure 17, the regression model can be expressed as MTS = 0.196to − 3.190, and the
determination coefficient R2 is 0.943, having a high fitting degree. The thermal neutral temperature
is the temperature when MTS is equal to 0. Making MTS = 0, the thermal neutral temperature can
be obtained as 16.3 ◦C, higher than the average measured temperature of 15.0 ◦C (Table 2). Making
MTS = (−0.5, 0.5), the 90% acceptable temperature range is between 13.7 ◦C and 18.8 ◦C. It also can
be seen from Figure 17 that when MTS = 0, the temperature range is 16.0–18.0 ◦C, indicating that the
thermal sensation is comfortable in this range. Therefore, according to the survey results, an indoor
temperature of 17.0 ◦C was set as the input value for building energy-consumption simulation.

Related studies show that in Harbin, a city located in a severely cold region, the thermal neutral
temperature of urban residents is 21.5 ◦C, and the lower limit of an 80% acceptable temperature range
is 18 ◦C [62]. The thermal neutral temperature of rural residents is 14.4 ◦C, and the lower limit of
a 90% acceptable temperature range is 8.8 ◦C [37]. Compared with urban residents, rural residents’
thermal neutral temperature and lower limit of acceptable temperature range are lower, showing a
higher thermal acceptance rate. However, with the improvement of rural residents’ living standards,
the thermal comfort requirement also has been raised.Sustainability 2020, 12, x FOR PEER REVIEW 16 of 33 
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3.3. Analysis of Simulation Results

3.3.1. Effect of a Single Factor on Energy Consumption

Passive design means improving the indoor environment and reducing energy consumption only
through architectural noumenon design and without mechanical equipment. The design parameters
that affect energy consumption of rural dwellings include building orientation and shape, insulation
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layer thickness of nontransparent envelope, window type (transparent envelope), window–wall ratio,
and sunspace. The effects of single factors on energy consumption are analyzed in this section.

• Building Orientation and Shape

Solar radiation has a great impact on the indoor thermal environment and energy consumption,
and its intensity varies with different orientations. Choosing a reasonable orientation is the primary
concern of an energy-saving design, which can make rural dwellings utilize maximum solar radiation in
the heating season. The heating energy consumption of a rural house was simulated in the orientation
range of −90◦ (south by east) to 90◦ (south by west), with a step length of 10◦, and the results are shown
in Figure 18.
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As shown in Figure 18, with the building orientation rotating from −90◦ to 90◦, the heat gain of
solar radiation first increases and then decreases (shown with triangles). Thus, the change in heating
energy consumption shows a reversing trend of first decreasing and then increasing (shown with
squares). When the orientation is south (0◦), the energy consumption reaches the minimum value.
Compared to the orientation of −90◦ and 90◦, the energy consumption is reduced by 14.88 KWh/m2 and
14.06 KWh/m2, respectively. Considering the requirements of energy saving and the indoor thermal
environment in winter, orientations in the range with low energy consumption (below the red line in
Figure 18) were selected for the orthogonal experiment, including south by east 10◦, 0◦, south by west
10◦, and south by west 20◦.

Building shape covers building length, width, and height, and the shape coefficient was presented
as an index to evaluate the rationality of the design scheme, but the relationship between the shape
coefficient and energy saving has been questioned in relevant studies [63]. Moreover, from the view of
architectural design, the shape coefficient cannot directly guide the shape design of rural dwellings.
The building area is fixed, and two aspects, the length–width ratio and indoor height, were taken into
account to analyze the impact on energy consumption.

When discussing the influence of the length–width ratio on energy consumption, the ratio ranged
between 0.6 m and 2.5 m, with a step of 0.1 m. Similarly, the range of indoor height was set as 2.5–3.2 m,
with a step of 0.1 m, to explore the relationship between indoor height and energy consumption. The
external window area will change with variation of length–width ratio or indoor height, and it is
difficult to discern which factors affect energy consumption. Thus, the south window–wall ratio was
set as 0 (no window) and 0.4 for comparative analysis. The results are shown in Figures 19 and 20.
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As can be seen from Figure 19, energy consumption first decreases and then gradually increases
with an increased length–width ratio. Due to the influence of solar radiation, the change rules of
the two conditions are different. In terms of minimum value, energy consumption is the least when
the length–width ratio is 1.2 and 1.1 and the south wall–window ratio is 0 and 0.4, respectively.
From the perspective of change rate, taking the length–width ratio that corresponds to the lowest
energy consumption as the limit, the two intervals of decreasing and increasing are divided. With the
interval of 0.6–1.2 (1.1) m, energy consumption has a negative correlation with the length–width ratio.
It has a higher correlation when the south window–wall ratio is 0.4, indicating that the change in the
length–width ratio has a greater impact on energy consumption. In the range of 1.2 (1.1)–2.5 m, it shows
the opposite trend; that is, energy consumption has a positive correlation with the length–width ratio,
and the correlation is smaller for a south window–wall ratio of 0.4, indicating that the length–width ratio
has less impact on energy consumption. Considering the plane layout and energy-saving effect, a range
of length–width ratios with low energy consumption were selected for the orthogonal experiment: 1.0,
1.1, 1.2, and 1.3.Sustainability 2020, 12, x FOR PEER REVIEW 18 of 33 
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Figure 20. Relationship between indoor height and energy consumption.

As can be seen from Figure 20, energy consumption increases with increased indoor height.
Affected by solar radiation, when the south window–wall ratio is 0.4, the influence of indoor height on
building energy consumption is reduced slightly. For example, when the south window–wall ratio is 0,
for each additional 0.1 m of indoor height, energy consumption increases by 7.07 KWh/m2. However,
there is an increase of 6.39 KWh/m2 for each additional 0.1 m when the south–wall ratio is 0.4. Taking
into account the usage requirement and energy-saving effect, the values 2.6 m, 2.7 m, 2.8, m, and 2.9 m
were selected for the orthogonal experiment.
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• Insulation Thickness of the Nontransparent Envelope

The nontransparent envelope consists of three parts: external wall, roof, and ground, and the
thermal performance of these parts directly restricts the heating energy consumption of rural dwellings.
Due to the features of single-story and detached rural dwellings, compared with urban buildings,
the external wall area occupies a large proportion of the building surface, and its energy consumption
accounts for up to 40% of the total energy consumption [64]. Thermal insulation for external walls has
become a widely used energy-saving measure for rural dwellings in severely cold regions of China.
The roof is usually thermally insulated by the indoor ceiling, upon which lightweight materials are
laid. This can save on thermal insulation materials, reduce the heat dissipation area, and increase
the integrity of the indoor space. Because of the direct contact between the human body and the
ground, its thermal performance not only affects energy consumption, but also has a great impact on
human health [65]. This part is vulnerable to the influence of cold soil around the building, leading to
increased heating energy consumption in winter.

Combining with the characteristics of rural resources and the economics of the Zhalantun area,
Table 4 shows the typical structure of the building envelope for rural dwellings. The main factor that
determines the thermal performance of the envelope is the insulation layer. Therefore, the influence
of insulation layer thickness on energy consumption is a concern. In selecting thermal insulation
material, extruded polystyrene, in the form of EPS boards, was adopted as insulation material for the
simulation because of the lower cost and good insulation properties. The thickness of the insulation
layer ranges between 0 and 200 mm, with a step of 10 mm. The quantitative relationships between
energy consumption and insulation layer thickness are shown in Figure 21. Figure 22 shows the
corresponding energy-saving rate.

Table 4. Typical structure of the building envelope [60].

Name Diagram Structures
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1. Interior surface
2. 370 mm solid brick
3. Cement mortar
4. Cementing compound
5. EPS board
6. Alkali resistant glass fiber mesh
cloth (8 mm, double layer)
7. Exterior surface
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1. Tile
2 Waterproof layer
3. Plank
4. Wood (or steel) roof truss
5. EPS board
6. Vapor barrier (plastic film)
7. Wood joist
8. Suspended ceiling
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As shown in Figure 21, compared to the reference building, the energy consumption is obviously
reduced by increasing the insulation thickness on the external wall from 0 to 200 mm, with the
corresponding heat transfer coefficient varying from 1.58 to 0.185 W/m2

·K. The energy consumption
of a rural dwelling can be decreased from 315.36 KWh/m2 to 210.64 KWh/m2, for a 104.72 KWh/m2

reduction and an energy-saving rate of 33.2% (Figure 22). However, in the process of increasing the
insulation thickness, the energy-saving rate range becomes smaller. When the thickness of the EPS
board is in the range of 0–110 mm, the variation of insulation thickness has a significant impact on the
energy-saving rate, reaching 30.1%. Blindly increasing the thickness of the insulation layer will lead to
a high investment cost, and the energy-saving effect is not obvious. Considering the insulation effect
and construction cost, 50 mm, 70 mm, 90 mm, and 110 mm-thick EPS boards (with corresponding
heat transfer coefficients of 0.548, 0.435, 0.360, and 0.307 W/m2

·K, respectively) were selected for
the external wall in the orthogonal experiment. Regarding the roof, the energy consumption is
decreased by 7.07 KWh/m2, with an energy-saving rate of 13.2%, when the insulation thickness
is 200 mm. The change of energy consumption has an inflection point at an insulation thickness
of 40 mm; that is, the energy consumption only decreases when the insulation thickness exceeds
40 mm. The main reason is that plant ash or sawdust are usually laid on the indoor ceiling of a
traditional dwelling, which plays a certain role in insulation (because DesignBuilder software does
not include such material, a material with the same heat transfer coefficient was selected according to
the relevant energy-saving design standard [66]). When the EPS board is in the range of 40–130 mm
thick, the variation of insulation thickness has a significant impact on the energy-saving rate, and it
can reach 11.3%. Insulation thicknesses of 70 mm, 90 mm, 110 mm, and 130 mm (with corresponding
heat transfer coefficients of 0.498, 0.403, 0.338, and 0.291 W/m2

·K, respectively) were selected for the
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roof in the orthogonal experiment. About the ground, corresponding to the insulation thickness of
200 mm, energy consumption is decreased by 43.89 KWh/m2, with an energy-saving rate of 13.9%.
When the EPS board varies from 0–90 mm thick, the energy-saving rate is significantly affected by the
change of insulation thickness and its value can also reach 13.0%. Similarly, the 30 mm, 50 mm, 70 mm,
and 90 mm-thick EPS boards (with corresponding heat transfer coefficients of 0.906, 0.633, 0.486, and
0.395 W/m2

·K, respectively) were selected for the ground in the orthogonal experiment. Results show
that the impact of the three parts on energy consumption is different, with the external wall having a
greater impact and the ground similar to the roof.

• Window Types (Transparent Enclosure)

Compared with the nontransparent envelope, the external window is the weaker part of the
building envelope in terms of thermal insulation, and most were replaced during the operation to
improve the indoor thermal environment and save energy. For example, by using double-glass
windows (two 6 mm glass with 6 mm distance, and a heat transfer coefficient of 3.1 W/m2

·K) to replace
single-glass windows (6 mm thick, and a heat transfer coefficient of 4.7 W/m2

·K), energy consumption
is reduced by 16.06 KWh/m2 in winter. Window thermal performance is mainly reflected by two
indices: the heat transfer coefficient (K) and solar heat gain coefficient (SHGC). Seven types of windows
were selected for comparative analysis, as shown in Table 5.

Table 5. External window types and parameters. K, heat transfer coefficient; SHGC, solar heat gain
coefficient; low-e, low emissivity; A, air.

Number Window Type K SHGC

1 6 mm clear + 6A + 6 mm clear 3.1 0.700
2 6 mm clear + 6A + 6 mm bronze 3.1 0.504
3 6 mm clear + 6A + 6 mm gray 3.1 0.485
4 6 mm clear + 12A + 6 mm clear 2.7 0.715
5 6 mm clear + 6A + 6 mm low-e 2.4 0.569
6 6 mm clear + 6A + 6 mm clear + 6A + 6 mm clear 2.1 0.624
7 6 mm g clear + 6A + 6 mm clear + 100A + 6 mm clear + 6A + 6 mm clear 1.5 0.554

As shown in Figure 23, energy consumption increases with a decreased SHGC value when the
K value is the same (Windows 1–3). With a decreased K value, the change curve of heating energy
consumption presents a generally downward trend, but for SHGC, a special situation also occurs.
For instance, the energy consumption of Window 4 (K = 2.7 W/m2

·K) is lower than that of Window 5
(K = 2.4 W/m2

·K) because of the great difference in the SHGC value and small difference in the K value;
thus, Window 4 can introduce more solar radiation. It can be seen that both the K value and SHGC
value will have an impact on energy consumption. In order to analyze the influence degree of the
two parameters on energy consumption, SPSS was used to analyze the correlation between window
thermal performance and energy consumption (Table 6). Results show that energy consumption
has no significant correlation with the SHGC value but is significantly correlated with the K value.
For external windows of rural dwellings in Zhalantun (a severely cold region), more attention should
be paid to the K value. Considering the energy-saving effect, K values of 1.5, 2.1, 2.4, and 2.7 W/m2

·K
were selected for external windows in the orthogonal experiment.



Sustainability 2020, 12, 1103 22 of 34

Sustainability 2020, 12, x FOR PEER REVIEW 21 of 33 

As shown in Figure 23, energy consumption increases with a decreased SHGC value when the 
K value is the same (Windows 1–3). With a decreased K value, the change curve of heating energy 
consumption presents a generally downward trend, but for SHGC, a special situation also occurs. 
For instance, the energy consumption of Window 4 (K = 2.7 W/m2·K) is lower than that of Window 5 
(K = 2.4 W/m2·K) because of the great difference in the SHGC value and small difference in the K 
value; thus, Window 4 can introduce more solar radiation. It can be seen that both the K value and 
SHGC value will have an impact on energy consumption. In order to analyze the influence degree of 
the two parameters on energy consumption, SPSS was used to analyze the correlation between 
window thermal performance and energy consumption (Table 6). Results show that energy 
consumption has no significant correlation with the SHGC value but is significantly correlated with 
the K value. For external windows of rural dwellings in Zhalantun (a severely cold region), more 
attention should be paid to the K value. Considering the energy-saving effect, K values of 1.5, 2.1, 2.4, 
and 2.7 W/m2·K were selected for external windows in the orthogonal experiment. 

 
Figure 23. Relationship between window thermal performance and energy consumption and solar 
radiation. 

Table 6. Correlation between window thermal performance and energy consumption. 

 K（W/m2·K） SHGC 
Pearson correlation 0.949 ** –0.296 

Significance (bilateral) 0.001 0.520 
** Significant correlation at the 0.01 level (bilateral). 

• Window–wall ratio  

The window–wall ratio is an important index for energy-saving design, and its effect on heating 
energy consumption has dual characteristics. On the one hand, more solar radiation can be obtained 
to improve the indoor thermal environment in winter, and on the other hand, the heat transfer 
coefficient of external windows is larger, which leads to increased heating energy consumption. 
Therefore, the appropriate window–wall ratio should be determined according to the performance 
requirements and climatic conditions. Rural dwellings in this area usually only have windows on the 
north and south sides, so the window–wall ratio of these sides was simulated. When the south 
window–wall ratio is taken as a variable, the north window–wall ratio is 0, and vice versa. The range 
of the window–wall ratio is set as 0.2–0.7, with a step size of 0.05. The simulation results are shown 
in Figures 24 and 25. 

Figure 23. Relationship between window thermal performance and energy consumption and
solar radiation.

Table 6. Correlation between window thermal performance and energy consumption.

K (W/m2
·K) SHGC

Pearson correlation 0.949 ** −0.296
Significance (bilateral) 0.001 0.520

** Significant correlation at the 0.01 level (bilateral).

• Window–wall ratio

The window–wall ratio is an important index for energy-saving design, and its effect on heating
energy consumption has dual characteristics. On the one hand, more solar radiation can be obtained to
improve the indoor thermal environment in winter, and on the other hand, the heat transfer coefficient
of external windows is larger, which leads to increased heating energy consumption. Therefore,
the appropriate window–wall ratio should be determined according to the performance requirements
and climatic conditions. Rural dwellings in this area usually only have windows on the north and
south sides, so the window–wall ratio of these sides was simulated. When the south window–wall ratio
is taken as a variable, the north window–wall ratio is 0, and vice versa. The range of the window–wall
ratio is set as 0.2–0.7, with a step size of 0.05. The simulation results are shown in Figures 24 and 25.Sustainability 2020, 12, x FOR PEER REVIEW 22 of 33 
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As can be seen in Figure 24, energy consumption linearly decreases as the south window–wall
ratio increases. Although increasing the size of the external windows will lead to an increased heat
dissipation area, more solar radiation can be introduced, which is conducive to reducing energy
consumption. On the contrary, energy consumption linearly increases as the north window–wall ratio
increases (Figure 25). The fitting relationship between the window–wall ratio and energy consumption
are shown in Table 7. It has a good linear fitting degree and a significant linear relationship. For each
additional 0.1 in the window–wall ratio, energy consumption changes 3.52 KWh/m2 and 1.79 KWh/m2

for the south and north, respectively. Taking into account the requirements of energy saving, lighting,
and structure, the values of 0.3, 0.4, 0.5, and 0.6 were selected for the south window–wall ratio and 0.1,
0.2, 0.3, and 0.4 for the north window–wall ratio in the orthogonal experiment.

Table 7. Fitting relationship between the window–wall ratio and energy consumption.

Regression Equation Regression Coefficient (R2) Significance Test (Sig.)

South window–wall ratio Y = −35.164X + 321.594 0.998 0.000
North window–wall ratio Y = 17.876X + 321.286 0.980 0.000

• Attached Sunspace

The sunspace refers to a space attached to the south side of the building (Figure 26). As a transition
space between the indoor and outdoor environments, it has a positive role in reducing building
energy consumption and improving the indoor thermal environment. There is rich solar energy in
the Zhalantun area; according to the meteorological data (Figure 1), the annual solar radiation energy
is about 5000.6 MJ/m2. In addition, large homesteads of rural houses without shielding between
buildings can provide favorable conditions for the use of solar energy. The sunspace has been accepted
and applied by rural residents, such as plastic film supported by a wooden frame built on the south
side of the building in winter, as shown in Figure 27.
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In the design of a sunspace, its width and height are usually consistent with the building, and
depth is the only adjustable variable. The initial value of sunspace depth is set as 0, or the reference
building, and a new model is formed for every 0.3 m increase until the depth reaches 2.4 m, a total of
nine conditions. The sunspace material is single glass with an aluminum alloy frame (K = 5.8 W/m2

·K).
Figure 28 shows the relationship between sunspace depth and heating energy consumption.
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It can be seen from Figure 28 that energy consumption is reduced the most, by 14.64 KWh/m2,
with a sunspace depth of 0.3 m. As the depth increases, energy consumption shows a slightly escalating
trend, but when the depth reaches 2.4 m, energy consumption is still lower than that of the reference
building. The effect of the sunspace on energy consumption is mainly determined by the relationship
between the solar radiation reduction and heat loss reduction of the building envelope. If the former
is less than the latter, it is beneficial to reduce energy consumption. As shown in Figure 29, as the
sunspace depth increases from 0.3 m to 2.4 m, the reduction of solar radiation is lower than that of
the building envelope’s heat loss all the time, meaning that although the sunspace will affect the
acquisition of indoor solar radiation, it can have a heat preservation effect on the envelope and reduce
heat loss. Figure 30 shows the indoor, sunspace, and outdoor mean air temperature in winter. Because
of direct access to solar radiation, the interior temperature of the sunspace is higher than the outdoor
temperature. It can provide a warmer space for residents’ activities in winter (other than the indoor
space), and can also be used as a temperature buffer to avoid experiencing large temperature differences
between the outside and the indoor space, with an average of 25.7 ◦C.
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To sum up, the smaller the depth of the sunspace, the better the energy-saving effect. However, as
a daily space, it should meet its functional requirements, and considering the energy-saving effect,
0.9 m, 1.2 m, 1.5 m, and 1.8 m were selected for sunspace depth in the orthogonal experiment.

According to the single parameter simulation results, 10 impact factors were chosen: building
orientation, length–width ratio, indoor height, wall insulation layer thickness, roof insulation layer
thickness, ground insulation layer thickness, window heat transfer coefficient, south window–wall
ratio, north window–wall ratio, and sunspace depth. Table 8 shows the factors and levels of the
orthogonal experiment.

Table 8. Factors and levels of the orthogonal experiments.

Level
Factor

A B C D E F G H I J

1 South by west 20◦ 1.0 2.6 50 70 30 1.5 0.3 0.1 0.9
2 South by west 10◦ 1.1 2.7 70 90 50 2.1 0.4 0.2 1.2
3 South (0◦) 1.2 2.8 90 110 70 2.4 0.5 0.3 1.5
4 South by east 10◦ 1.3 2.9 110 130 90 2.7 0.6 0.4 1.8

Note: A: building orientation (◦); B: length–width ratio; C: indoor height (m); D: external wall insulation thickness
(mm); E: roof insulation thickness (mm); F: ground insulation thickness (mm); G: window heat transfer coefficient of
(W/m2

·K); H: south window–wall ratio; I: north window–wall ratio; J: sunspace depth (m).



Sustainability 2020, 12, 1103 26 of 34

3.3.2. Comprehensive Optimization for Energy Saving

According to the analysis results in Section 3.3.1, there are different effects of each factor on building
energy consumption. When the parameters of the design factors varies in the same direction, some
factors are conducive to reduce energy consumption, such as increasing the insulation thickness, while
others have the opposite effect, such as raising the north window–wall ratio; so, effective combination
of these measures must be optimized for further energy saving. Therefore, taking the 10 previously
analyzed design factors as the variables (building orientation, length–width ratio, indoor height,
insulation thickness of building envelope (wall, roof, and ground), heat transfer coefficient of window,
south and north window–wall ratio, and sunspace depth), the optimal parameter combination and its
significance to building energy consumption were analyzed by the orthogonal experiment, as shown
in Table 8. Appendix A shows the orthogonal table and energy consumption data. Range analysis was
used to obtain the optimal parameter combination, as well as the primary and secondary relationships
of the effect on energy consumption. As shown in Table 9, with a larger range, thus making the
variation of the experimental index greater, it turns out that the importance of each design factor’s
influence is ranked as follows: D (external wall insulation thickness) > E (roof insulation thickness) >

C (indoor height) > I (north window–wall ratio) > F (ground insulation thickness) > G (window heat
transfer coefficient) > J (sunspace depth) > H (south window–wall ratio) > B (length–width ratio) > A
(building orientation). The difference between F and G is quite small.

Table 9. Range calculation results of the orthogonal experiments.

Mean
Value

(KWh/m2)

Factors

A B C D E F G H I J Blank
Column

K1j 143.55 142.79 137.61 154.93 152.81 148.84 137.47 142.50 137.46 141.86 142.94
K2j 142.83 142.75 140.81 144.85 143.90 143.59 142.75 142.90 141.52 142.97 143.28
K3j 143.28 143.29 144.62 138.42 139.46 140.89 146.21 143.44 144.84 143.57 143.10
K4j 143.21 144.04 149.83 134.66 136.71 139.55 146.44 144.03 149.04 144.47 143.55
Ri 0.72 1.29 12.22 20.27 16.10 9.29 8.97 1.53 11.58 2.61 0.61

Note: A: building orientation (◦); B: length–width ratio; C: indoor height (m); D: external wall insulation thickness
(mm); E: roof insulation thickness (mm); F: ground insulation thickness (mm); G: window heat transfer coefficient
(W/m2

·K); H: south window–wall ratio; I: north window–wall ratio; J: sunspace depth (m).

In this paper, building energy consumption is taken as the experimental index, so the smaller the
index value, the more conducive to energy conservation. It can be concluded that the optimal parameter
combination is A2, B2, C1, D4, E4, F4, G1, H1, I1, J1, and the corresponding values are south by west
10◦, 1.1, 2.6 m, 110 mm, 130 mm, 90 mm, 1.5 W/m2

·K, 0.3, 0.1, and 0.9 m, respectively. This combination
is not included in the orthogonal table, with an energy consumption of 107.05 KWh/m2, and is also
6.82 KWh/m2 less than the minimum energy consumption in the table. Compared to the reference
building, with an energy consumption of 314.84 KWh/m2, the energy-saving rate is 65.9%. It can be
seen from Table 10 that after a comprehensive energy-saving design, the natural temperature inside
the room increases throughout the year. The thermal performance is improved by the fact that the
number of hours when the indoor air temperature is less than or equal to 17 ◦C decreases by 1073 h,
although the number of hours with a temperature between 21◦C and 26 ◦C increases significantly in
summer, still in the comfort zone. The number of hours with temperatures above 26 ◦C increases, but
the highest temperature is less than 29 ◦C, mainly concentrated in the hottest month of July. From the
view of the average temperature in the heating period, the indoor radiation temperature and operative
temperature are increased by 4.67 ◦C and 2.36 ◦C, respectively.
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Table 10. Temperature distribution over one year, 8760 h.

≤17 ◦C 17–21 ◦C 21–26 ◦C <26 ◦C

Ambient temperature (h) 6295 974 1059 432
Indoor temperature (h) 6198 2106 456 0

After energy-saving design (h) 5125 1152 2121 362

ANOVA was used to test the significance of each factor in building energy consumption, and
the result is shown in Table 11. Within the given range of parameter values for each factor, C, D, E, F,
G, and I have a significant effect on the building energy consumption at the level of α = 0.01, J has a
significant effect at the level of α = 0.05, while A, B, and H have no significant effect.

Table 11. ANOVA of the building energy-consumption data.

III Type Quadratic Sum df MS F Sig.

A: Building orientation 4.233 3 1.411 0.246 0.864
B: Length–width ratio 17.113 3 5.704 0.993 0.409

C: Indoor height 1326.900 3 442.300 76.995 0.000
D: External wall insulation thickness 3779.036 3 1259.679 219.282 0.000

E: Roof insulation thickness 2383.959 3 794.653 138.331 0.000
F: Ground insulation thickness 810.240 3 270.080 47.015 0.000

G: Window heat transfer coefficient 840.762 3 280.254 48.786 0.000
H: South window–wall ratio 21.333 3 7.111 1.238 0.313
I: North window–wall ratio 1161.877 3 387.292 67.419 0.000

J: Sunspace depth 57.550 3 19.183 3.339 0.032
K: Blank column 3.278 3 1.093 0.190 0.902

Deviation 172.337 30 5.745

3.4. Economic Evaluation

Any energy-saving measures should not only meet the technical conditions, but also be
economically feasible. Economy is one of the important factors restricting energy-saving design
for rural dwellings in this area. Therefore, questions on willingness to invest in energy-saving
design were added to the survey. Results show that 84.4% of respondents are not willing to invest
in energy-saving design or renovation. They think that the problem of an uncomfortable indoor
environment can be solved by burning more fuel, but this will result in increased operating costs. Only
15.6% of respondents are willing to pay for the necessary energy-saving design or renovation, but
the investment amount is concentrated in the range of 1000–5000 CYN, as show in Figure 31. Rural
residents are also reluctant to invest when more expenditure is needed. It can be seen that residents
are not clear about the economic benefits brought by energy-saving design.
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In general, an energy-saving house and the benchmark model have the same parts in terms of the
main structure and materials, construction of the envelope, construction technology, etc. However,
this paper mainly focuses on the relationship between increased investment and benefits brought by
passive energy-saving measures; thus, calculating the absolute value of the construction costs is not
useful. Therefore, the feasibility of the energy-saving design is evaluated by additional investment cost,
and the cost–benefit ratio and payback period are calculated in this paper. The energy-saving design
scheme is feasible when the cost–benefit ratio is greater than or equal to 1.0. The increased investment
cost of an energy-saving house (dIC), namely, the difference in initial investment cost between the
reference building and the energy-saving house, is calculated by Formula (6):

dIC =
i∑

i=0

dICi =
i∑

i=0

Si × dPi (6)

where dICi is the increased investment cost of each part, Si is the area of adopting energy-saving
measures of each part, and dPi is the material price difference of each part.

The 10 passive design factors analyzed in Section 3.3 can be divided into two types in view of
economy. One type will not affect the construction cost, such as building orientation, length–width
ratio, and indoor height, as basic requirements for energy-saving design. The other type will result in
increased investment costs, such as adding an insulation layer for the envelope, replacing external
windows, changing the window–wall ratio, etc. In the calculation, the price of EPS board is 360 CNY/m3

and the prices of single-frame double-glass window (Window 1 in Table 5) and two single-frame
double-glass window (Window 7 in Table 5) are 270 CNY/m2 and 540 CNY/m2, respectively. The average
price of single-glass with an aluminum alloy frame is about 120 CNY/m2. Table 12 shows the increased
investment cost of an energy-saving house, with the total investment cost being 10,861.8 CNY.

Table 12. The increased investment cost of an energy-saving house.

Parts
Additional or
Replacement

Material
Price Area (m2)

Difference in
Investment
Cost (CNY)

Wall EPS 360 CNY/m3 67.20 2661.1

Roof EPS 360 CNY/m3 54.12 2532.8

Ground EPS 360 CNY/m3 54.12 1753.5

Sunspace Single-glass with
aluminum alloy frame 120 CNY/m2 31.63 3795.6

Window
replacement

Reference
building

Single-frame
double-glass window 270 CNY/m2 14.04 3790.8

118.8
Energy-saving

house
Two single-frame

double-glass window 540 CNY/m2 7.24 3909.6

Total 10,861.8

Note: Additional materials are for external walls, roof, ground, and sunspace. Replacement materials are for
external windows and the area changed. Labor cost is included in the price of the materials.

For the energy-saving house, building energy consumption will be significantly reduced during
operation, thus saving on operating cost. Because of the climate conditions in this area, the house
prioritizes natural ventilation in summer, hardly using cooling equipment, so the difference in operating
cost mainly comes from saving when reducing energy consumption for heating. dOC is the difference
in operating cost and is calculated by Formula (7):

dOC = a·ep·dE/e (7)
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where a is the discount factor, which takes into account the effect of inflation and escalation of
energy prices. Referring to a relevant study [67], the following data are assumed for calculation:
nominal interest rate i = 7%, inflation rate f = 2%, and escalation in energy price e = 1%. Accordingly,
the discount factor a = 13.76 when the lifespan is 20 years. ep is the standard coal energy price and is set
as 800 CNY/ton in line with the average market price. dE is the difference in annual coal consumption
for space heating between the energy-saving house and the reference building. The unit of software
output is KWh, which is converted into tons in the calculation: 1 KWh = 0.123 × 10−3 tons. e is the
operating efficiency of heating equipment, with a value of 0.7.

According to the simulation results, the heating energy consumption of the energy-saving house is
107.05 KWh/m2, compared with the reference building, with an energy consumption of 314.84 KWh/m2;
the reduced annual heating energy consumption of the energy-saving house is about 11,245.59 KWh,
which is converted into 1.38 tons. The cumulative energy-saving benefit is 21,701.5 CNY by Formula (7),
and the cost–benefit ratio of the energy-saving house is 1.99 > 1.0. The payback period is the time
for the operating cost benefit of the energy-efficient house to offset the additional investment cost.
The payback period of investment is within 7 years. This indicates that the energy-saving design
scheme is more economical.

4. Conclusions

The analysis of the test results shows that the indoor temperature of traditional houses in Zhalantun
is lower, which does not satisfy the thermal comfort requirements stipulated by set standards, and
fluctuates greatly in winter; the difference between the highest and lowest temperatures in the bedroom
reaches 8 ◦C, and the relative humidity is constant under winter conditions. The inner surface
temperature of the building envelope (i.e., walls, windows) is usually lower than the indoor air
temperature, resulting in cold radiation. Although solar radiation and fire kang can improve the indoor
thermal environment, their duration and influence are limited. Only through the reasonable design of
architectural noumenon can the problem of energy efficiency and thermal environment comfort be
fundamentally solved.

In accordance with the thermal comfort survey of rural residents, it is concluded that although the
indoor average temperature is lower, the acceptable rate is higher, at 87.6%. According to the correlation
analysis between operative temperature (to) and mean thermal sensation (MTS), the regression equation
is MTS = 0.196to − 3.190 (R2 = 0.943), the thermal neutral temperature is 16.3 ◦C, and the 90% acceptable
temperature range is 13.7–18.8 ◦C. When MTS = 0, the temperature range is 16.0–18.0 ◦C. This can
provide the indoor calculation parameters for an energy-saving design for rural dwellings in Zhalantun.

Through the quantitative analysis of design factors and building energy consumption, the effects
of single factors on building energy efficiency are clarified; for example, external wall insulation with
110 mm-thick EPS boards yields an energy-saving rate of 30.1%, and the parameter values of each factor
in the orthogonal experiment are determined. According to the results of the orthogonal experiments,
within the given range of the parameter values, the importance of the design factor’s influence is
ranked as follows: D (external wall insulation thickness) > E (roof insulation thickness of roof) > C
(indoor height) > I (north window–wall ratio) > F (ground insulation thickness) > G (window heat
transfer coefficient) > J (sunspace depth) > H (south window–wall ratio) > B (length–width ratio)
> A (building orientation). The difference between F and G is quite small. The optimal parameter
combination is A2, B2, C1, D4, E4, F4, G1, H1, I1, and J1, and the corresponding values are south by
west 10◦, 1.1, 2.6 m, 110 mm, 130 mm, 90 mm, 1.5 W/m2

·K, 0.3, 0.1, and 0.9 m respectively. Analysis of
variance shows that factors C, D, E, F, G, and I have a significant effect on energy consumption at the
level of α = 0.01, J has a significant effect at level of α = 0.05, while A, B, and H have no significant
effect. Comprehensive measures can achieve an energy-saving rate of 65.9%, and the number of hours
when the natural air temperature inside the room is less than or equal to 17 ◦C decreases by 1050 h.
The indoor average radiation temperature and operative temperature are increased by 4.67 ◦C and
2.36 ◦C, respectively, in the heating period.
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After adopting comprehensive energy-saving measures, the additional initial investment cost is
10,861.8 CNY. Simulation results show that compared with the reference building, the reduced annual
heating energy consumption is 11,245.59 KWh. When the lifespan is 20 years, the cumulative benefit
value is 21,701.5 CNY. The cost–benefit ratio is 1.99 > 1.0 and the payback period of investment is
within 7 years.

In this paper, the basic problem of indoor thermal comfort and, subsequently, an energy-saving
design for Zhalantun rural dwellings, are explored. The results can have a positive effect on
reducing building energy consumption, improving the living environment, and promoting sustainable
development in this area.
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Appendix A

Table A1. Orthogonal Table and Energy Consumption Data.

No. A B C D E F G H I J Blank
Column

Energy
Consumption

1 South by east 10◦ 1.2 2.6 70 70 70 2.4 0.4 0.4 1.8 4 155.98
2 South by west 10◦ 1.0 2.9 70 130 30 1.5 0.4 0.3 1.5 3 145.20
3 South by west 10◦ 1.2 2.6 70 130 30 2.7 0.3 0.4 1.5 1 146.47
4 South by west 20◦ 1.3 2.8 70 90 50 2.4 0.3 0.1 1.2 4 144.45
5 South by east 10◦ 1.0 2.8 110 110 30 1.5 0.6 0.2 1.2 2 131.28
6 South by west 20◦ 1.0 2.9 70 90 50 2.7 0.5 0.3 1.2 1 157.91
7 South by west 20◦ 1.1 2.9 90 110 70 2.7 0.3 0.1 1.5 2 133.38
8 South (0◦) 1.2 2.6 70 110 90 2.1 0.5 0.4 0.9 2 135.82
9 South by west 10◦ 1.3 2.9 110 90 70 1.5 0.3 0.4 0.9 2 135.67

10 South by east 10◦ 1.3 2.7 50 90 90 2.7 0.3 0.3 1.5 3 155.17
11 South by east 10◦ 1.3 2.8 70 70 70 1.5 0.5 0.1 1.8 3 146.06
12 South (0◦) 1.2 2.9 50 130 70 2.4 0.3 0.2 1.2 2 155.02
13 South by west 10◦ 1.1 2.7 70 130 30 2.4 0.5 0.2 1.5 4 143.28
14 South by west 10◦ 1.3 2.6 90 70 90 2.7 0.5 0.2 1.2 2 139.40
15 South by west 10◦ 1.1 2.9 90 70 90 1.5 0.6 0.1 1.2 4 139.62
16 South (0◦) 1.0 2.9 70 110 90 2.4 0.6 0.3 0.9 4 147.16
17 South by east 10◦ 1.0 2.7 90 130 50 2.7 0.4 0.4 0.9 2 137.91
18 South by west 20◦ 1.2 2.9 50 70 30 2.7 0.4 0.2 0.9 3 174.73
19 South by east 10◦ 1.3 2.6 90 130 50 2.4 0.6 0.2 0.9 3 127.30
20 South (0◦) 1.3 2.6 90 90 30 2.1 0.3 0.2 1.8 1 138.72
21 South by west 10◦ 1.1 2.6 110 90 70 2.7 0.4 0.3 0.9 4 131.43
22 South by west 20◦ 1.1 2.6 110 130 90 1.5 0.5 0.3 1.8 2 113.87
23 South by west 10◦ 1.3 2.8 70 130 30 2.1 0.6 0.1 1.5 2 140.78
24 South by east 10◦ 1.0 2.9 70 70 70 2.1 0.3 0.3 1.8 2 159.35
25 South (0◦) 1.3 2.7 50 130 70 1.5 0.6 0.3 1.2 1 137.96
26 South by west 10◦ 1.0 2.6 50 110 50 2.7 0.6 0.1 1.8 3 143.93
27 South by west 20◦ 1.2 2.6 70 90 50 1.5 0.6 0.4 1.2 3 138.79
28 South by west 10◦ 1.2 2.9 50 110 50 1.5 0.5 0.2 1.8 1 152.02
29 South by west 20◦ 1.1 2.7 70 90 50 2.1 0.4 0.2 1.2 2 142.79
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Table A1. Cont.

No. A B C D E F G H I J Blank
Column

Energy
Consumption

30 South by west 10◦ 1.2 2.8 90 70 90 2.1 0.4 0.3 1.2 1 146.85
31 South by west 20◦ 1.0 2.7 90 110 70 2.1 0.6 0.4 1.5 1 136.23
32 South (0◦) 1.1 2.9 90 90 30 2.4 0.4 0.1 1.8 3 148.36
33 South (0◦) 1.1 2.8 50 130 70 2.7 0.5 0.4 1.2 3 156.61
34 South by west 20◦ 1.3 2.7 50 70 30 2.1 0.5 0.3 0.9 4 167.77
35 South by east 10◦ 1.0 2.6 50 90 90 2.4 0.5 0.1 1.5 2 144.67
36 South (0◦) 1.3 2.9 110 70 50 2.4 0.5 0.4 1.5 1 161.84
37 South (0◦) 1.0 2.8 110 70 50 2.7 0.3 0.2 1.5 4 144.51
38 South by west 20◦ 1.2 2.7 110 130 90 2.1 0.3 0.1 1.8 3 114.79
39 South by east 10◦ 1.2 2.8 90 130 50 1.5 0.3 0.3 0.9 4 128.09
40 South by east 10◦ 1.1 2.7 70 70 70 2.7 0.6 0.2 1.8 1 152.08
41 South (0◦) 1.1 2.7 70 110 90 1.5 0.3 0.2 0.9 3 127.86
42 South (0◦) 1.0 2.6 50 130 70 2.1 0.4 0.1 1.2 4 134.08
43 South (0◦) 1.2 2.8 90 90 30 2.7 0.6 0.3 1.8 2 154.77
44 South by west 20◦ 1.0 2.6 50 70 30 1.5 0.3 0.1 0.9 1 154.77
45 South by west 20◦ 1.0 2.8 110 130 90 2.4 0.4 0.2 1.8 1 125.22
46 South (0◦) 1.3 2.8 70 110 90 2.7 0.4 0.1 0.9 1 133.68
47 South by east 10◦ 1.3 2.9 110 110 30 2.1 0.4 0.4 1.2 3 148.65
48 South by east 10◦ 1.1 2.6 110 110 30 2.4 0.3 0.3 1.2 1 134.54
49 South (0◦) 1.1 2.6 110 70 50 2.1 0.6 0.3 1.5 3 140.70
50 South by west 10◦ 1.2 2.7 110 90 70 2.4 0.6 0.1 0.9 1 126.70
51 South by west 10◦ 1.0 2.7 90 70 90 2.4 0.3 0.4 1.2 3 148.95
52 South by east 10◦ 1.1 2.9 90 130 50 2.1 0.5 0.1 0.9 1 130.35
53 South (0◦) 1.0 2.7 90 90 30 1.5 0.5 0.4 1.8 4 142.29
54 South (0◦) 1.2 2.7 110 70 50 1.5 0.4 0.1 1.5 2 133.12
55 South by west 20◦ 1.2 2.8 90 110 70 2.4 0.5 0.3 1.5 3 141.19
56 South by west 20◦ 1.1 2.8 50 70 30 2.4 0.6 0.4 0.9 2 179.23
57 South by west 10◦ 1.3 2.7 50 110 50 2.4 0.4 0.3 1.8 2 155.47
58 South by east 10◦ 1.1 2.8 50 90 90 1.5 0.4 0.4 1.5 1 151.70
59 South by east 10◦ 1.2 2.9 50 90 90 2.1 0.6 0.2 1.5 4 157.62
60 South by east 10◦ 1.2 2.7 110 110 30 2.7 0.5 0.1 1.2 4 130.63
61 South by west 10◦ 1.1 2.8 50 110 50 2.1 0.3 0.4 1.8 4 158.21
62 South by west 20◦ 1.3 2.6 90 110 70 1.5 0.4 0.2 1.5 4 121.26
63 South by west 20◦ 1.3 2.9 110 130 90 2.7 0.6 0.4 1.8 4 150.39
64 South by west 10◦ 1.0 2.8 110 90 70 2.1 0.5 0.2 0.9 3 131.28

References

1. Pachauri, R.K.; Reisinger, A. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II
and III to The Fourth Assessment Report. Speculum 2007, 77, 586–588.

2. Liu, G.; Peng, S.; Liu, J. Research on the development history and trend of abroad building energy saving
standards. Constr. Sci. Tech. 2015, 14, 18–23.

3. Feldmann, C. French building regulation sets 50 kWh/(m2
·a) a limit for primary energy use. REHVA J. 2013,

10, 29–32.
4. Pan, W.; Garmston, H. Building regulations in energy efficiency: Compliance in England and Wales.

Energy Policy 2012, 45, 594–605. [CrossRef]
5. Hou, S.; Thomas, A.; Jones, P.J. A detailed review of the development of building regulations in relation to

energy efficiency and carbon reduction in the UK. Synchrotron Radiat. News 2015, 8, 19–21.
6. Melo, A.P.; Sorgato, M.J. Lamberts R. Building energy performance assessment: Comparison between

ASHRAE standard 90.1 and Brazilian regulation. Energy Build. 2014, 70, 372–383. [CrossRef]
7. Lau, L.C.; Tan, K.T.; Lee, K.T.; Mohamed, A.R. A comparative study on the energy policies in Japan and

Malaysia in fulfilling their nations’ obligations towards the Kyoto Protocol. Energy Policy 2009, 37, 4771–4778.
[CrossRef]

http://dx.doi.org/10.1016/j.enpol.2012.03.010
http://dx.doi.org/10.1016/j.enbuild.2013.11.080
http://dx.doi.org/10.1016/j.enpol.2009.06.034


Sustainability 2020, 12, 1103 32 of 34

8. Evans, M.; Shui, B.; Takagi, T. Country Report on Building Energy Codes in Japan; Pacific Northwest National
Laboratory: Richland, WA, USA, 2009; pp. 100–103.

9. Building Energy Conservation Research Center, Tsinghua University. Annual Development Research Report of
China Building Energy Conservation; China Architecture & Building Press: Beijing, China, 2012.

10. Building Energy Statistics Committee, China Association of Building Energy Efficiency. Research Report
of China Building Energy Consumption (2016); China Association of Building Energy Efficiency: Shanghai,
China, 2017.

11. Building Energy Statistics Committee, China Association of Building Energy Efficiency. Research Report
of China Building Energy Consumption (2017); China Association of Building Energy Efficiency: Shanghai,
China, 2018.

12. Ministry of Housing and Urban–Rural Development of PRC. The 13th Five-Year Plan of Building Energy
Conservation and Green Building Development; Ministry of Housing and Urban–Rural Development of PRC:
Beijing, China, 2017.

13. Hamdy, M.; Hasan, A.; Kai, S. Applying a multi-objective optimization approach for Design of low-emission
cost-effective dwellings. Build. Environ. 2011, 46, 109–123. [CrossRef]

14. Wang, L.; Gwilliam, J.; Jones, P. Case study of zero energy house design in UK. Energy Build. 2009, 41,
1215–1222. [CrossRef]

15. Lai, C.M.; Wang, Y.H. Energy-Saving Potential of Building Envelope Designs in Residential Houses in Taiwan.
Energies 2011, 4, 2061–2076. [CrossRef]

16. Setiawan, A.F.; Huang, T.-L.; Tzeng, C.-T.; Lai, C.-m. The Effects of Envelope Design Alternatives on the
Energy Consumption of Residential Houses in Indonesia. Energies 2015, 8, 2788–2802. [CrossRef]

17. Çay, Y.; Gürel, A.E. Determination of optimum insulation thickness, energy savings, and environmental
impact for different climatic regions of Turkey. Curr. Eye Res. 2013, 38, 729–735. [CrossRef]

18. Skarning, G.C.J.; Hviid, C.A.; Svendsen, S. Roadmap for Improving Roof and Façade Windows in Nearly
Zero-Energy Houses in Europe. Energy Build. 2016, 116, 602–613. [CrossRef]

19. Monge Barrio, A.; Sánchez Ostiz, A. Energy efficiency and thermal behaviour of attached sunspaces, in the
residential architecture in Spain, Summer Conditions. Energy Build. 2015, 108, 244–256. [CrossRef]

20. Jermyn, D.; Richman, R. A Process for Developing Deep Energy Retrofit Strategies for Single-Family Housing
Typologies: Three Toronto Case Studies. Energy Build. 2016, 116, 522–534. [CrossRef]

21. ECGB Editorial Department. Regional Green Building in the Background of Urban-Rural Integration:
Interview with Academician Liu Jiaping, Professor of College of Architecture, Xi’an University of Architecture
& Technology. Eco-city Green Build. 2014, 1, 16–17.

22. Zhu, X.; Liu, J.; Yang, L.; Hu, R. Energy performance of a new Yaodong dwelling, in the Loess Plateau of
China. Energy Build. 2014, 70, 159–166. [CrossRef]

23. Yang, W.; Gao, Q.; Xu, B.; Yin, S.S. Inheriting and Updating the Technology of Low Energy Consumption
Used in Waterside Vernacular Dwellings in the Lower Yangtze Basin. Archit. J. 2015, 1, 66–69.

24. Yang, W.; Xu, B.; Chang, L. Research on the Ecological Design Strategy of Rural Housing in Qinghai. Eco-city
Green Build. 2015, 1, 112–119.

25. Zhou, T.; Liu, H. A Study on the Application of Low-tech Energy-saving Strategies in the New Rural
Residence in Sichuan Province-Exampled by the Residential Design of the No.2 Settlements in Nanlin Village,
Xiwai Township, Guanghan City. Hum. Settl. Forum West China 2014, 3, 32–37.

26. He, Q.; Gao, H.Q.; Liu, D.L.; Zhu, X.R. Study on Energy Saving Optimization of Traditional Houses in Lhasa.
Archit. Cult. 2019, 180, 243–245.

27. Hao, S.M.; Song, Y.H.; Li, J.J.; Zhu, N. Field Study on Indoor Thermal and Luminous Environment in Winter
of Vernacular Houses in Northern Hebei Province of China. J. Harbin Inst. Tech. 2014, 21, 77–83.

28. Sun, H.; Leng, M. Analysis on building energy performance of Tibetan traditional dwelling in cold rural area
of Gannan. Energy Build. 2015, 96, 251–260. [CrossRef]

29. Liu, S.; Huang, C. Analysis of the Thermal Environment and Energy-Saving Retrofitting of a Traditional
Dwelling in Western Hunan. Build. Sci. 2016, 6, 27–32, 38.

30. Xu, G.; Jin, H.; Kang, J. Experimental Study on the Indoor Thermo-Hygrometric Conditions of the Mongolian
Yurt. Sustainability 2019, 11, 687. [CrossRef]

31. Li, G.; Feng, G.; Wang, L.; Wang, Q. Energy consumption simulation and analysis on energy saving
reconstruction of rural house in China extreme cold areas. J. Shenyang Jianzhu Univ. 2012, 28, 884–890.

http://dx.doi.org/10.1016/j.buildenv.2010.07.006
http://dx.doi.org/10.1016/j.enbuild.2009.07.001
http://dx.doi.org/10.3390/en4112061
http://dx.doi.org/10.3390/en8042788
http://dx.doi.org/10.1002/ep.11621
http://dx.doi.org/10.1016/j.enbuild.2016.01.038
http://dx.doi.org/10.1016/j.enbuild.2015.09.037
http://dx.doi.org/10.1016/j.enbuild.2016.01.022
http://dx.doi.org/10.1016/j.enbuild.2013.11.050
http://dx.doi.org/10.1016/j.enbuild.2015.03.035
http://dx.doi.org/10.3390/su11030687


Sustainability 2020, 12, 1103 33 of 34

32. Zhang, X.Y.; Jin, H. Strategies of function improvement on existing rural housing in severe cold and cold
regions. J. Harbin Inst. Tech. 2011, 18, 117–121.

33. Jin, H.; Ling, W. Low Energy Consumption, Low-tech and Low Cost: Study on the Design for Rural
Energy-saving Housing in Cold Region. Archit. J. 2010, 8, 14–16.

34. Cao, B.; Zhu, Y.; Ouyang, Q.; Zhou, X.; Huang, L. Field study of human thermal comfort and thermal
adaptability during winter in Beijing. Heat. Vent. Air Cond. 2010, 40, 98–101. [CrossRef]

35. Zhu, Y.; Liu, J. Research on the Indoor Thermal Environment of Rural Architecture in Winter in Northwestern
Areas. China Civ. Eng. J. 2010, 43, 400–403.

36. Yang, L.; Yang, Q.; Yan, H.-Y.; Liu, J.-P. Field study on thermal comfort of rural houses in winter in a the
Guanzhong region, Shaanxi Province. J. Xi’an Univ. Archit. Tech. 2011, 43, 551–556.

37. Wang, Z.; Sheng, X.; Ren, J.; Ji, Y. Field survey on indoor thermal comfort in rural houses around Harbin in
winter. Heat. Vent. Air Cond. 2014, 12, 71–75.

38. Ministry of Housing and Urban-Rural Development of China. Code for Thermal Design of Civil Building
(GB 50176-2016); China Building Industry Press: Beijing, China, 2016.

39. China Meteorological Information Center, Building Science and Technology Department of Tsinghua
University. Chinese Building Thermal Environment Analysis of Specialized Meteorological Data Collection; Chinese
Architecture Industry Press: Beijing, China, 2005.

40. ISO 7726. Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities; International
Standard: Geneva, Switzerland, 1998.

41. Liu, Z.M.; Jin, Y.M.; Jin, H. The Effects of Different Space Forms in Residential Areas on Outdoor Thermal
Comfort in Severe Cold Regions of China. Int. J. Environ. Res. Public Health 2019, 16, 3960. [CrossRef]
[PubMed]

42. ASHRAE 55. Thermal Environmental Condition for Human Occupancy; American Society of Heating,
Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2013.

43. Gagge, A.P. An Effective Temperature Scale Based on a Simple Model of Human Physiological Regulatory
Response. ASHRAE Trans. 1972, 77, 21–36.

44. Gagge, A.P.; Fobelets, A.P.; Berglund, L.G. A standard predictive index of human response to the thermal
environment. ASHRAE Trans. 1986, 92, 709–731.

45. De Dear, R.; Brager, G.S. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard
55. Energy Build. 2002, 34, 549–561. [CrossRef]

46. Fanger, P.O. Thermal Comfort; Robert E krieger Publish Company: New York, NY, USA, 1982.
47. De Dear, R. Thermal comfort in practice. Indoor Air 2004, 14, 32–39. [CrossRef]
48. ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests—DesignBuilder

Version 1.2.0. Available online: https://www.batisim.net/images/stories/cetteg/ansi_ashrae.pdf (accessed on
28 January 2020).

49. Rahman, M.M.; Rasul, M.G.; Khan, M.M.K. Energy conservation measures in an institutional building in
sub-tropical climate in Australia. Appl. Energy 2010, 87, 2994–3004. [CrossRef]

50. Liang, X.; Wang, Y.; Zhang, Y.; Jiang, J.; Chen, H.; Zhang, X.; Guo, H.; Roskilly, T. Analysis and Optimization
on Energy Performance of a Rural House in Northern China Using Passive Retrofitting. Energy Procedia 2017,
105, 3023–3030. [CrossRef]

51. Cho, H.M.; Park, J.H.; Wi, S.; Chang, S.J.; Yun, G.Y.; Kim, S. Energy retrofit analysis of cross-laminated
timber residential buildings in Seoul, Korea: Insights from a case study of packages. Energy Build. 2019, 202.
[CrossRef]

52. Zhang, G.; Zhang, Q.; Wang, F.; Wang, Q.; Liang, R. Study on Influencing Factors of Energy Consumption in
Traditional Rural Dwellings of Kangding Prefecture Based on DesignBuilder. Build. Sci. 2019, 35, 108–115.

53. Jin, H.; Shao, T. Optimal Design of Energy Saving for Rural Housing of Severe Cold Regions. Archit. J. 2015,
S1, 218–220.

54. Nguyen, A.T.; Reiter, S. Passive designs and strategies for low-cost housing using simulation-based
optimization and different thermal comfort criteria. J. Build. Perform. Simul. 2014, 7, 68–81. [CrossRef]

55. Nguyen, A.T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building
performance analysis. Appl. Energy 2014, 113, 1043–1058. [CrossRef]

56. Bre, F.; Roman, N.; Fachinotti, V.D. An efficient metamodel-based method to carry out multi-objective
building performance optimizations. Energy Build. 2020, 206. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2010.09.025
http://dx.doi.org/10.3390/ijerph16203960
http://www.ncbi.nlm.nih.gov/pubmed/31627399
http://dx.doi.org/10.1016/S0378-7788(02)00005-1
http://dx.doi.org/10.1111/j.1600-0668.2004.00270.x
https://www.batisim.net/images/stories/cetteg/ansi_ashrae.pdf
http://dx.doi.org/10.1016/j.apenergy.2010.04.005
http://dx.doi.org/10.1016/j.egypro.2017.03.618
http://dx.doi.org/10.1016/j.enbuild.2019.07.046
http://dx.doi.org/10.1080/19401493.2013.770067
http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1016/j.enbuild.2019.109576


Sustainability 2020, 12, 1103 34 of 34

57. Zhao, X. Experimental Design Methods; China Science Press: Beijing, China, 2010.
58. Zhang, W.; Wu, J.; Wei, Y.; Wei, Y. Analysis on affecting factors of building cooling load by orthogonal

experiment method. Heat. Vent. Air Cond. 2006, 36, 77–80.
59. Wang, S.; Li, Y.; Zhang, Y. Comparison of the concrete orthogonal experimental results in method of range

analysis and variance analysis. Dev. Guide Build. Mater. 2016, 14, 44–48. [CrossRef]
60. China Academy of Building Research. Design Standard for Energy Efficiency of Rural Residential Buildings

(GB/T50824-2013); Chinese Architecture Industry Press: Beijing, China, 2012.
61. Chongqing University. Evaluation Standard for Indoor Thermal Environment in Civil Buildings (GB/T 50785-2012);

Chinese Architecture Industry Press: Beijing, China, 2012.
62. Wang, Z.; Fang, X.; Lian, L. Field experiments on occupant thermal comfort in Harbin. J. Harbin Inst. Tech.

2002, 34, 500–504.
63. Lan, B.; Huang, L. Query on Relationship Between Shape Coefficient of Building and Energy Efficiency.

Constr. Conserves Energy 2013, 5, 65–70.
64. Zhao, H.; Jin, H. Research on the local optimum eco-technologies of rural housing in the chill region of China.

J. Harbin Inst. Tech. 2007, 39, 235–237, 291.
65. Sun, S.; Yu, Y.; Chen, Q. Energy saving on ground floor of building. J. Harbin Inst. Tech. 2003, 35, 573–575, 580.
66. Harbin Institute of Technology. Design Standard for Energy Efficiency of Rural Residential Buildings in Heilongjiang

Province (DB 23/T 1537–2013); Department of Housing and Urban-Rural Development of Heilongjiang:
Harbin, China, 2013.

67. Hasan, A.; Mika Vuolle, M.; Kai, S. Minimization of life cycle cost of detached house using combined
simulation and optimization. Build. Environ. 2008, 43, 2022–2034. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.conbuildmat.2015.12.164
http://dx.doi.org/10.1016/j.buildenv.2007.12.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Description of Zhalantun Climate and Local Rural Dwellings 
	Measurement of Indoor Thermal Environment 
	Investigation of Indoor Thermal Comfort 
	Simulation of Energy Consumption 
	Orthogonal Experimental Design 
	Basic Principle 
	Schematic Design 
	Data Analysis 


	Results and Discussion 
	Analysis of Testing Results 
	Threshold Value of Thermal Comfort Temperature 
	Characteristics of Respondents and Indoor Environment 
	Thermal Environment Evaluation 
	Neutral Temperature and Acceptable Temperature Range 

	Analysis of Simulation Results 
	Effect of a Single Factor on Energy Consumption 
	Comprehensive Optimization for Energy Saving 

	Economic Evaluation 

	Conclusions 
	
	References

