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Abstract: Studying the dynamic changes of extreme temperatures and associated large-scale
atmospheric circulation is important for predicting the occurrence of extreme temperatures and
reducing their adverse impact and damage. Based on the surface temperature data sets collected
from 87 weather stations over the arid region of Northwest China (ARNC) during 1960–2017, the
Sen’s slope estimator, Mann–Kendall test, Cumulative anomaly, Moving t-test, and Synthetic analysis
methods were used to analyze the spatiotemporal dynamics and breaking-point change characteristics
of extreme temperatures, and to discuss its associated large-scale atmospheric circulation. The results
revealed that at the temporal scale, summer days (SU25), warm days (TX90p), warm nights (TN90p),
and warm spell duration indicator (WSDI) showed a remarkable increasing trend at the rates of
2.27, 1.49, 3, and 2.28 days/decade, respectively. The frost days (FD), cold days (TX10p), cold nights
(TN10p), and cold spell duration indicator (CSDI) significantly decreased at the rates of −3.71, −0.86,
−1.77, and −0.76 days/decade, respectively, during the study period. Spatially, the warming trend
in the study area is very obvious as a whole, despite pronounced spatial differences in warming
rate. After the breakpoint years, the frequency and probability distribution for extreme warm and
cold indices were all inclined to the hotter part of the density distribution. This indicates that the
climate over the study region shifted sharply and tended to be warmer. The analysis of large-scale
atmospheric circulation indicates that the warming trend in the arid region of Northwest China
(ARNC) is positively correlated with geopotential height at 500 hPa and negatively correlated with
total cloudiness. The findings from this study have important implications for forecasting extreme
temperature events and mitigating the impacts of climatological disasters in this region.

Keywords: extreme temperature events; climate change; atmospheric circulation; arid area

1. Introduction

In recent decades, the frequent occurrence of extreme weather events such as heatwaves, cold
surges, droughts, floods, and snowstorms has caused considerable casualties and immeasurable
economic losses, which have received great attention worldwide [1–4]. According to the estimation by
the relevant departments of the United Nations, weather-related disasters account for 90% of the major
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disasters worldwide, and the number of people affected by extreme climate disasters in the world is
4.1 billion. This figure is seven times as many as those affected by wars and conflicts, resulting in
property losses of about $100 billion every year globally, only in the 21 years from 1995 to 2015 [5].
Since entering the 21st century, a series of extreme temperature events that have occurred worldwide
have caused a large number of casualties. For example, the heat wave in Europe in 2003 caused
more than 70,000 deaths [6,7]. In the summer of 2010, a heat wave in Russia resulted in nearly 56,000
deaths [8]. A record-breaking cold temperature event led to 790 additional deaths in 2006 in Europe [8].
Meanwhile, extreme temperatures and their changes have been confirmed to affect the rice yield in
southern China [9], land use management and planning [10], soil and vegetation processes [11–13],
regional hydrologic cycle and drought [14,15], sustainable development of the city [16], extreme air
pollution events in the United States [17], environmental degradation [18,19], and human health [20,21].
Changes in extreme temperature affect the water cycle and hydrological process by changing the
interaction and evaporation between the land and atmosphere, which in turn influences the spatial
distribution of water resources. This means that better understanding the extreme temperature events
is not only an important scientific issue in the field of climate change research, but also an urgent
requirement for the sustainable development of the natural ecosystem, society, and economy [22,23].

Extreme temperature is one of the most important indicators for the study of climate change. It
has been researched on national, regional, and global scales in recent years, including in Russia [24],
Canada [25], the Middle East [26], Europe [27], southern and western Africa [28], India [29,30], as well as
on a global scale [31–34]. These studies concluded that the extreme temperatures showed a pronounced
increasing tendency in intensity and frequency in the past few decades [35,36]. This warming trend
was closely correlated with global warming, especially for extreme cold indices related to daily
minimum temperature [37–39]. Like other regions of the world, China has experienced significant
temperature changes in recent decades. Liu et al. [40] suggested that the daily maximum and minimum
temperatures in China have increased at rates of 0.13 and 0.32 ◦C/decade during 1955–2000, respectively,
and the increasing is most pronounced in northeast China and least in the southwest. You et al. [41]
analyzed the characteristics of extreme temperature indices at 303 meteorological stations in China from
1961–2013 and found that the cold/warm nights are larger than cold/warm days in trend magnitudes.
The trends in extreme indices derived from daily minimum temperature are more rapid than those
derived from daily maximum temperature. Shi et al. [42] found significant spatial differences in
decreasing magnitudes of cold extremes and increasing magnitudes of warm extremes throughout
China from 1961–2015. All cold extremes were correlated with Atlantic multidecadal oscillation (AMO)
and Arctic oscillation (AO), and all warm extremes had a teleconnection with AMO and dipole mode
index (DMI). Besides, many researchers have studied extreme climate changes in Inner Mongolia [43],
Songhua River Basin [36], Loess Plateau [44,45], northeastern China [46], Hengduan Mountains [47],
and Poyang Lake Basin [38]. These research results generally indicated that the extreme warm indices
related to high temperatures, including summer days (SU25), warm days (TX90p), and warm nights
(TN90p) increased, while extreme cold indices related to low temperatures such as frost days (FD),
cold days (TX10p), and cold nights (TN10p) decreased. In addition, the decrease of extreme low
temperature in frequency and intensity and the significant increase in daily lowest temperature were
closely associated with regional and global warming, and the increase in night temperature was more
obvious than that of daytime.

The arid region of Northwest China is located in the center of the Eurasia continent, and is also the
transition zone between westerly circulation and monsoon [48,49]. It is one of the most sensitive areas
to climate change in the world due to vast desert basin, high mountains, and being far away from the
ocean [49]. The climate is extremely dry and the ecological environment is very fragile. The main land
use/cover types are desert, wilderness, and grassland [50]. Although the land area in the study region
is large, the land area worthy for humans to transform and utilize is very small. The effect of land-use
changes across the whole region on extreme temperatures is negligible. So, scholars are concerned
more about the climate change itself in the arid region of Northwest China (ARNC). In recent years,



Sustainability 2020, 12, 1198 3 of 19

global warming has exacerbated the deterioration of the ecological environment, and the extreme
weather events have occurred frequently [51,52]. Zhang et al. [53] studied the precipitation extremes
in Xinjiang from 1957–2009 and found the precipitation extremes exhibiting a wetting tendency after
1980, and this tendency is more obvious in the north than in the south. Wang et al. [54] analyzed the
climate extremes at 59 meteorological stations in the arid region of Northwest China over the period
1960–2003. They found that there are significant negative correlations between warm extreme trends
and mean temperature. All temperature extremes show a warming trend and most precipitation indices
present increasing trends across the region. At present, previous researches on climate change in the
ARNC mostly focus on the variations in frequency, intensity and magnitude of extreme precipitations,
and preliminary analysis in spatiotemporal characteristics of annual mean temperature and extreme
temperature indices [48,55,56]. Few researches were conducted to explore the dynamic variations
of extreme temperature events and to discuss its associated large-scale atmospheric circulation with
long-term periods, so further discussion was needed.

The objectives of this study were to (1) present the spatiotemporal dynamics of extreme
temperatures over the ARNC in the past 58 years; (2) detect and verify the breakpoint year, ensuring
its high reliability by various methods; (3) analyze the extreme temperature changes and associated
large-scale atmospheric circulation.

2. Data and Methodology

2.1. Study Area

The arid region of Northwest China (ARNC) is located in the central hinterland of the Eurasian
continent and covers an area of approximately 2.53 million km2 (34.4~49.2◦ N and 73.5~107.2◦ E;
Figure 1). Its total area occupies 26.4% of China. It mainly includes Xinjiang Uygur Autonomous
Region, the southwestern part of the Alashan Plateau, and the northern part of the Qilian Mountains.
Bounded by the Tianshan Mountains, the southern region is called southern Xinjiang, and the northern
region is called northern Xinjiang. The Hexi-Alashan region includes the Hexi Corridor, the southwest
of Alashan Plateau, and the north of Qilian Mountains. The main deserts from the west to the east are
the Taklimakan Desert, Gurbantunggut Desert, Kumtag Desert, and Badain Jaran Desert, with a total
area about 330,000, 48,800, 22,000, and 49,200 km2, respectively. The climates in widespread desert
regions are characterized as arid.
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The research area is far away from the oceans, with complex terrain. It is difficult for moist airflow
to penetrate into this region and the prevailing inland climate is dominated by drought. The winter in
the study area is mainly controlled by the cold high pressure of Mongolia–Siberia, resulting in low
temperatures in winter. In summer, the surface of the earth heats up rapidly after strongly absorbing
solar radiation, resulting in high temperatures. The spring and autumn seasons are often affected by
cold air, causing the heat and cold conditions to change. In addition, the temperature in this region is
significantly affected by the rugged topography, and the climate in the ARNC is very complex.

2.2. Data

The temperature data from 87 meteorological stations (Appendix A; Figure 1) in the ARNC
from 1960–2017 were obtained from the National Meteorological Information Center of the China
Meteorological Administration (http://cdc.cma.gov.cn). The temperature time series for which the
data gap was more than 15 days of every year or with incomplete data were excluded. When the data
gap was less than 15 days of every year, interpolation was performed by average temperature from
two or more nearby meteorological stations [57]. Then, we used the RclimDex software package to
control the quality of data, including: (1) checking errors in the temperature data, such as Tmax <

Tmin; (2) finding out the outlier value that the temperature data exceeds 3 times the standard deviation
of the recorded value, that is, the value deviates seriously from the actual meteorological condition
of the site. The reasonable data were retained by manual visual inspection and compared with the
records of adjacent stations. The unreasonable data were processed according to the missing values.
Finally, 87 meteorological stations over the ARNC from 1960–2017 were selected and all stations
passed the homogeneity check. The homogeneity test recommended by the World Meteorological
Organization (WMO) was used to examine the data quality control and check unavoidable errors
in data acquisition and processing due to observation methods, measuring instruments, external
environment, and other factors [44,58]. This test has been widely used in the fields of meteorology and
hydrology. The NCEP–NCAR reanalysis data (http://www.cdc.noaa.gorv/), including monthly mean
geopotential height at 500 hPa and total cloudiness data with a spatial resolution of 2.5 × 2.5◦ during
1960–2017, were selected to analyze the changes in atmospheric circulation.

2.3. Methods

Extreme temperature indices recommended by the Expert Team on Climate Change Detection
and Indices (ETCCDI) have been widely used to study the extreme climate changes worldwide [59–61].
In this study, eight temperature extreme indices were selected to study the extreme temperature
changes in the ARNC (Table 1). These indices can better reflect the different characteristics of
cold and warm extremes and can be also divided into three categories: (1) absolute-based indices,
including summer days and frost days, are the number of days with a temperature value above or
below a fixed threshold; (2) percentile-based indices, including cold days, cold nights, warm days,
and warm nights, are defined as the number of days on which the daily minimum or maximum
temperature value exceeds the 10% and 90% percentile thresholds of the whole time series; (3)
consecutive day temperature indices represent the duration of excessive cold or warm. The period for
the percentiles was 1960–2017 and all of the indices were calculated at each station on an annual basis.
We used the RClimDex 1.1 software to calculate extreme temperatures, and the software is available at
http://etccdi.pacifcclimate.org/software.shtml. Detailed methods for calculating these indices can be
obtained at the website http://etccdi.pacificclimate.org/list_27_indices.shtml, as well as in previous
research [43,58].

http://cdc.cma.gov.cn
http://www.cdc.noaa.gorv/
http://etccdi.pacifcclimate.org/software.shtml
http://etccdi.pacificclimate.org/list_27_indices.shtml
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Table 1. Definition of extreme temperature indices selected in this study (unit: day).

Categories Indices Indicator Name Definitions

Warm indices

SU25 Summer days Annual count when Tmax > 25 ◦C
TX90p Warm days Number of days when Tmax > 90th percentile
TN90p Warm nights Number of days when Tmin > 90th percentile

WSDI Warm spell duration
indicator

Annual count of days with at least 6 consecutive
days when Tmax > 90th percentile

Cold indices

FD Frost days Annual count when Tmin < 0 ◦C
TX10p Cold days Number of days when Tmax < 10th percentile
TN10p Cold nights Number of days when Tmin < 10th percentile

CSDI Cold spell duration
indicator

Annual count of days with at least 6 consecutive
days when Tmin < 10th percentile

Tmax: daily maximum temperature; Tmin: daily minimum temperature.

The non-parametric Mann–Kendall (M–K) trend test and Sen’s slope estimator test were employed
to quantify and detect the trend in annual series of extreme temperature indices [62–64]. We used the
Z value from the result of Mann–Kendall trend test to analyze the trend variation. The annual series
show an upward trend when Z > 0, while indicating a downward trend when Z < 0. The absolute
value of Z determines whether the trend of the annual series is significant. The trend is significant at
0.05 significance level when |Z| > 1.96, while the trend is significant at 0.01 significance level when
|Z| > 2.58. Breaking-point change in climate is one of the most important phenomena prevailing in
the climate system. It refers to the climate change from warm (arid) state to cold (wet) state, or vice
versa [65]. It can also be expressed as a climate change from one statistical characteristic jumping into
another statistical characteristic. In this paper, the Mann–Kendall test, Cumulative sum chart anomaly
test, and Moving t-test were adopted to detect the breakpoint year of extreme temperature events in
the ARNC to ensure its credibility.

3. Results

3.1. Temporal Trends of Extreme Temperature Indices

3.1.1. Extreme Warm Indices: SU25, TX90p, TN90p, and Warm Spell Duration Indicator (WSDI)

The trends of extreme warm indices for SU25, TX90p, TN90p, and WSDI exhibited significant
increasing trends (p < 0.01) from 1960 to 2017 at the rates of 2.27, 1.49, 3, and 2.28 days/decade,
respectively (Figure 2). From the curve of 9-year smoothing averages reflecting the interdecadal
variation, extreme warm indices for SU25, TX90p, TN90p, and WSDI did not significantly change during
the 1960s–1990s, and from then increased rapidly, and the average after the 1990s was significantly
larger than that of the 1960s–1990s. For SU25 (Figure 2a), the maximum annual average was 110.5
days during 2001–2017 and the minimum decadal average was 100.9 days during 1970–1980. TX90p
(Figure 2b) increased quickly after 1990, with a maximum annual average of 16.53 days during
2001–2017 and a lower decadal average of 10.1 days during 1980–1990. The largest value of TX90p was
32.33 days at Yinchuan meteorological station (1110.9 m above sea level) of Ningxia province in 2013.
For TN90p (Figure 2c), there was a slow increasing trend generally from 1960 to 2000 and a sharply
increasing trend after 2000, with a maximum annual average of 21.9 days during 2001–2017 and a
lower decadal average of 9.1 days in the 1960s. The largest value of TN90p was 66.9 days at Turpan
meteorological station (34.5 m.a.s.l) of Xinjiang province in 2017. WSDI (Figure 2d) had no obvious
change during 1960–1995, and then increased rapidly, with a maximum annual average of 13.5 days
during 2001–2017 and a minimum decadal average of 3.6 days found in the 1980s. The largest value of
WSDI was 76 days at Maigaiti meteorological station (1178.2 m.a.s.l) of Xinjiang province in 2007.
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3.1.2. Extreme Cold Indices: FD, TX10p, TN10p, and Cold Spell Duration Indicator (CSDI)

The trends of extreme cold indices for FD, TX10p, TN10p, and CSDI exhibited significant
decreasing trends (p < 0.01) from 1960 to 2017 at the rates of −3.71, −0.86, −1.77, and −0.76 days/decade,
respectively. In the curve of 9-year smoothing averages, extreme cold indices for FD, TX10p, TN10p,
and CSDI had a decreased trend in fluctuation after the 1970s. FD (Figure 3a) showed a decreasing
trend since 1960 and then decreased rapidly after 1996, with a maximum decadal average of 170.3 days
in the 1960s and a minimum annual average of 154 days during 2001–2017. The largest value of FD
was 323 days and occurred at Tuergate station (3504 m.a.s.l) of Xinjiang in 1965. TX10p (Figure 3b)
increased in fluctuation firstly during 1961–1970, and then continued to decline significantly, with a
maximum decadal average of 11.1 days in the 1960s and a lower annual average of 7.5 days during
2001–2017. The maximum value of TX10p was 40.3 days at Fuyun meteorological station (807.5 m.a.s.l)
of Xinjiang in 1960. TN10p (Figure 3c) showed a decreasing trend generally from 1960 to 2017, and the
decreasing trend was very clear after the 1970s, with a maximum decadal average of 12.7 days in the
1960s and a minimum annual average of 4.7 days during 2001–2017. The largest value of TN10p was
29.2 days, and occurred at Fuyun station (807.5 m.a.s.l) of Xinjiang province in 1961. CSDI (Figure 3d)
had a fluctuating downward trend as a whole on the curve of 9-year smoothing averages between 1960
and 2017, with a maximum decadal average of 5.7 days in the 1960s and a minimum decadal average
of 1.8 days in the 1990s. The largest value of CSDI was 59 days at Turpan meteorological station (34.5
m.a.s.l) of Xinjiang in 1960.
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3.2. Spatial Trends of Extreme Temperature Indices

3.2.1. Temperature Indices Based on Absolute Threshold: FD, SU25

Figure 4 is the spatial distribution of the average and trend for FD and SU25; the FD in Southern
Xinjiang, Northern Xinjiang, and Hexi-Alasha region were about 140, 160, and 170 days, respectively,
and in some mountain areas with high elevation could reach 230–250 days. To some extent, the
warming trend of the desert area in Southern Xinjiang was more obvious compared with other areas.
The trend of FD in Southern Xinjiang, Northern Xinjiang, and Hexi-Alasha area were −3.48, −3.89,
and −3.87 days/decade, respectively (Figure 4c). For FD, 98.9% (86 stations) of stations showed robust
decreasing trends, and nearly 94.3% (82 stations) of them showed a significant decreasing trend (p <

0.05) over the study region from 1960 to 2017 (Table 2).



Sustainability 2020, 12, 1198 8 of 19

Sustainability 2020, 12, x FOR PEER REVIEW 8 of 20 

Table 2. The number of stations with variation trends for selected temperature indices in 
the ARNC. 

Indices 
Increasing Trend Decreasing Trend Stationary Trend 

Total S Non-S Total S Non-S Total 
SU25 83 69 14 3 2 1 1 

TX90p 86 81 5 1 0 1 0 
TN90p 86 85 1 1 1 0 0 
WSDI 85 67 18 2 0 2 0 

FD 1 1 0 86 82 4 0 
TX10p 1 1 0 86 77 9 0 
TN10p 1 1 0 85 82 3 1 
CSDI 7 0 7 80 18 62 0 

S: Trend is significant at the 0.05 level of significance; Non-S: Trend is not significant at the 0.05 level 
of significance. 

 
Figure 4. Spatial distribution of average and trend for (a,c) frost days and (b,d) summer days based 
on absolute threshold indices during 1960–2017 in the ARNC. (The solid dots of different colors reflect 
average changes for many years. The upward and downward triangles represent the increase trend 
and the decrease trend, respectively. The size of triangles indicates the magnitudes of decadal 
variations. Solid and hollow triangles represent statistically significant and insignificant at the 0.05 
significance level, respectively. These notations also apply to Figures 5–7.) 

3.2.2. Temperature Indices Based on Percentile Threshold: TX10p, TN10p, TX90p, and TN90p 

In Figure 5a, the averages of TX10p were less than 9 days in very few areas, and most other 
regions were more than 9 days. The trend for TX10p was −0.86 days/decade over the whole region. 
The average trend in Southern Xinjiang, Northern Xinjiang, and Hexi-Alasha was −0.83, −0.86 and 
−0.92 days/decade, respectively. Moreover, the results of the M–K test showed that 98.9% (86 stations) 
of total stations for TX10p displayed decreasing trend, out of which 88.5% (77 stations) of stations 
exhibited significant decreasing trends (p < 0.05). 

The mean TN10p in most areas was more than 6 days (Figure 5b). The average TN10p in the 
southwestern and Eastern parts of Southern Xinjiang were 6–8 days, approximately. The average 
number of cold nights in Northern Xinjiang, central and Eastern parts of Southern Xinjiang, and 

Figure 4. Spatial distribution of average and trend for (a,c) frost days and (b,d) summer days based on
absolute threshold indices during 1960–2017 in the ARNC. (The solid dots of different colors reflect
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Table 2. The number of stations with variation trends for selected temperature indices in the ARNC.

Indices
Increasing Trend Decreasing Trend Stationary

Trend

Total S Non-S Total S Non-S Total

SU25 83 69 14 3 2 1 1
TX90p 86 81 5 1 0 1 0
TN90p 86 85 1 1 1 0 0
WSDI 85 67 18 2 0 2 0

FD 1 1 0 86 82 4 0
TX10p 1 1 0 86 77 9 0
TN10p 1 1 0 85 82 3 1
CSDI 7 0 7 80 18 62 0

S: Trend is significant at the 0.05 level of significance; Non-S: Trend is not significant at the 0.05 level of significance.

SU25 were as high as 140 days in Southern Xinjiang. The SU25 in Northern Xinjiang and
Hexi-Alasha region were about 100 days. The SU25 in the northern mountains of Tianshan, Altai
and Qilian Mountains were generally less than 60 days. The trend of SU25 was more obvious in
Hexi-Alasha region (2.51 days/decade), followed by Southern Xinjiang (2.32 days/decade) and Northern
Xinjiang (1.93 days/decade) (Figure 4d). In general, for SU25, nearly 95.4% (83 stations) of the total
stations exhibited an increasing trend in study region (Table 2), and 79.3% (69 stations) of them showed
a significant increasing trend (p < 0.05).
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In summary, the spatial distribution of the mean for FD was roughly opposite to that of SU25.
The high value area of the average for FD corresponded to the low value area of the average for SU25,
and vice versa. In terms of climate trend, although there existed a significant spatial difference over the
whole region, the magnitude of decreasing FD was much larger than that of SU25. It revealed that the
warming trend was pronounced in the ARNC from 1960 to 2017.

3.2.2. Temperature Indices Based on Percentile Threshold: TX10p, TN10p, TX90p, and TN90p

In Figure 5a, the averages of TX10p were less than 9 days in very few areas, and most other
regions were more than 9 days. The trend for TX10p was −0.86 days/decade over the whole region.
The average trend in Southern Xinjiang, Northern Xinjiang, and Hexi-Alasha was −0.83, −0.86 and
−0.92 days/decade, respectively. Moreover, the results of the M–K test showed that 98.9% (86 stations)
of total stations for TX10p displayed decreasing trend, out of which 88.5% (77 stations) of stations
exhibited significant decreasing trends (p < 0.05).

The mean TN10p in most areas was more than 6 days (Figure 5b). The average TN10p in the
southwestern and Eastern parts of Southern Xinjiang were 6–8 days, approximately. The average
number of cold nights in Northern Xinjiang, central and Eastern parts of Southern Xinjiang, and Western
parts of Hexi-Alasha was about 8–10 days. The decreasing trend of TN10p was −1.77 days/decade
as a whole. The trend in Southern Xinjiang, Northern Xinjiang, and Hexi-Alasha region was −1.73,
−1.92, and −1.7 days/decade, respectively. According to the M–K test results, 97.7% (85 stations) of
total stations for TN10p exhibited decreasing trend, of which 94.3% (82 stations) stations showed a
significant decreasing trend (p < 0.05).
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The average of TX90p in the ARNC was more than 11 days (Figure 6a). It was obviously larger
than the average of TX10p. The mean of TX90p in the southeastern part of Southern Xinjiang and
Hexi-Alasha was more than 13 days, and of the central part of Northern Xinjiang was around 11–12
days for the average TX90p. The trend for the whole region was 1.49 days/decade. The trend of TX90p
was more obvious in Hexi-Alasha region (1.84 days/decade), followed by Southern Xinjiang (1.53
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days/decade) and Northern Xinjiang (1.01 days/decade). The M–K test result shows that 93.1% (81
stations) of stations for TX90p exhibited an obvious positive trend (p < 0.05).

The mean TN90p in most regions was 12–16 days (Figure 6b) and it was higher than the average of
TN10p. The trend of TN90p increased significantly across the study region at the rate of 3 days/decade.
The trend of TN90p was more obvious in Southern Xinjiang (3.17 days/decade), followed by Hexi-Alasha
(3 days/decade) and Northern Xinjiang (2.71 days/decade). TN90p exhibited an increasing trend in
almost all of the study region, accounting for 97.7% (85 stations) of stations that exhibited significant
increasing trends at the 0.05 significance level.Sustainability 2020, 12, x FOR PEER REVIEW 10 of 20 
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Overall, TX10p and TN10p were dominated by an evident downward trend, and the TN10p
decreased more significant. TX90p and TN90p experienced a notable increasing trend, and the TN90p
increased more significant. The magnitude for TX90p and TN90p was much larger than TX10p and
TN10p in climate trend, and the warming trend at night was larger than that during the day. The results
above show that the warming trend in the ARNC was significant from 1960 to 2017.

3.2.3. Consecutive Day Temperature Indices: CSDI, and WSDI

The spatial distribution of average and trend for CSDI and WSDI is shown in Figure 7. The average
of CSDI in a few areas of Tianshan Mountains was 6 days. The mean of CSDI in Southern and Northern
Xinjiang was 3–5 days and the Hexi-Alasha region was about 2 days. The trend of CSDI was
−0.76 days/decade over the whole region. The trends in Southern Xinjiang, Northern Xinjiang, and
Hexi-Alasha region were −0.77, −1.1, and −0.44 days/decade, respectively. For CSDI, nearly 92% (80
stations) of total stations showed robust decreasing trends. The average for WSDI in most areas was
more than 5 days, which was significantly higher than the average values of CSDI.
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The average of WSDI in Southern Xinjiang, Northern Xinjiang, and Hexi-Alasha region was 10, 8,
and 6 days, respectively. The trend of WSDI was 2.28 days/decade over the entire region. The trend of
WSDI was more obvious in Southern Xinjiang (3.05 days/decade), followed by Hexi-Alasha region
(2.15 days/decade) and Northern Xinjiang (1.18 days/decade). Furthermore, 97.7% (85 stations) of
the total stations for WSDI increased significantly over the study region (Table 3). According to the
M–K test results, 77% (67 stations) of total meteorological stations for WSDI exhibited a statistically
significant positive trend (p < 0.05).

Table 3. Breakpoint year of selected extreme temperature indices with different methods in the ARNC.

Indices Mann–Kendall Cumulative
Anomaly MMT Comprehensive

Results

SU25 1996 1996 1996 ** 1996
TX90p 1996 1996 1996 ** 1996
TN90p 1995 ** 1996 1996 ** 1996
WSDI 1995 1996 1996 * 1996

FD 1996 ** 1988, 1990, 1996 1996 * 1996
TX10p 1995 1995, 1996 1996 * 1996
TN10p 1990 **, 1991 ** 1987 1987 ** 1987
CSDI 1981, 1984 1988 1988 ** 1988

* denotes that the trend is significant at the 0.05 level of significance; ** denotes that the trend is significant at the
0.01 level of significance.

In summary, CSDI showed a declining trend in the study area, except for a few stations, especially
in Tianshan mountains and Northern Xinjiang. WSDI was dominated by increasing trends over the
entire region. The magnitude of climate trend for WSDI was also much larger than that of CSDI.

4. Breaking-Point Change of Extreme Temperature Indices

The breakpoint years of selected indices detected by different methods are shown in Table 3.
The breakpoint years of extreme warm indices (SU25, TX90p, TN90p, and WSDI) were all detected in
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1996. Besides, we also detected significant breaking-point changes of the extreme cold indices: FD
and TX10p in 1996; TN10p in 1987; and CSDI in 1988. These dates differ from the breaking-point
change (1986) for cold indices found by Wang [66]. The possible reason for the inconsistency in the
detection results of the breakpoint year may be that the selected extreme indices and the study period
are different. Significant and credible breakpoint years were detected in both cold and warm indices
during the study period. The cold indices decreased and the warm indices increased significantly after
the breakpoint year. This implies that climate warming is remarkable in the ARNC.

The probability and density distribution of extreme cold and warm indices before and after the
breakpoint year were also researched in this paper. For extreme cold indices, the mean values for FD,
TX10p, TN10p, and CSDI all decreased in varying degrees after the breakpoint year. The dispersion
degree of FD did not change much before and after the breakpoint year. While the dispersion degree
for TX10p, TN10p, and CSDI became significantly smaller after the breakpoint year. This indicates that
the regional warming was very significant generally for the period 1997–2017 (before the breakpoint
year) compared to 1960–1996 (after the breakpoint year) (Figure 8a–d). For extreme warm indices,
a remarkable shift can be observed before and after the breakpoint year. The average for SU25,
TX90p, TN90p, and WSDI all increased at different degrees after the breakpoint year on the whole.
The dispersion degree for SU25, TX90p, TN90p, and WSDI became larger after the breakpoint year. This
indicates that there was a significant difference in the magnitude of regional warming (Figure 8e–h). It
is clear that a small variation in the mean value can lead to an obvious change in the extreme frequency.
The average values of extreme warm indices were all inclined to the higher value, while the mean
values of extreme cold indices were all obliqued to the lower value after the breakpoint years. It means
that the warming trend of climate is significant sharply after the breakpoint year.

5. Discussion and Conclusions

The temporal characteristics for temperature extremes indicate that the extreme warm indices are
dominated by a significant increasing trend, while the extreme cold indices represent a pronounced
decreasing trend over the study region during 1960–2017. The results are consistent with previous
findings [41,42,67]. The results of spatial analysis show that the ARNC has experienced a pronounced
warming trend as a whole during the study period. Most meteorological stations observe an increasing
trend in the warm indices and a decreasing trend in the cold indices during 1960–2017. However, there
is a significant difference in the climatic tendency for the extreme warm/cold indices of meteorological
stations. The possible reason is that the study area is far away from the ocean, and the influence of
water vapor from the ocean varies from place to place due to the obstruction by high mountains around
the study area. In addition, the extremely dry climate and widespread desert have a great impact on
extreme temperatures in different regions. The decrease (increase) for extreme cold (warm) indices
illustrates that the climate change influenced by global warming is significant over the study area.
The pronounced warming trend in the extreme temperature indices in the ARNC could have potential
effects on the society and natural environment in many respects. Some effects are conductive to the
society development and environmental evolution. For instance, the warming trend may accelerate
the melting of snow and glaciers in the mountain areas, which provides more water for agriculture
irrigation, industry, and urban residents. However, excessive melting of glaciers and snow in mountain
areas may cause catastrophic flooding in the lower reaches of the river and a decrease in glacial reserves,
which is not conducive to the sustainable development of the study area.

The breakpoint years detected in this paper for most extreme temperature indices (1996) are in
line with that of the breaking-point change of climate in the Northern Hemisphere studied by previous
researchers [68–71]. A remarkable shift for the location parameter and the scale parameter of the
frequency and probability distribution of extreme warm and cold indices can be observed before and
after the breakpoint year. The averages of extreme warm (cold) indices are all inclined to the hotter
part of the density distribution. This indicates that the climate over the study region shifts sharply
toward a warmer trend after the breakpoint year. The extreme warm (cold) indices significantly
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increase (decrease) after the breakpoint year. These changes may be affected by atmospheric circulation.
Therefore, to investigate the possible influence of atmospheric field anomalies and temperature
variation, we calculated and detected the differences in atmosphere circulation between the two periods
before and after the breakpoint year in geopotential heights at 500 hPa and total cloudiness obtained
from NCEP/NCAR reanalysis data by subtracting the mean values before and after the breakpoint year
in 1996 over the selected area ranges from 0–70◦ N and 70–150◦ E.
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Figure 9a shows the mean differences of the geopotential heights at 500 hPa before and after
the breakpoint year. The analysis reveals that a positive anomaly of geopotential height at 500 hPa
corresponds to temperature increasing uniformly over the ARNC. The positive anomaly of potential
height in the upper air corresponds to the increase of near-surface temperature, forming a low-pressure
center, resulting in the increasing of extreme warm indices for SU25, TN90p, TX90p, and WSDI, and
decreasing in extreme cold indices for FD, TN10p, TX10p, and CSDI. In addition, as can be seen from
Figure 9b, the mean difference of the total cloudiness before and after the breakpoint year indicates
that the total cloudiness is less over the ARNC. This enables more solar radiation to reach the ground
through the atmosphere and increases the near-surface temperature. The above studies show that
there is a positive feedback relationship between the warming trend and the geopotential height field
at 500 hPa, and there also exists a negative connection between the total cloudiness and temperature
increasing, and vice versa.
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Figure 9. Differences of (a) the geopotential heights at 500 hPa, (b) the total cloudiness before and after
the breakpoint year in 1996.

In this study, we analyzed the statistical characteristics of extreme temperature indices and
detected statistically significant correlations between extreme temperature and geopotential height
at 500 hPa and total cloudiness, and we obtained some meaningful research results. However, we
have not yet investigated the dynamics and physical mechanisms for the relationships between the
temperature extreme events and large-scale atmospheric circulation, such as North Atlantic Oscillation,
Arctic Oscillation, El Niño-Southern Oscillation, but plan to be addressed in future study. Additionally,
the cloud is an important regulating factor of energy change in the land–atmosphere system. It
regulates the balance of energy in the land–atmosphere system by reflecting the solar radiation and
absorbing long-wave radiation from the ground. There are complex positive and negative feedback
relationships between temperature and cloudiness interacted with each other through the process
of water vapor transport and radiation. The influence of cloudiness on temperature depends on the
factors in many aspects of cloudiness. The cloudiness at other heights, low cloudiness, cloud depth,
and type of cloud are also playing an important role in regulating temperature. It needs to be further
researched as a topic in future work. Meanwhile, temperature extremes are affected by various factors
such as local heat fluxes, sea surface temperature, and anthropogenic activities, which is considered to
be a non-stationary and non-linear dynamic change process, especially in arid regions with diverse
topography and landforms. Therefore, more detailed research is needed to thoroughly study the
relationship between extreme temperature changes and various external drivers. The relationship
between extreme temperatures and extreme precipitations should also be considered in the context of
climate warming, because the types of extremes do not always exist independently.
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Appendix A

Table A1. Information of selected meteorological stations in the ARNC.

Number Station Name Province Latitude Longitude ELEVATION (m)

51053 Habahe Xinjiang 48.05 86.40 532.6
51060 Buerjin Xinjiang 47.42 86.52 473.9
51068 Fuhai Xinjiang 47.12 87.47 500.9
51076 Altai Xinjiang 47.73 88.08 735.3
51087 Fuyun Xinjiang 46.59 89.31 807.5
51133 Tacheng Xinjiang 46.73 83.00 534.9
51156 Hebukesaier Xinjiang 46.78 85.72 1291.6
51186 Qinghe Xinjiang 46.67 90.38 1218.2
51232 Alashankou Xinjiang 45.18 82.57 336.1
51238 Bole Xinjiang 44.54 82.04 532.2
51241 Tuoli Xinjiang 45.93 83.60 1077.8
51243 Kelamayi Xinjiang 45.62 84.85 449.5
51288 Beitashan Xinjiang 45.37 90.53 1653.7
51330 Wenquan Xinjiang 44.97 81.02 1357.8
51334 Jinghe Xinjiang 44.62 82.90 329.2
51346 Wusu Xinjiang 44.43 84.67 478.7
51365 Caijiahu Xinjiang 44.20 87.53 440.5
51379 Qitai Xinjiang 44.02 89.57 793.5
51431 Yining Xinjiang 43.95 81.33 662.5
51433 Nileke Xinjiang 43.80 82.57 1105.3
51437 Zhaosu Xinjiang 43.15 81.13 1851
51463 Urumqi Xinjiang 43.78 87.65 935
51467 Baluntai Xinjiang 42.73 86.30 1732.4
51470 Tianchi Xinjiang 43.53 88.07 1942.5
51477 Dabancheng Xinjiang 43.35 88.32 1103.5
51495 Qijiaojing Xinjiang 43.22 91.73 721.4
51526 Kumishi Xinjiang 42.23 88.22 922.4
51542 Bayinbuluke Xinjiang 43.03 84.15 2458
51567 Yanqi Xinjiang 42.08 86.57 1055.3
51573 Turpan Xinjiang 42.93 89.20 34.5
51581 Shanshan Xinjiang 42.85 90.23 398.6
51628 Akesu Xinjiang 41.17 80.23 1103.8
51633 Baicheng Xinjiang 41.78 81.90 1229.2
51639 Shaya Xinjiang 41.14 82.47 980.4
51642 Luntai Xinjiang 41.78 84.25 982
51644 Kuche Xinjiang 41.72 82.97 1081.9
51656 Kuerle Xinjiang 41.75 86.13 931.5
51701 Tuergate Xinjiang 40.52 75.40 3504.4
51704 Atushi Xinjiang 39.43 76.10 1298.7
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Table A1. Cont.

Number Station Name Province Latitude Longitude ELEVATION (m)

51705 Wuqia Xinjiang 39.72 75.25 2175.7
51709 Kashgar Xinjiang 39.47 75.98 1385.6
51711 Aheqi Xinjiang 40.93 78.45 1985.1
51716 Bachu Xinjiang 39.80 78.57 1116.5
51720 Keping Xinjiang 40.50 79.05 1161.8
51730 Alaer Xinjiang 40.55 81.27 1012.2
51765 Tieganlike Xinjiang 40.63 87.70 846
51777 Ruoqiang Xinjiang 39.03 88.17 887.7
51804 Tashikuergan Xinjiang 37.77 75.23 3090.1
51810 Maigaiti Xinjiang 38.55 77.38 1178.2
51811 Shache Xinjiang 38.43 77.27 1231.2
51818 Pishan Xinjiang 37.62 78.28 1375.4
51828 Hetian Xinjiang 37.13 79.93 1375
51839 Minfeng Xinjiang 37.07 82.72 1409.5
51855 Qiemo Xinjiang 38.15 85.55 1247.2
51931 Yutian Xinjiang 36.85 81.65 1422
52101 Balitang Xinjiang 43.60 93.05 1679.4
52112 Zhuomaohu Xinjiang 43.45 94.59 479
52118 Yiwu Xinjiang 43.16 94.42 1728.6
52203 Hami Xinjiang 42.82 93.52 737.2
52313 Hongliuhe Xinjiang 41.53 94.67 1573.8
52323 Mazongshan Gansu 41.80 97.03 1770.4
52418 Dunhuang Gansu 40.15 94.68 1139
52424 Anxi Gansu 40.53 95.77 1170.9
52436 Yumenzhen Gansu 40.27 97.03 1526
52446 Dingxin Gansu 40.30 99.52 1177.4
52447 Jinta Gansu 40.00 98.90 1270.5
52495 Bayinmaodao Inner Mongolia 40.17 104.80 1323.9
52533 Jiuquan Gansu 39.77 98.48 1477.2
52546 Gaotai Gansu 39.37 99.83 1332.2
52576 Alashanyouqi Inner Mongolia 39.22 101.68 1510.1
52633 Tuole Qinghai 38.80 98.42 3367
52645 Yeniugou Qinghai 38.42 99.58 3314
52652 Zhangye Gansu 38.93 100.43 1461.1
52657 Qilian Qinghai 38.18 100.25 2787.4
52661 Shandan Gansu 38.80 101.08 1765.5
52674 Yongchang Gansu 38.23 101.97 1976.9
52679 Wuwei Gansu 37.92 102.67 1531.5
52681 Minqin Gansu 38.63 103.08 1367.5
52787 Wuqiaoling Gansu 37.20 102.87 3045.1
52797 Jingtai Gansu 37.18 104.05 1630.9
53502 Jilantai Inner Mongolia 39.78 105.75 11031.8
53519 Huinong Ningxia 39.22 106.77 1092.5
53602 Alashanzuoqi Inner Mongolia 38.83 105.67 1561.4
53614 Yinchuan Ningxia 38.48 106.22 1110.9
53615 Taole Ningxia 38.80 106.70 1101.6
53705 Zhongning Ningxia 37.48 105.68 1183.4
52378 Guaizihu Inner Mongolia 41.37 102.37 960
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