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Abstract: In recent years, with the development of high-speed railway in China, the railway operating
mileages and passenger transport capacity have increased rapidly. Due to the high density of trains
and the limited capacity of railways, it is necessary to solve market shares of different railway traffic
modes in order to adjust the operation plans appropriately and run railway passenger transport
products in line with passenger demand. Therefore, the purpose of this paper is to calculate market
shares by formulating a mixed logit model based on improved nonlinear utility functions taking
different factors into consideration, such as seat grades, fares, running time, passenger income levels
and so on. Firstly according to maximum likelihood estimation, the likelihood function of this
mixed logit model is proposed to maximize utility of all passenger groups. After that, we propose
two improved algorithms based on the simulated annealing algorithm (ISAA-CC and ISAA-SS) to
estimate the unknown parameters and solve the optimal solution of this model in order to enhance the
computational efficiency. Finally, a real-world instance with related data of Beijing–Tianjin corridor,
is implemented to demonstrate the performance and effectiveness of the proposed approaches.
In addition, by performing this numerical experiment and comparing these two improved algorithms
with the traditional Newton method, the ant colony algorithm and the simulated annealing algorithm,
we prove that the improved algorithms we developed are superior to others in the optimal solution.

Keywords: mixed logit model based on utility functions; market shares; maximum likelihood
estimation; improved algorithms based on simulated annealing algorithm

1. Introduction

With the continuous improvement of railway networks, the connectivity across the regions
has gradually increased, and passenger travel demand has increased with an unprecedented speed.
However, due to the heavily congested passenger flow in peak hours in certain railway corridors, the
passenger demand still cannot be satisfied even with the maximum departure frequency. To release
the traffic pressure and solve the transportation problems, such as the mismatch between passenger
demand and transportation resource allocation of different railway passenger service patterns, it is
urgent to research the market shares of different railway traffic modes. Additionally, it directly affects
the determination of the recent optimal train operation plans, e.g., the train capacity, departure quantity
and departure frequency, and maximizes economic profits, social benefits and passenger demand.
This research intends to explore these issues explicitly.
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1.1. Literature Review

In the problem of discrete choice models, Train [1,2] developed a complete set of theoretical and
empirical methods. Discrete choice models describe decision makers’ choices among alternatives.
The decision maker can be people or any other decision-making unit. The alternatives might represent
competing products or any other options over which choices must be made. To fit a discrete choice
framework, the set of alternatives, called the choice set, needs to exhibit three characteristics. First,
the alternatives must be mutually exclusive from the decision maker’s perspective. Choosing one
alternative necessarily implies not choosing any of the other alternatives. The decision maker chooses
only one alternative from the choice set. Second, the choice set must be exhaustive to ensure all
possible alternatives are included. The decision maker chooses one of the alternatives. Third, the
number of alternatives must be finite and the researcher must be able to count the alternatives. Discrete
choice models are usually derived under the utility-maximizing assumption. Marschak [3] provided a
derivation from utility maximization. Following Marschak, models that can be derived in this way
are called random utility models (RUMs). Therefore in the traffic field, they are used for predicting
transfer passenger demand and calculating market shares of different traffic modes.

Most time series models are easier to implement than discrete choice models, but the former
are limited because they do not explain how different passengers make decisions, while discrete
choice models and regression models are distinguished by saying that regressions examine choices
of ’how much’ and discrete choice models examine choices of ’which’ and ’how much’. For example,
Train et al. [4] analyzed the number and duration of phone calls that households made. In their
experiments, the reason why they chose a discrete choice model instead of a regression model is that it
allows greater flexibility in handling the nonlinear price schedules. In general, the researcher needs to
consider the goals of the research and the capabilities of alternative methods when deciding whether
to apply a discrete choice model.

The most prominent types of discrete choice model, namely logit models and probit models, are
introduced and compared briefly here. It is important to note that the flexibility of the probit model in
handling correlations over alternatives and time is its main advantage. Its only functional limitation
arises from its reliance on normal distribution, because in some situations unobserved factors may not
be normally distributed. For example, the multinomial probit (MNP) model is highly flexible but its
application is limited due to the complexity and high computation demand of the model.

By far the most widely used discrete choice model is logit. Its popularity is due to the fact that the
formula for the choice probabilities takes a closed form and is readily interpretable. There are some
improved models of the logit model as follows.

The multinomial logit (MNL) model is the most commonly used in practice, with the advantages
of simplicity, reliability, and easy implementation. It is a generalization of the binary logit model and
is used to describe how an individual chooses among three or more discrete alternatives [5]. In this
model, there is an important assumption about the characteristics of choice probabilities, which means
the probability ratio of two alternatives is unaffected by the systematic utilities of any other alternatives.
However, the MNL model also has some inherent theoretic defects, which led to the need for more
refined models.

In order to overcome the restriction of MNL model, Nested logit (NL) model is first proposed [6]
as an extension of MNL model just a few years after MNL model. Similar to the MNL model, NL
model is a choice model that is used to predict the probability that an individual will select one
alternative out of a set of mutually exclusive and collectively exhaustive alternatives. Both MNL and
NL models are based on random utility theory, but differ in how they represent substitution patterns
among alternatives. The NL model represents a partial relation of the independence of identically
distributed (IID) and independence from irrelevant alternatives (IIA) assumptions of the MNL model
(Hensher et al. [7]). NL model partitions the choice set into several sub-nests and puts alternatives
which are similar and maybe correlate with each other in the same sub-nest. The correlation among
alternatives within each sub-nest can be captured. However, no correlation across nests can be depicted.
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When alternatives can not be partitioned into well separated nests to reflect their correlations, the NL
model is not appropriate. Cross-nested logit (CNL) model is a direct extension of the NL model, where
each alternative may belong to more than one nest. The correlation across nests can be estimated using
the CNL model.

Mixed multinomial logit (MMNL) model (McFadden et al. [8]) offers significant advantages over
the MNL model by allowing for random taste variation across decision makers. MMNL model not
only allows for random taste variation, but also in principle avoids the unrealistic MNL substitution
patterns resulting from the independence from irrelevant alternatives (IIA) assumption, which dictates
that the dependency between any two alternatives is the same across alternatives, making the MNL
model an inappropriate choice in many scenarios. The biggest drawback of the MMNL model is
the fact that the integrals representing the choice probabilities do not have a closed-form expression
and need to be approximated through simulation (Train [1]; Hess et al. [9]). A second issue with the
MMNL model is the choice of distribution to be used for the random taste coefficients, especially in
the case where an a priori assumption exists about the sign of a given coefficient (Hensher et al. [10];
Hess et al. [11]; Hess et al. [12]).

Mixed logit (MXL) model is suitable for handling random preferences, random coefficients,
and some kinds of correlation problems, such as correlation among alternatives, and it allows the
unobserved factors to follow any distribution. See Section 2.2.1 for details.

To the best of our knowledge, the majority of existing literature which research the logit models
based on different utility functions, devotes to some objectives such as maximizing the utility values
of passengers and estimating the coefficients of influence factors. For comparative convenience, we
list the detailed characteristics of some closely related references in Table 1, including traffic modes,
variables in utility functions and formulated models. The key to solve the model is to analyze the
variables involved in the objects and utility functions of traffic modes.
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Table 1. Recent publications on logit models in comparison with our work.

Publication Traffic modes Variables Models

Ma, et al. [13] Airport, Coach, Railway Safety, rapidity, economy, comfort, environmental impact,
services Conditional logit model

Hess, et al. [14] Airport Access time, fare, frequency Mixed logit model

He, et al. [15] Airport, Coach, High Speed Passenger
dedicated line Fare, time value Conditional logit model

Park, et al. [16] Airport, High Speed Railway (KTX),
Conventional railroad Access time, fare, operational frequency, distance Binomial logit model and SP/RP model

Feng, et al. [17] Airport, Coach, Train Fare, time value Logit model based on Rough Set Theory
Ge, et al. [18] Airport, Coach, Railway Safety, rapidity, economy, choice preference, comfort, accessibility Mixed logit model

Jou, et al. [19] High Speed Railway, Hyper-speed
Transportation In-vehicle travel time, travel cost, out-of-vehicle travel time Mixed logit model

Huang, et al. [20] Airport, Coach, High Speed Railway Fare, time value Multinomial logit model
Chen, et al. [21] Bus Service environment, comfort, safety, convenience SEM-Multinomial logit integration model
Jung, et al. [22] Korea Train Express Access time, journey time, air fare, operational frequency Multinomial and nested logit model

Lee, et al. [23] High Speed Railway Travel cost, travel time, operational frequency, safety, duty free
shopping availability Mixed logit model

This paper Different railway traffic modes Passenger income, rapidity (travel time), Economy (travel
expense), comfort (operational frequency, degree of seat)

Mixed logit model based on improved nonlinear utility
functions
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1.2. The Focus of This Paper

As mentioned above, there are some unsolved problems of many studies in the existing literature
as follows. Firstly, there is no researcher who studies the market shares of different railway traffic
modes standing fom the passengers’ points of view and who also analyzes which type has higher
market share and higher operational revenue standing from the enterprise’s point of view. Then,
many studies have explored passenger demand predicting approaches by logit models, in which the
main focus is to establish utility functions in a linear way but without considering that there is not
a fixed relationship between the value of utility and passenger income about different traffic modes.
Last but not least, nowadays, the main focus of recent research in Table 1 is how to reasonably and
comprehensively choose the variables involved in the models when studying the influencing factors of
different traffic modes. The number of variables involved in each reference is relatively small, so some
traditional software, such as SPSS or ALOGIT, and traditional methods, such as the Newton method
(Appendix A) or its deformations (ramped Newton method), can usually be used to estimate unknown
parameters and solve the optimal solution of the functions. Nevertheless, using the Newton method to
solve the problems, the time complexity is large and it may lead to non-convergence of the results.

In summary, specifically, the detailed contributions of this paper are summarized as follows.
(a) According to different products of railway passenger transportation, we consider different

seat grades, fares, running time and train number for different railway traffic modes.
(b) It is common knowledge that passenger income is one of the most important factors affecting

the travel intention of passengers to choose transfer vehicles; and the time value of passengers at
different income levels are different. So in this paper, considering that there is a certain function
relationship between the utility value and the income level and it is obviously unreasonable to
formulate passenger income functions directly into linear utility functions, we establish different
nonlinear utility functions which are mainly including different passenger income functions for
different traffic modes.

(c) The model established in this paper involves 48 variables including passenger income, travel
time, travel expense and so on. Therefore, some representative heuristic algorithms such as the
ant colony algorithm and the simulated annealing algorithm are chosen to solve this problem; and
according to their current problems, we also develop two improved algorithms based on the simulated
annealing algorithm (ISAA-CC and ISAA-SS) to estimate unknown parameters of the utility functions;
and then running time, optimal solution and convergence speed of these improved algorithms are
compared with those of the Newton method, the ant colony algorithm and the simulated annealing
algorithm. The results show that these two improved algorithms in this paper are better than
others, obviously.

The rest of this paper is organized as follows. In Section 2, a mixed logit model based on
improved nonlinear utility functions is rigorously formulated to solve the market shares; and to reduce
computational complexity, we adopt maximum likelihood estimation to construct a corresponding
likelihood function. Then, Section 3 develops two improved algorithms based on the simulated
annealing algorithm (ISAA-CC and ISAA-SS) to solve the problem in this paper. Next, we also design
one case to demonstrate the effectiveness of the proposed approaches in Section 4. Finally, some
conclusions and further studies are presented in Section 5.

2. Mathematical Formulation

To characterize this problem in a mathematical way, in this section, we will explicitly discuss the
formulation process for a mathematical model about solving market shares of different railway traffic
modes, namely mixed logit model based on improved nonlinear utility functions. The technical route
of the specific research in this paper is shown in Figure 1.
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Figure 1. The technical route.

It can be seen in the figure that modeling technique in this paper is the part of blue bottom,
including improved nonlinear utility functions, a mixed logit model, a likelihood function and their
relationships. The utility functions are substituted into the logit model and we adopt maximum
likelihood estimation to construct a corresponding likelihood function.

2.1. Problem Description

Firstly, according to the ’per capita disposable income of urban residents’ of the National Bureau
of Statistics in China, we divided all railway passengers into three passenger groups with different
income levels, i.e., low-income passenger group whose income is less than RMB 3000 in a month,
medium-income passenger group whose income is between RMB 3000 and RMB 8000 in a month and
high-income passenger group whose income is larger than RMB 8000 in a month.

Generally speaking, the choices of different passenger groups for traveling are closely related
to the service attributes of railway traffic modes, which have inherent regularity and functional
relationship. Then, in this paper, due to facilitate calculation and comprehensive coverage, the service
attributes are taken as the main indicators of passenger travel behaviors, including rapidity, economy,
comfort, safety and convenience.

(a) Rapidity is quantified by the value of passengers travel time and directly related to
passenger income.

(b) Economic is quantified by travel expense of passengers, such as ticket prices.
(c) Comfort is including the space, service and environment of railway traffic modes, which are

measured by fatigue recovery time of passengers and different grades of train seats (reflected by the
change of ticket prices). Therefore, the comfort degree is inversely proportional to travel time and
proportional to travel expense, as shown in Figure 2 below.

On the one hand, with the same travel expense, the less travel time is, the higher comfort degree
will be. However, with the increase of travel time, the increment of comfort degree caused by saving
unit time will decrease. On the other hand, with the same travel time, the higher travel expense (which
means the higher seat grade) is, the higher comfort degree will be. However, with the increase of travel
expense, the increment of comfort degree caused by raising unit expense will decrease.

(d) Convenience is quantified by the value of total time, including boarding time, departure time
and waiting time.

(e) Safety is quantified by the accident rate of traffic modes, that is the safety guarantee of life,
health and financial of passengers.
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Figure 2. Curves of travel time, travel expense and comfort degree.

Since we discuss the railway traffic modes, we can conclude that the safety and convenience of
each railway train have little difference. Finally base on this, in order to truly reflect the passenger flow
characteristics of railway in China, the authors conducted a Stated Preference (SP) survey and a total
of 717 valid questionnaires have been collected. The survey results of passenger travel considerations
analysis are shown in Table 2.

Table 2. The travel consideration factors for different passenger groups (unit: People).

Passenger Groups Rapidity Economy Comfort Total Number

Low-income passengers 76 29 12 117
Medium-income passengers 214 55 73 342

High-income passengers 163 27 68 258
Total number 453 111 153 717

The results show that, 453 passengers think that rapidity is their primary consideration, accounting
for 63.18% of the total passengers, 111 passengers think that economy is their primary consideration,
accounting for 15.48%, and 153 passengers think that comfort is their primary consideration, accounting
for 21.34%.

Before the model is established in this paper, the following assumptions are made in order to
formulate the problem.

(A1) According to the utility theory proposed by Fishburn [24], based on the usual mentality of
passengers for making choices, passengers will evaluate the utility values of different available
railway traffic modes and always choose the most reasonable mode which has maximum
utility value.

(A2) Under the condition of assumption (A1) and in order to the convenience of research, we will take
the same income passenger group as a whole.

All the involved parameters and variables are listed below (Table 3) for the convenience of
formulating the problem under consideration.
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Table 3. Parameters and variables in the model.

Model Parameters

M A set of railway traffic modes, i.e., M = {1, 2, · · · , 8}. There are eight (M = 8) kinds of railway trains for passengers to choose
in this study, including Common slow train named S-train, i.e., m = 1, Fast train named K-train, i.e., m = 2, Express train
named T-train, i.e., m = 3, Tourist train named Y-train, i.e., m = 4, Direct special express train named Z-train, i.e., m = 5, EMU
train named D-train, i.e., m = 6, Inter-city train named C-train, i.e., m = 7 and High-speed train named G-train, i.e., m = 8.

S A set of train seats grades, i.e., S = {1, 2, · · · , 9}. There are twenty-one kinds of train seats for passengers to choose in this
study which are classified into nine grades (S = 9), including business seat of C-train \ G-train, i.e., s = 1, Soft sleeper of
D-train, i.e., s = 2, Hard sleeper of D-train, i.e., s = 3, Soft sleeper of S-train \ K-train \ T-train \ Z-train, i.e., s = 4, First
seat of C-train \ G-train, i.e., s = 5, First seat of S-train \ K-train \ T-train, i.e., s = 6, Second seat of C-train \ G-train \
D-train, i.e., s = 7, Soft seat of Y-train, i.e., s = 8 and Hard seat of S-train \ K-train \ T-train \ Y-train, i.e., s = 9.

Q A set of passenger groups, i.e., Q = {1, 2, 3}. There are three passenger groups, including the low-income passenger
group where q = 1, the medium-income passenger group where q = 2 and the high-income passenger group where q = 3.

tm The travel time of passengers choosing railway traffic mode m.
em The travel expense of passengers choosing railway traffic mode m.
sq The monthly average income of passenger group q.
Tmax A parameter of maximum time required to fatigue recovery which equals to 14 or 15 hours under normal conditions.
βms Dimensionless parameter of seat degree s for passengers choosing railway traffic mode m.
γms The intensity factor of fatigue recovery time in per unit travel time (Unit: hour−1). The greater its value is, the longer

fatigue recovery time will be; and there is 0 < γms < 1.

Model Variables

θm The variable vector to be estimated of choosing railway traffic modes m, i.e., θm = (αm1, αm2, αm3, αm4, µm, σm)
T , m ∈ M,

where αm1 denotes the weight of rapidity, αm2 denotes the weight of economy, αm3 denotes the weight of comfort, αm4
denotes the weight of passenger income, µm denotes a position parameter and σm denotes a scale parameter. There are
αm1 + αm2 + αm3 + αm4 = 1, 0 < αm1 < 1, 0 < αm2 < 1, 0 < αm3 < 1, 0 < αm4 < 1.

2.2. Mathematical Model

In addition to these primary service attributes, the income level of passengers also indirectly
determines their travel intention to a large extent. Therefore, in order to make the model much closer
to the actual case, this paper not only considers three service attributes including rapidity, economy
and comfort, but also adds passenger income to construct utility functions. See Section 2.2.2 for details.

2.2.1. Mixed Logit Model

In this paper, we adopt the mixed logit (MXL) model (McFadden, et al. [8], Hensher, et al. [10]
and Train [1]) to solve the market shares according to Section 1.1, which can be derived from random
utility theory and can approximate any discrete choice models by making the following definitions.

(a) There is a set of available alternatives (railway traffic modes, M) and a set of individuals
(passenger groups with different income, Q).

(b) There is a set of measured attributes X of the individuals and their alternatives.
(c) According to assumption (A1), i.e., the maximization of utility, the individual q selects the

alternative m which maximizes their personal utility, i.e., Umq > Ulq, ∀m 6= l ∈ M, q ∈ Q, subject
to their individual constraints. The value of utility itself is based on a comparison and individual
evaluation of the different characteristics which describe the attractivity of the alternatives.

(d) It is not possible to possess complete information about all elements that determine this choice.
Errors can arise for observational reasons. For example, instead of the true modal characteristic X∗,
only X (or a functional f (X∗) may be available. To take into account the unobserved measurement
error, X∗ is effectively replaced by X + ε or f (X∗) + ε, where ε designates the unknown error.

For individuals who have the same set of alternatives and face the same constraints, it can be
assumed that the residual ε is random variable with mean 0 and a certain distribution.

More precisely in this paper, a utility Umq can be represented by two components, i.e., an observed
representative component Vmq which is a function of measured mode-specific and socioeconomic
attributes X, and an unknown random component εmq which represents unobserved attributes, taste
variations, and measurement or observational errors.

The utility Umq = Vmq + εmq is random across the individuals, this event is associated with a
probability, i.e.,
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Pmq = P{Umq > Ulq, ∀m 6= l ∈ M, q ∈ Q}, (1)

or more explicitly, i.e.,

Pmq = P{ε lq ≤ εmq +
(

Vmq −Vlq

)
, ∀m 6= l ∈ M, q ∈ Q}. (2)

This means that the probability of passenger group q choosing mode m equals the probability that
the utility of choosing m is greater than that of any other choices. For MXL model, each error εmq is
assumed to be independently and identically distributed over the population and for each individual
according to the Gumbel extreme value distribution which has the following cumulative distribution
function with variance δ2, i.e.,

P{εmq ≤ ε} = exp

−exp

−
√

π2

6 · δ2 · ε

 . (3)

So the distribution function about the difference between two random errors εmlq = εmq − ε lq is

F(εmlq) =
expεmlq

1 + expεmlq
. (4)

The probability that passenger group q chooses railway traffic mode m can now be expressed as follows.

Pmq =
1

∑
l 6=m∈M

exp(Vmq −Vlq)
=

expVmq

∑
l 6=m∈M

expVlq
. (5)

2.2.2. Improved Nonlinear Utility Functions

As discussed in previous parts, the authors decide to use not only three service attributes including
rapidity, economy and comfort, but also ’passenger income’ attribute. Because the units of time and
expense are not uniform and the dimensions are different, it can not be calculated in one function.
So we introduce ’time value’ attribute to replace ’travel time’ in order to unify their dimensions.
According to the research of Wardman [25] on the time value, they believe that the marginal utility of
time increases with income. Different income levels of passenger groups have different unit time values
which will be denoted by v(t)q, q ∈ Q. Generally speaking, the time value of high-income passenger
group is higher than that of low-income passenger group and medium-income group. Therefore based
on the above analysis, we establish improved nonlinear utility functions for different railway traffic
modes according to different passenger income levels. The utility value of passenger group q who
choose railway traffic mode m expressed by the following function, i.e.,

Vmq = αm1 · Rmq + αm2 ·∑
s∈S

Ems + αm3 ·∑
s∈S

Cmsq + αm4 · Imq, m ∈ M, q ∈ Q. (6)

Among them, a utility function above include several functions as follows.
(a) v(t)q = sq/(30 · 24) denotes the unit (hour) time value of passenger group q.
(b) Tms = Tmax/(1 + βms · exp(−γms · tm)) denotes fatigue recovery time of passengers.

The minimum time of fatigue recovery is Tmin = Tmax/(1 + γms) where tm = 0 because fatigue
recovery time is related to travel time, the types of railway traffic modes and the degrees of seats.

(c) Rmq = −tm · v(t)q denotes rapidity function about passenger group q who choose railway
traffic mode m because rapidity of railway traffic modes is inversely proportional to the time value
spent by passengers.

(d) Ems = −ems denotes economy function about passenger group q who choose railway traffic mode m
seat s because economy of railway traffic modes is inversely proportional to travel expense spent by passengers.
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(e) Cmsq = −Tms · v(t)q denotes comfort function about passenger group q who choose railway
traffic mode m seat s.

(f) Imq denotes passenger income function about passenger group q who choose railway traffic
mode m. Under the condition of assumption (A1), the complex relations between different passenger
income levels and the utility values of choosing different railway traffic modes are as follows. When
passenger income is in a certain range, the utility value is the highest and when the income is lower
or higher, the utility value will decrease. So the passenger income function should be established as
curve which can map variables by probability density function of Normal distribution or Gaussian
distribution. We establish passenger income function as follows whose graph is shown in Figure 3.

Imq =
1√

2π · σmq
· exp

−( Sq − µmq√
2π · σmq

)2
 . (7)

Then, in the next subsection, each improved nonlinear utility function of railway traffic modes
will be substituted into the mixed logit model established in this paper; and to reduce the difficulty
of solving this complex mixed logit model, we adopt maximum likelihood estimation to construct a
corresponding likelihood function.

Figure 3. Passenger income function.

2.2.3. Maximum Likelihood Estimation

The purpose of this study is to maximize utility of all passenger groups in this mixed logit model;
and we need to estimate the values of unknown parameters in the model. Maximum likelihood
estimation is often applied for the estimation of this mixed logit model because the likelihood function
is concave and can be constructed as follows under a suitable condition. Therefore, we can obtain a
unique solution, i.e., the maximum value of the likelihood function.

For a random sample of size M, the likelihood function can be viewed as the product of choice
probabilities associated with Q subsets of independent observations, in which the first subset includes
q = 1 individuals observed to have chosen alternatives 1 ∼ m1, the next one q = 2 individuals observed
to have chosen alternatives m1 + 1 ∼ m1 + m2, etc. That is

φ∗ =
m1

∏
m=1

Pm1 ·
m1+m2

∏
m=m1+1

Pm2 · · ·
M

∏
m=m1+m2+···+1

PmQ. (8)

Then, in this study, we introduce 0-1 variables ymq where m ∈ M and q ∈ Q, as selection indicators
for selection of different passenger groups, i.e.,

ymq =

{
1 passenger group q chooses railway traffic mode m,

0 otherwise,
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and ∑
m∈M

ymq = 1, q ∈ Q.

Due to that each passenger group can only choose one railway traffic mode and all passenger
groups are independent, the expression of φ∗ can be simplified by ymq as follows,

φ∗ = ∏
q∈Q

∏
m∈M

Pmq
ymq . (9)

Because ln φ∗ is the monotone increasing function of φ∗, ln φ∗ and φ∗ have the same extreme
point. In order to solve this mixed logit model conveniently, the corresponding log-likelihood function
can now be written as follows.

φ = ln φ∗ = ∑
q∈Q

∑
m∈M

ymq · ln Pmq = ∑
q∈Q

∑
m∈M

ymq ·
{

Vmq − ln

[
∑

m∈M
exp(Vmq)

]}
. (10)

In this paper, the optimization objective is to maximize the log-likelihood function above. Therefore,
in a word, the mixed logit model based on the improved nonlinear utility functions is shown as follows.

max φ = ln φ∗ = ∑
q∈Q

∑
m∈M

ymq · ln Pmq = ∑
q∈Q

∑
m∈M

ymq ·
{

Vmq − ln

[
∑

m∈M
exp(Vmq)

]}
, (11)

where Vmq = αm1 · Rmq + αm2 ·∑
s∈S

Ems + αm3 ·∑
s∈S

Cmsq + αm4 · Imq, m ∈ M, q ∈ Q,

Rmq = −tm · v(t)q = −tm ·
dq

30 · 24
, m ∈ M, q ∈ Q,

Ems = −ems, m ∈ M, s ∈ S,

Cmsq = −Tms · v(t)q = − Tmax

1 + βms · exp(−γms · tm)
·

dq

30 · 24
, m ∈ M, q ∈ Q, s ∈ S,

and Imq =
1√

2π · σmq
· exp

−( Sq − µmq√
2π · σmq

)2
 , m ∈ M, q ∈ Q.

s.t. αm1 + αm2 + αm3 + αm4 = 1, 0 < αm1 < 1, 0 < αm2 < 1, 0 < αm3 < 1, 0 < αm4 < 1, m ∈ M,

ymq ∈ {0, 1}, m ∈ M, q ∈ Q.

The likelihood estimator is

θ̂ = argmaxθ∈Rφ(θ) =
[
θ̂1 θ̂2 θ̂3 · · · θ̂8

]
=



ˆα11 ˆα21 ˆα31 · · · ˆα81
ˆα12 ˆα22 ˆα32 · · · ˆα82

ˆα13 ˆα23 ˆα33 · · · ˆα83

ˆα14 ˆα24 ˆα34 · · · ˆα84

µ̂1 µ̂2 µ̂3 · · · µ̂8

σ̂1 σ̂2 σ̂3 · · · σ̂8


of this objective function φ(θ), which denotes a vector of unknown parameters to be estimated in eight
utility functions, can be obtained in next section.

3. Solution Approaches

In this section, we aim to introduce two traditional heuristic algorithms, i.e., the ant colony
algorithm and the simulated annealing algorithm, and then develop two improved Algorithms 1 and 2
based on the simulated annealing algorithm (ISAA-CC and ISAA-SS), to solve the problem in this
paper and to obtain the maximum of the objective function, i.e., φ(θ) and the unknown parameter to be
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estimated, i.e., θ̂ =
[
θ̂1 θ̂2 θ̂3 · · · θ̂8

]
in short time, efficiently; and we also compare the performance

of these algorithms with the Newton method according to a real numerical experiment in next section.

Algorithm 1: A heuristic bionic evolutionary algorithm based on swarm intelligence.
Step 1. The relevant parameters need to be initialized, including ant colony size (the total
number of ants) ant_max, the pheromones volatilization coefficient ρ, total pheromones
released by ants for one iteration Q (constant), a constant of transfer probability p0, maximum
number of iterations iter_max. Initial pheromones τt(0) = φ(θ).

Step 2. Do for i = 1, 2, · · · , iter_max,
Step 2.1. Do for t = 1, 2, · · · , ant_max,
Step 2.1.1. Each ant is randomly placed in different positions, and the next position of ant t,
namely next feasible solution, is determined according to transfer probability pt, i.e.,

pt =
maxs∈[1,ant_max] τs(i)− τt(i)

maxs∈[1,ant_max] τs(i)
.

Step 2.1.2. According to following judgement, iterative formula of parameter to be estimated is

θ(i + 1) =

θ(i) + rand · λ pt < p0,

θ(i) + rand · upper− lower
2

pt < p0.

(a) Local Search: If the pheromones of ant t is closer to the highest concentration of
pheromones in the current population (i.e. the current maximum of the function), the transfer
probability pt is smaller, and variable value θ tends to be fine-tuning, i.e.,
θ(i + 1) = θ(i) + rand · λ where rand is a 0-1 random number, and λ = 1/(t + 1) is heuristic
function (degree of expectation) and it gradually decreases as the iteration progresses.

(b) Global Search: The farther away the ant t is from the position with the highest
concentration of pheromones in the current population, the greater of transfer probability pt,
the more the algorithm tends to search for the optimal value in a wider range, i.e.,
θ(i + 1) = θ(i) + rand · (upper− lower)/2, where upper is upper bound and lower is lower
bound of θ.

Step 3. Calculate the pheromones of each path, and update the concentration of pheromones
by the iteration formula as follows, i.e., τt(i + 1) = (1− ρ) · τt(i) + Q · φ(θ). At the same time,
the optimal solution of the current iteration is recorded.

Algorithm 2: An optimization algorithm based on probability.
Step 1. The relevant parameters need to be initialized, including an initial temperature T0,

termination temperature Tmin, an initial state θ0, maximum number of disturbance dis_max and
maximum number of iterations iter_max. Let current temperature be T0 and current state be θ0.

Step 2. Do for i = 1, 2, · · · , iter_max,
Step 2.1. Do for t = 1, 2, · · · , dis_max,
Step 2.1.1. Calculate the internal energy of the current state (objective function value) φ(θi).
Transform the current state θi to a new one θn by exchanging certain elements; and internal
energy of this new state φ(θn) is calculated.

Step 2.1.2. Calculate increment ∆φ = φ(θn)− φ(θi). If ∆φ ≤ 0, the new state θn is accepted.
Otherwise, the new state is accepted when a random number ρ, (0 < ρ < 1) is greater than
P(φ) = exp(−∆φ/Ti).

Step 2.1.3. Let θn be the current state, i.e., θi = θn.
Step 2.2. Exit the loop until Ti < Tmin.
Step 3. Let Ti+1 = ω · Ti where ω is used to control the speed of cooling and its value ranges
from 0.01 to 0.99. The larger the value of ω is, the slower temperature will drop. If the value
of ω is too large, the possibility of searching the global optimal solution is higher, but the
searching process is also longer.
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3.1. Ant Colony Algorithm

The ant colony algorithm, first proposed by Italian scholar, Dorigo [26] in 1992, is an intelligent
algorithm and always applied in the travelling salesman problem [27]. It is designed by imitating
the cooperative manner of an ant colony and the characteristics of ants foraging behaviors, and then
abstracting this manner into mathematical description. In biology, the foraging behaviors of an ant
colony have the following characteristics.

(a) While building the paths from their nest to food source, ants can deposit and sniff a chemical
substance, called pheromones, which can mark the paths and provide ants with the ability to
communicate with each other.

(b) Generally speaking, ants essentially move at random, but they always choose one path with
higher concentration of pheromones and release a certain amount of pheromones to enhance the
concentration of pheromones on this path. Therefore, the higher the concentration of pheromones is,
the shorter the distance of corresponding path will be.

(c) With the continuous actions of the ant colony, the shorter paths are more frequently visited
and become more attractive for the subsequent ants. By contrast, the longer paths are less attractive
because the pheromones will evaporate with the passing of time. Finally, the shortest way from nest to
food source is found.

Nowadays, the ant colony algorithm is widely used in optimization problems. For the problem to
be optimized, the basic idea of applying the ant colony algorithm is that feasible solution is expressed
by walking paths of ants, and all paths of the whole ant colony are constituted the solution space.
Finally, the whole ant colony will be concentrated on one path which corresponds to the optimal
solution. So by analyzing the foraging process of ant colony, the generic ant colony algorithm can
be roughly summed up four steps as follows. Firstly, set initial population of the ant colony and the
pheromones, and place starting nodes for all ants randomly. Secondly, take into account the problem
dependent heuristic information and the trail intensity of the paths with that each ant choosing the
next node that has not been visited to move by probability. Then, repeat the step until a completed
solution is constructed. Thirdly, evaluate the solutions and deposit pheromones on the paths according
to the quality of solutions. The better the solution is, the higher concentration of pheromones will be
deposited. Finally, the pheromones of all paths are decreased at the end of an iteration of building
completed solutions due to some constant factors.

Aiming at the research content of this paper, we estimate the unknown parameter θ̂ and solve
the optimal solution of function φ(θ̂) by the ant colony algorithm whose detailed solution process is
summarized as follows.

3.2. Simulated Annealing Algorithm

The simulated annealing algorithm, first proposed by American physicist, Metropolis [28] in 1953,
and applied to combinatorial optimization by Kirkpatrick [29] in 1983, is an optimization algorithm
based on probability. The algorithm is initially inspired by the change rules of internal molecular state
and internal energy of solids in the process from high temperature to low temperature.

The algorithm takes the temperature of the solid as the control parameter, and with the decrease
of temperature, the internal energy of the solid (i.e., the objective function value) decreases gradually
until it reaches the global minimum. It is actually a greedy algorithm, but its search process introduces
random factors. It accepts a solution worse than the current one with a certain probability, so it is
possible to jump out of the local optimal solution and reach the global optimal solution.

Aiming at the research content of this paper, we estimate the unknown parameter θ̂ and solve
the optimal solution of function φ(θ̂) by the simulated annealing algorithm whose detailed solution
process is summarized as follows.
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3.3. Improved Algorithms Based on Simulated Annealing Algorithm

Therefore, we summarize some advantages and disadvantages of the Newton method, the ant
colony algorithm and the simulated annealing algorithm which are shown as the following Table 4.

Table 4. The comparisons of three traditional algorithms.

Algorithm Advantages Disadvantages

Newton
method

The simple principle
Second order convergence

(a) It is quite computationally expensive because it requires
calculating both the objective function and derivatives. (b) It is
highly correlated with initial parameters because the improper
selections of them will lead to local convergence or non-convergence
of function. (c) Gradient explosion or gradient disappearance also
occurs easily.

Ant colony
algorithm

parallel computation
Robustness
Positive feedback mechanism
Low time complexity

The setting of parameters has a great influence on the results. In the
initial stage, the pheromones are basically the same, which requires
a long search time and is easily trapped in local optimum.

Simulated
annealing
algorithm

parallel computation
Low time complexity
Independent of the initial solution

It is easy to be affected by the setting of parameters, especially the
cooling coefficient.

From above table, we can see that both ant colony algorithm and the simulated annealing
algorithm can solve many problems of the Newton method, and the shortcomings of the ant colony
algorithm can also be dealt with the simulated annealing algorithm. Generally speaking, the simulated
annealing algorithm has strong global search ability but low solution accuracy. Thus we proposed two
improved algorithms based on the simulated annealing algorithm (ISAA-CC and ISAA-SS).

(a) Improved simulated annealing algorithm of cooling coefficient (ISAA-CC).

The cooling coefficient ω < (0, 1) is an important parameter affecting the convergence of the
simulated annealing algorithm from the procedure of this algorithm. When this coefficient is too large,
the solution accuracy is high but the algorithm runs long. On the other hand, when this coefficient
is too small, the search accuracy is low. Therefore, considering this disadvantages, this paper firstly
proposes an improved algorithm based on the simulated annealing algorithm, named ISAA-CC, to
improve the efficiency of the algorithm and the quality of the optimal solution.

The value of ω is set as large as possible at the beginning of the algorithm, so that the algorithm
has strong global search ability. With the iteration of the algorithm, the value of ω decreases, in order
that the algorithm can search for the optimal solution better. As a result, a functional relationship
between the cooling coefficient ω and the number of iterations i as shown in Figure 4 will be established
as follows.

Figure 4. Relationship between cooling coefficient and the number of iterations.
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(b) Improved simulated annealing algorithm of step-size (ISAA-SS).

Chen et al. [30] used an improved path-based local linearization algorithm to solve a special
logit model and used recent advances in line search methods to improve the computational efforts.
The experimental results of this article examined two exact line search methods (i.e., bisection and
method of successive averages (MSA)) along with three inexact line search methods (i.e., self-regulated
averaging (SRA), quadratic interpolation and Armijo). These line search methods are compared in the
Table 5 including the computation with respect to the objective function and derivative evaluations.

Table 5. Comparisons of the line search methods.

Line Search Methods Type Objective Function Evaluation Derivative Evaluation

MSA exact No No
SRA inexact No No
Bisection exact No Yes
Quadratic interpolation inexact No Yes
Armijo inexact Yes Yes

Numerical results in this paper revealed SRA and quadratic interpolation were more efficient and
robust compared to others. The computational efficiency and robustness of them are attributed to their
smart step-size determination mechanism. Compared to other methods, SRA is easy to implement
because it does not need to evaluate the complex objective function or its derivatives.

The Newton method used in this revised manuscript includes the derivation of the objective
function; and the disadvantages of the Newton method compared with the other three heuristic
algorithms are its derivatives, as shown in Table 4. Thus we choose embedding SRA to improve the
simulated annealing algorithm on determining a suitable step-size, namely ISAA-SS.

In the literature, self-regulated averaging (SRA), was recently developed by Liu et al. [31], to
enhance he computational performance of determining a suitable step-size for solving the multinomial
logit stochastic user equilibrium (MNL SUE) problem. This method determines a suitable step-size
as follows:

α(i) =
1

β(i)
. (12)

β(i) =

{
β(i− 1) + λ1 if ||h(i)− f (i)|| ≥ ||h(i− 1)− f (i− 1)||,
β(i− 1) + λ2 otherwise,

(13)

where α(i) is step-size at iteration i, σ(i) is a measure of similarity index and β(i) is a measure of
dissimilarity index, defined as β(i) = 1− σ(i); and the following conditions should be satisfied in
order to guarantee convergence [31–33]:

α(i) > 0,
∞

∑
i=1

α(i) = ∞ and lim
i→∞

α(i) = 0 or
∞

∑
i=1

(α(i))2 < ∞. (14)

An illustration of SRA is provided in Figure 5. From Equation (13), we can observe that the
step-size sequences from SRA are still strictly decreasing. However, the decreasing speed is more
efficient since the next step-size is determined according to the residual error (i.e., the deviation between
the current solution and its auxiliary solution) relationship between two consecutive iterations. When
the current residual error is increased compared to the previous iteration (i.e., tends to diverge), the
parameter λ1 > 1 is used to make the step-size reduction more aggressive (e.g., at iterations 19 and 31).
In contrast, when the residual error is decreased (i.e., tends to converge), the parameter 0 < λ2 < 1 is
used to make the step-size reduction more conservative. Hence, the step-size sequences from SRA
indeed satisfy the above conditions.
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Figure 5. Illustration of self-regulated averaging (SRA).

In Section 4, we use these five methods, i.e., the Newton method (Appendix A), the ant colony
algorithm, the simulated annealing algorithm, two improved algorithms, ISAA-CC and ISAA-SS to
solve the problem, and then compare the performance of them. The results show that two improved
algorithms proposed in this paper are better than others about solving the optimal solution.

4. Numerical Experiment

Due to the representation of Beijing–Tianjin railway in China which includes all railway traffic
modes, it is urgent for us to solve market shares on this line, and to judge the feasibility of operation
plan. This real-world case study in Beijing–Tianjin corridor in this section is implemented to verify
the applications of the proposed eight utility functions, a mixed logit model and five algorithms.
The problems in this paper, i.e., the estimation of unknown parameters, and the solution of likelihood
functions are all coded and solved by Python 2.7 Version in Pycharm on Windows 7 personal computer
with 3.4 Gb processor.

All data used in this numerical experiment are shown as follows. For example, essential
information, including operational frequency, running time and ticket price, of different railway
traffic modes in Beijing–Tianjin corridor from 12306.com is shown in Table 6.

Table 6. Information of different railway traffic modes.

Type Traffic Modes Frequency Running Time Ticket Price

S-train Common slow train 3 2 h 10 min Soft sleeper Hard sleeper Hard seat
RMB 99.5 RMB 64.5 RMB 18.5

K-train Fast train 13 2 h Soft sleeper Hard sleeper Hard seat
RMB 102.5 RMB 67.5 RMB 21.5

T-train Express train 5 1 h 40 min Soft sleeper Hard sleeper Hard seat
RMB 99.5 RMB 65.5 RMB 19.5

Y-train Tourist train 1 1 h 30 min Soft seat Hard seat -
RMB 33.5 RMB 21.5 -

Z-train Direct special 6 1 h 20 min Soft sleeper - -
express train RMB 102.5 - -

D-train EMU train 3 1 h 10 min Second seat Soft sleeper Hard sleeper
RMB 24 RMB 141 RMB 102

C-train Inter-city train 100 30 min Business seat First seat Second seat
RMB 174 RMB 88 RMB 54.5

G-train High-speed train 53 30 min Business seat First seat Second seat
RMB 174.5 RMB 94.5 RMB 54.5
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According to information of different railway traffic modes above, including running time and
ticket price, we can divide all train seats into nine grades which is shown in Table 7.

Table 7. Information of different seat grades.

Seat Grades Grades βms Tmin γms

Business seat of C-train and G-train First 99 0.15 0.1
Soft sleeper of D-train Second 89 0.17 0.2
Hard sleeper of D-train Third 79 0.19 0.3
Soft sleeper of Z-train, T-train, K-train and S-train Fourth 69 0.21 0.4
First seat of C-train and G-train Fifth 59 0.25 0.5
Hard sleeper of T-train, K-train and S-train Sixth 49 0.3 0.6
Second seat of C-train, G-train and D-train Seventh 39 0.38 0.7
Soft seat of Y-train Eight 29 0.5 0.8
Hard seat of Y-train, T-train, K-train and S-train Ninth 19 0.75 0.9

Then, in this numerical experiment, the Newton method, the ant colony algorithm, the simulated
annealing algorithm and two improved algorithms based on the simulated annealing algorithm
(ISAA-CC and ISAA-SS) are adopted to solve the model established in this paper, i.e., the mixed logit
model based on improved nonlinear utility functions. The likelihood estimator, i.e., θ̂ which is the
vector of parameters to be estimated, and the optimal solution, i.e., φ(θ̂) of the corresponding objective
function are obtained by five algorithms. Among them, the algorithm principle and experimental
results of the Newton method are shown in Appendix A.

4.1. Computations of Five Algorithms

4.1.1. Results of Ant Colony Algorithm

There are the results of the ant colony algorithm when initialized parameters are ρ = 0.9, Q = 1,
p0 = 0.2, ant_max = 110 and iter_max = 1000. The choosing probabilities of different passenger groups
and market shares of different railway traffic modes are shown in Table 8; and correspondingly the
likelihood estimated value is

θ̂ACA =



0.36649 0.23356 0.14638 0.15491 0.51441 0.16361 0.45006 0.13533
0.17568 0.14163 0.20485 0.39591 0.06941 0.27331 0.06589 0.09424
0.17735 0.45341 0.22754 0.40205 0.34847 0.30527 0.40613 0.40021
0.28048 0.17138 0.42123 0.04713 0.06771 0.25781 0.07792 0.37023
−1.32204 1.73792 7.66653 −5.99888 0.11048 1.17499 −0.61528 −3.93062
−0.53273 9.00299 −7.68427 8.65102 9.76036 −3.16137 6.10299 6.54772


.

Table 8. Market shares computed by the ant colony algorithm.

(Unit: %) Probabilities of Different Passenger Groups Market Shares
Low-Income Passengers Medium-Income Passengers High-Income Passengers

S-train 0.19493 0.04319 0.00031 0.23843
K-train 1.79652 1.15837 0.14346 3.09835
T-train 0.09347 0.20911 0.72672 1.02929
Y-train 0.50415 0.94739 2.06373 3.51527
Z-train 9.21536 3.45605 0.10014 12.77155
D-train 0.00084 0.00194 0.00761 0.01039
C-train 20.31588 24.48429 16.23912 61.03929
G-train 1.21302 3.02454 14.05987 18.29743
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4.1.2. Computation of Simulated Annealing Algorithm

There are the results of the simulated annealing algorithm when initialized parameters are T0

= 100, Tmin = 1e− 3, ω = 0.9 and iter_max = 1000. The choosing probabilities of different passenger
groups and market shares of different railway traffic modes are shown in Table 9; and correspondingly
the likelihood estimated value is

θ̂SAA =



0.21408 0.15535 0.29768 0.39595 0.29681 0.03521 0.52151 0.32206
0.19907 0.17063 0.17375 0.39159 0.11105 0.17564 0.08192 0.08671
0.12692 0.35264 0.20979 0.12505 0.26783 0.44408 0.28524 0.44486
0.45993 0.32138 0.31878 0.08741 0.32431 0.34507 0.11133 0.14637
1.70236 6.24121 2.21014 9.34219 0.41057 7.35221 7.17027 5.96812
4.81388 4.11327 4.96551 0.87155 5.61586 3.66091 7.15305 3.22823


.

Table 9. Market shares computed by the simulated annealing algorithm.

(Unit: %) Probabilities of Different Passenger Groups Market Shares
Low-Income Passengers Medium-Income Passengers High-Income Passengers

S-train 1.12259 0.77471 0.25678 2.15408
K-train 0.61782 0.76154 1.19499 2.57435
T-train 0.81984 0.44944 0.08037 1.34965
Y-train 1.23649 0.52862 0.04854 1.81365
Z-train 0.61727 0.62685 0.58522 1.82934
D-train 0.04823 0.11632 1.10444 1.26899
C-train 26.21268 27.33246 27.38921 80.93435
G-train 2.65841 2.74341 2.67377 8.07559

The models also show that the characteristics of low-income passengers, medium-income
passengers and high-income passengers in choosing traffic modes are different, as in Figure 6.

Figure 6. Characteristics of different income passengers in choosing traffic modes.

In fact, passenger groups with different income have different consumption habits. Generally
speaking, high-income passengers were apt to choose a time-saving, comfort, good service quality and
safety secured traffic modes regardless of fare while low-income passengers preferred to economical
traffic modes more than high-income passengers; and then medium-income passenger groups often
seek a more comfortable travel way with acceptable price, better service quality. The response in above
figure is that the choosing probabilities (Orange columns) are basically unchanged.
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4.1.3. Computation of ISAA-CC

There are the results of ISAA-CC when initialized parameters are T0 = 100, Tmin = 1e− 3 and
iter_max = 1000. The choosing probabilities of different passenger groups and market shares of
different railway traffic modes are shown in Table 10; and correspondingly the likelihood estimated
value is

θ̂ISAA−CC =



0.12386 0.10714 0.08256 0.17758 0.23826 0.13925 0.25367 0.19062
0.21058 0.18295 0.20462 0.49699 0.12364 0.14583 0.09122 0.09442
0.36069 0.37474 0.43201 0.23511 0.17696 0.37751 0.32207 0.38192
0.30487 0.33517 0.28081 0.09032 0.46114 0.33741 0.33304 0.33304
4.44111 1.81442 0.78123 5.81542 3.22075 0.55967 5.87164 6.15154
9.85848 0.88064 2.72219 6.30403 6.88228 0.39592 8.20899 5.41357


.

Table 10. Market shares computed by ISAA-CC.

(Unit: %) Probabilities of Different Passenger Groups Market Shares
Low-Income Passengers Medium-Income Passengers High-Income Passengers

S-train 0.65306 0.53241 0.30614 1.49161
K-train 2.22391 2.15581 1.97175 6.35147
T-train 0.89405 0.97312 1.21411 3.08128
Y-train 0.29216 0.26248 0.19584 0.75048
Z-train 0.80645 0.75232 0.62084 2.17961
D-train 0.61448 0.61119 0.59892 1.82459
C-train 17.78366 18.03989 18.63512 54.45867
G-train 10.06556 10.00609 9.79064 29.86229

Then, we test the stability of this improved algorithm proposed in this paper after 30 times
experiments, and results including optimum solutions and running time in each calculation are shown
in Figure 7.

Figure 7. Final solutions of 30 times experiments.

Moreover, we calculate the mean and variance of these optimum solutions in experiment results
to analysis the stability, i.e., E =−1.2721, S2 = 0.009712 = 9.42841e− 05� 1e− 03. So we can conclude
that the improved algorithm is very stable. Among them, the maximum optimal solution is −1.25441.
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4.1.4. Computation of ISAA-SS

There are the results of ISAA-SS when initialized parameters are T0 = 100, Tmin= 1e− 3 and ω = 0.9.
The choosing probabilities of different passenger groups and market shares of different railway traffic
modes are shown in Table 11; and correspondingly the likelihood estimated value is

θ̂ISAA−SS =



0.09806 0.08318 0.12239 0.11659 0.17376 0.17589 0.21286 0.22458
0.23704 0.20141 0.22659 0.59322 0.13269 0.16139 0.10224 0.10569
0.33686 0.44118 0.15059 0.03477 0.41618 0.36919 0.31531 0.32482
0.32804 0.27423 0.50043 0.25542 0.27737 0.29353 0.36959 0.34491
2.75383 7.70283 9.17939 8.37879 8.51512 6.56612 4.24546 2.41824
3.11007 7.98969 8.11517 4.14189 7.34061 6.67762 8.42431 0.27669


.

Table 11. Market shares computed by ISAA-SS.

(Unit: %) Probabilities of Different Passenger Groups Market Shares
Low-Income Passengers Medium-Income Passengers High-Income Passengers

S-train 0.47426 0.45893 0.41196 1.34515
K-train 2.28111 2.23759 2.08312 6.60182
T-train 0.79375 0.93598 1.42719 3.15692
Y-train 0.09546 0.15845 0.60417 0.85808
Z-train 1.13772 1.22099 1.44641 3.80512
D-train 0.43591 0.32485 0.14478 0.90554
C-train 18.39575 18.64658 18.95445 55.99678
G-train 9.71939 9.34995 8.26125 27.33059

4.2. Contrast of Five Algorithms

There are experimental comparison results of these five algorithms, including the optimum
solution of the log-likelihood function and running time, shown in Table 12.

Table 12. Comparison results of five algorithms in this numerical experiment.

NM ACA SAA ISAA-CC ISAA-SS

Optimum solutions −2.39049 −1.82703 −1.29297 −1.25441 −1.25924
Running time 60,904 s 1927 s 518 s 205 s 858 s

It can be concluded from the above table that ISAA-CC proposed in this paper has the shortest
running time and the optimal final objective function value. ISAA-SS proposed in this paper is second
to ISAA-CC about the optimum solutions but also is second to the simulated annealing algorithm
about the running time.

The functional relationships between the optimum solutions and the iteration times obtained
by above four heuristic algorithms are shown in Figure 8. Among them, the horizontal coordinate
represents iteration times and vertical coordinates represents the optimal solution of each iteration.
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Figure 8. Iterative process comparison of three heuristic algorithms.

It can be seen from the above figure that, as the times of iterations increases, the simulated
annealing algorithm fluctuates greatly during the search process, but after more than 80,000 iterations,
the algorithm converges to the optimal solution. Two improved algorithms have faster convergence
than the basic one, and they both converge to the optimal solution until about 20,000 iterations. Both
are better than the convergence speed of the ant colony algorithm.

In summary, the aim of the model we built is to maximize the log-likelihood function and then in
order to maximize utility of all passenger groups. So according to the table and figure above, we can
conclude that these two improved algorithm proposed in this paper are the best than any others.

The results, i.e., market shares of different railway traffic modes, calculated by these five
algorithms, are shown in Figure 9.

From this figure, we can see that the rankings of market shares solved by all algorithms have
no big differences. Subject to ISAA-CC, due to its high speed, appropriate departure time and high
running frequency, C-train is one of the most popular railway passenger products in Beijing–Tianjin
corridor at any income levels. Not only because of its high speed but also due to its appropriate
departure time and high running frequency. On the contrary, both the market shares of S-train and
T-train are the smallest in all railway traffic modes due to their slowest speed. Moreover, due to the
short travel time from Beijing to Tianjin and the less demand for tourist trains, the market share of
Y-train is relatively small. Moreover, we all know that the departure time of D-train is almost at 9
o’clock pm or later and the overnight D-train is mainly established for long-distance passengers, so the
market shares of this train is small due to inappropriate departure time.
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Figure 9. Comparison of five algorithms in solving market shares.

5. Conclusions and Future Researches

The method of solving market shares proposed in this paper is a common method for managing
the passenger flow in order to reduce the mismatch between transportation resources allocation and
passenger demand. To characterize the problem in a mathematical way, a mixed logit model based on
improved nonlinear utility functions is formulated in this paper. According to maximum likelihood
estimation, the likelihood function is formulated to maximize the utility of all passenger groups. Since
the proposed model consists of a large number of both variables and parameters, the computational
intensity becomes a significant problem in the solution process. In view of this fact, the model is solved
by five algorithms, the Newton method, the ant colony algorithm, the simulated annealing algorithm
and two improved algorithms based on the simulated annealing algorithm (ISAA-CC and ISAA-SS).
Furthermore a real-world instance with operation data of the Beijing–Tianjin corridor is implemented
to demonstrate the performance and effectiveness of the proposed approaches. Relatively speaking,
the experimental results show that the two improved algorithms proposed in this paper have the
shortest running time, the optimal final objective function value and the fastest convergence speed.
Furthermore, subject to these two improved algorithms, C-train is one of the most popular railway
passenger products in the Beijing–Tianjin corridor. Thus from the enterprise’s point of view, it is
recommended that the railway department invest more cost in C-trains to get more passenger demand
and operational revenue.

Further research could focus on the following several aspects. (a) With a series of passenger
demand data, how to generate a more robust and reliable optimal model is a significant topic for
further research. (b) Due to the over-length of this paper, we only designed two improved heuristic
algorithms based on the simulated annealing algorithm to solve the problem. More effective heuristic
algorithms could also be studied in our future research.

Author Contributions: Conceptualization, B.H.; methodology, B.H.; validation, B.H.; formal analysis, B.H.;
investigation, J.B.; resources, B.H. and S.R. and J.B.; data curation, S.R.; writing—original draft preparation, B.H.;
writing—review and editing, B.H.; visualization, B.H.; supervision, B.H.; project administration, S.R.; funding
acquisition, S.R. and B.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by National Key R & D Program of China, grant number 2018YFB1201401, and
the Fundamental Research Funds for the Central Universities, grant number 2018JBM019.

Conflicts of Interest: (a) Declare conflicts of interest or state: Author Bing Han, Author Shuang Ren and Author
Jingjing Bao declare that they have no conflict of interest. (b) Ethical approval: This article does not contain any
studies with human participants performed by any of the authors. (c) Informed consent: Informed consent was
obtained from all individual participants included in the study.



Sustainability 2020, 12, 1406 23 of 25

Appendix A. Newton Method

In this paper, we also estimate the unknown parameters by the Newton method which
summarized the procedure in following Algorithm A1.

Algorithm A1: A traditional algorithm.

Step 1. Input the initial value θ(0).
Step 2. If the function φ(θ) has a continuous second derivative φ′′(θ(0)) of θ(0), then the first

derivative φ′(θ(0)) expands of θ(0) by

φ′(θ) = φ′(θ(0)) + φ′′(θ(0)) ·
(

θ − θ(0)
)
+ O

[
|| θ − θ(0) ||2

]
.

Step 3. Because of φ′(θ(0))=0, put it into that formula, then there is

θ = θ(0) +
[
−φ′′(θ(0))

]−1
· φ′(θ(0)).

Step 4. Iterate and return the parameter θ̂ to be estimated according to the iterative formula, i.e.,

θ(i+1) = θ(i) +
[
−φ′′(θ(i))

]−1
· φ′(θ(i)) where i is the number of iterations until

|| θ(i+1) − θ(i) ||< ε where ε is sufficiently small.

We can see that the Newton method takes a polynomial solution time because the inverse matrix
of the Hessian matrix needs to be solved in each step. There are the results of the Newton method.
The parameter values are

θ̂NM =



0.3768 0.3801 0.3981 0.3033 0.2371 0.1749 0.2441 0.3905
0.3533 0.1105 0.3701 0.2078 0.3312 0.2736 0.3742 0.1987
0.0653 0.2553 0.1692 0.1972 0.3706 0.0871 0.2116 0.3117
0.2046 0.2541 0.0626 0.2917 0.0611 0.4644 0.1701 0.0991
0.7679 8.5023 −9.0031 −5.4908 5.5263 −4.9141 −4.8906 −5.9355
−5.1299 −7.6766 5.8837 −4.2128 −7.0455 −9.0535 2.1432 4.1033


.

The probabilities and market shares are shown in Table A1.

Table A1. Market shares computed by the Newton method.

(Unit: %) Probabilities of Different Passenger Groups Market Shares
Low-Income Passengers Medium-Income Passengers High-Income Passengers

S-train 1.95566 0.51933 0.01213 2.48712
K-train 3.61539 0.94379 0.02108 4.58026
T-train 4.26496 2.69122 2.25409 9.21027
Y-train 2.97179 3.23895 3.33122 9.54196
Z-train 2.39705 0.89547 1.39025 4.68277
D-train 1.49488 2.83946 1.56699 5.90133
C-train 25.25601 8.35767 26.70956 60.32324
G-train 0.62972 1.29245 7.25221 9.17438

References

1. Train, K.E. Properties of discrete choice models. In Discrete Choice Methods with Simulation; Cambridge
University Press: Cambridge, UK, 2003; pp. 15–37.

2. Train, K.E. Properties of discrete choice models. In Discrete Choice Methods with Simulation, Second Edition;
Cambridge University Press: Cambridge, UK, 2009; pp. 9–33.

3. Marschak, J. Binary choice constraints on random utility indications. In Economic Information, Decision, and
Prediction; Stanford University Press: Stanford, CA, USA, 1960; pp. 312–329.



Sustainability 2020, 12, 1406 24 of 25

4. Train, K.E.; McFadden, D.; Ben-Akiva, M. The demand for local telephone service: A fully discrete model of
residential calling patterns and service choice. Rand J. Econ. 1987, 18, 109–123. [CrossRef]

5. McFadden, D. Conditional logit analysis of qualitative choice behavior. In Frontiers in Econometrics; Academic
Press: New York, NY, USA, 1973; pp. 105–142.

6. McFadden, D. Modelling the choice of residential location. In Cowles Foundation Discussion Papers;
Yale University Press: New Haven, CT, USA, 1977; p. 673.

7. Hensher, D.A.; Rose, J.M.; Greene, W.H. Getting started modeling: The workhorse—Multinomial logit.
In Applied Choice Analysis; Cambridge University Press: Cambridge, UK, 2015; p. 1188.

8. McFadden, D.; Train, K.E. Mixed MNL models for discrete response. J. Appl. Econom. 2000, 15, 447–470.
[CrossRef]

9. Hess, S.; Polak, J.W. Development and Application of a Model for Airport Choice in Multi-Airport Regions;
CTS Working Paper; Centre for Transport Studies, Imperial College London: London, UK, 2004.

10. Hensher, D.; Greene, W.H. The mixed logit model: the state of practice. Transportation 2003, 30, 133–176.
[CrossRef]

11. Hess, S.; Polak, J.W. On the use of discrete choice models for airport competition with applications to the San
Francisco Bay area Airports. Paper presented at the 10th Triennial World Conference on Transport Research,
Istanbul, Turkey, 4–8 July 2004.

12. Hess, S.; Polak, J.W. Mixed logit estimation of parking type choice. In Proceedings of the 83rd Annual
Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 January 2004.

13. Ma, B.T.; Zhang, Y.X.; Zhao, C.X. Estimation of the distributing rates of high-speed passenger flows with the
logit model. J. North. Jiaotong Univ. 2003, 27, 67–69.

14. Hess, S.; Polak, J.W. Mixed logit modeling of airport choice in multi-airport regions. J. Air Transp. Manag.
2005, 11, 59–68. [CrossRef]

15. He, Y.Q.; Mao, B.H.; Chen, T.S.; Yang, J. The mode share model of the high-speed passenger railway line and
its application. J. China Railw. Soc. 2006, 28, 18–21.

16. Park, Y.; Ha, H.K. Analysis of the impact of high-speed railroad service on air transport demand. Transp. Res.
Part E Logist. Transp. Rev. 2006, 42, 95–105. [CrossRef]

17. Feng, H.H.; Zhu, C.K. Application of rough set theory in the Inter-city passenger traffic sharing. J. Univ. Sci.
Technol. Suzhou Eng. Technol. 2007, 20, 30–33, 38.

18. Ge, D.S.; Liu, Z.K. Research on mixed logit model improved by value engineering method. Value Eng. 2008,
1, 78–80.

19. Jou, R.C.; Hensher, D.A.; Hsu, T.L. Airport ground access mode choice behavior after the introduction of a
new mode: A case study of Taoyuan International Airport in Taiwan. Transp. Res. Part E Logist. Transp. Rev.
2011, 47, 371–381. [CrossRef]

20. Huang, D.M.; Qin, S.H.; Zhao, C.C. Application of logit model in passenger flow sharing forecast of
Nan-Guang high-speed railway. Railw. Eng. 2012, 11, 45–48.

21. Chen, J.; Yan, Q.P.; Yang, F.; Hu, J. SEM-logit integration model of travel mode choice behaviors. J. South
China Univ. Technol. Nat. Sci. Ed. 2013, 41, 51–57, 65.

22. Hensher, D.; Greene, W.H. Passenger airline choice behavior for domestic short haul travel in South Korea.
J. Air Transp. Manag. 2014, 38, 43–47.

23. Lee, J.K.; Yoo, K.E.; Son, K.H. A study on travelers’ railway traffic mode choice behavior using the mixed
logit model: A case study of the Seoul-Jeju route. J. Air Transp. Manag. 2016, 56, 131–137. [CrossRef]

24. Fishburn, P.C. Utility Theory. Manag. Sci. 1968, 14, 335–378. [CrossRef]
25. Wardman, M. The value of travel time a review of British evidence. J. Transp. Econ. Policy, 1998, 32, 285–316.
26. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis; Politecnico di Milano, Milan,

Italy, 1992.
27. Dorigo, M.; Member, S. Gambardella L.M.. Ant colony system: A cooperative learning approach to the

traveling salesman problem. IEEE Trans. Evol. Comput. 1996, 1, 53–66. [CrossRef]
28. Metropolis, N. Algorithms in unnormalized arithmetic. Numer. Math. 1953, 7, 104–112. [CrossRef]
29. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Ant Colony System: A cooperative learning approach to the

traveling salesman problem. Science 1983, 220, 671–680. [CrossRef]
30. Chen, A.; Ryu, S.; Xu, X.D.; Choi, K. Computation and application of the paired combinatorial logit stochastic

user equilibrium problem. Comput. Oper. Res. 2014, 43, 68–77. [CrossRef]

http://dx.doi.org/10.2307/2555538
http://dx.doi.org/10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
http://dx.doi.org/10.1023/A:1022558715350
http://dx.doi.org/10.1016/j.jairtraman.2004.09.001
http://dx.doi.org/10.1016/j.tre.2005.09.003
http://dx.doi.org/10.1016/j.tre.2010.11.008
http://dx.doi.org/10.1016/j.jairtraman.2016.04.020
http://dx.doi.org/10.1287/mnsc.14.5.335
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1007/BF01397684
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1016/j.cor.2013.08.022


Sustainability 2020, 12, 1406 25 of 25

31. Liu, H.; He, X.; He, B.S. Method of successive weighted averages (MSWA) and self-regulated averaging
schemes for solving stochastic user equilibrium problem. Netw. Spat. Econ. 2009, 9, 485–503. [CrossRef]

32. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
33. Blum, J.R. Multidimensional stochastic approximation methods. Ann. Math. Stat. 1954, 25, 737–744.

[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11067-007-9023-x
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1214/aoms/1177728659
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	The Focus of This Paper

	Mathematical Formulation
	Problem Description
	Mathematical Model
	Mixed Logit Model
	Improved Nonlinear Utility Functions
	Maximum Likelihood Estimation


	Solution Approaches
	Ant Colony Algorithm
	Simulated Annealing Algorithm
	Improved Algorithms Based on Simulated Annealing Algorithm

	Numerical Experiment
	Computations of Five Algorithms
	Results of Ant Colony Algorithm
	Computation of Simulated Annealing Algorithm
	Computation of ISAA-CC
	Computation of ISAA-SS

	Contrast of Five Algorithms

	Conclusions and Future Researches
	Newton Method
	References

