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Abstract: Global warming is inevitably the cause of local climate change, which will have a
profound impact on regional ecology, especially in the desertified steppe and steppefied desert
transition zones with fragile ecological environments. In order to investigate the change trends of
precipitation, temperature and wind speed for effectively realizing the restoration and protection of
desert ecosystems, a combination forecasting strategy including the data pre-processing technique,
sub-models selection and parameter optimization was proposed and three numerical simulation
experiments based on the combination model with the weights optimized by the particle swarm
optimization algorithm were designed to forecast the precipitation, temperature and wind speed in
the southeastern margin of the Tengger Desert in China. Numerical results showed that the proposed
combination prediction method has higher forecasting accuracy and better robustness than single
neural network models and hybrid models. The proposed method is beneficial to analyze climate
change in arid regions.

Keywords: precipitation prediction; variational mode decomposition; particle swarm optimization
algorithm; combination model; the Tengger Desert; biological soil crust

1. Introduction

Global warming and changes in precipitation [1] will inevitably affect the composition, structure
and function of biological soil crust (BSC) [2,3]. As a pioneer of degraded vegetation restoration [4,5],
BSC has become an important organization on the surface of arid and semiarid areas through its
microbial community metabolism [3,6]. It is widely spread in arid and semiarid regions as one of the
major components of desert ecosystems because BSC has developed strong adaptability to resistant
the drought, extreme temperatures, and UV-B radiation [7,8] to adapt the extreme environment. Its
existence and development is an important indicator of the reversal of the ecological environment [9],
as well as an important indicator for the evaluation of the health of desert ecosystems [10].

Studies have shown that the main a-biological factors affecting BSC are water, temperature, wind
speed, light, etc., among which water is considered to be the most important a-biological factor affecting
the ecological and physiological functions of BSC [2,8,11]. Almost all studies on the ecological and
physiological functions of BSC involve the influence of water [10]. The scarcity of rain and high
temperature are two major constraint factors during the growing season in the desert [3]. Temperature
and water often determine the distribution limit of plants, restricting the germination and growth rate
of plants and all physiological changes in plants. Temperature is also one of the important factors
affecting plant growth and development [3,6,12]. The physiological functions and metabolic rate of BSC
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are closely related to temperature changes. Wind speed is an important abiotic factor which affects the
physiological, biochemical, material metabolism and ecological adaptability of BSC, studies show that
the higher the wind speed often acompanied by the lower the development degree of BSC [2,5,8,12].
Carbon dioxide and other meteorological factors, such as temperature, water and light, jointly affect
the photosynthesis of BSC, and light is only second to water which has an important impact on the
ecological and physiological characteristics of BSC [10,12]. However, studies have shown that BSC
photosynthesis does not require much light, and the response of photosynthesis to light is affected
by water [3,13]. At present, the research on the response of BSC to meteorological factors such as
precipitation, temperature and wind speed focuses on the physiological and biochemical effects of
different kinds of plants [14]. The change of community species richness, abundance, coverage and
biomass of BSC caused by climate change are important to measure the evolution of ecological structure
in arid and semiarid regions [2,10,15], therefore, it is particularly important to forecast the precipitation,
temperature, wind speed respectively under background of global climate warming [16-18].

Due to the chaotic and intrinsic complexity of weather parameters, no single method or model can
perform well in the forecasting process [19-22] In order to improve prediction accuracy, hybrid models
based on data pre-processing technique [23], parameter selection and optimization technique combined
with artificial intelligent models or conventional statistical models being proposed [24-26]. The results
proved that the preprocessing of the original data could effectively decrease the forecasting errors [27].
The hybrid models combined with the intelligent optimization algorithm such as particle swarm
optimization (PSO) [28], cuckoo search (CS) [29], genetic algorithm (GA) [30], whale optimization
algorithm (WOA) [31] grey wolf optimizer(GWO) [32] etc. can solve part of the above problems and
have better performance in the meteorological time series forecasting with higher practicability than
the traditional statistical models and single machine learning models [33,34]. In fact, combined the
different data preprocessing techniques, different neural network models and different intelligent
optimization algorithm can construct different hybrid model, and literature shows that those hybrid
forecasting models have been widely used in a broad range of applications with high prediction
accuracy and robust forecast performance [21,28,33-35]. However, few studies consider selecting
the different data pre-processing techniques based on the different evaluation criteria and model
parameter selection at the same time. In fact, there is no particular one model that can suitable for all
cases, we should compare the model performance under specific conditions, and make incremental
improvements based on knowledge gained. Hence, new efficient forecasting methods with improved
accuracy under specific circumstances are still highly desirable.

In this paper, in order to investigate the changing trend of precipitation, temperature and
wind speed, three numerical simulation experiments based on the combination model with the
weights optimized by the particle swarm optimization algorithm are designed to forecast the monthly
precipitation (MP), the monthly mean temperature (MMT) and the monthly average wind speed
(MAWS) respectively. At first, three popular data pre-processing techniques, Daubechies wavelet
transform (DWT) [36], the ensemble empirical mode decomposition method (EEMD) [37-39] and
variational mode decomposition (VMD) [40] are selected by several de-noising criteria to clean data
and extract the basic characteristics from the non-stationary meteorological time series, which can
counterbalance the weakness of predicting the precipitation, temperature and wind speed time
series directly with large error. Secondly, four popular mature and robust neural network models,
back-propagation neural network (BPNN), support vector machine (SVM) [41], extreme learning
machine (ELM) [42,43] and nonlinear auto-regressive models (NAR) [44] are selected to forecast the
precipitation, temperature and wind speed separately. It is crucial for neural network models to
appropriately processing input samples in the precipitation, temperature and wind speed forecasting
processes since different input dimensions or different sizes of training data can produce different
forecast results with various accuracies. Hence, the longitudinal data selection (LS) method is
adopted to determine the input dimensions [45]. Due to the selection of neural network type and
the weight parameters of sub-model affects the forecasting performance, the PSO algorithm [28],
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which is an optimized algorithm based on swarm intelligence with better performance than genetic
algorithm(GA) [30], is adopted to optimize the weights of the traditional combination model. Thus,
a combination PSO-traditional combination model (TCM) model is established by combining single
neural network models including BPNN, SVM, ELM and NAR and the hybrid models including
VMD-LS-BPNN, EEMD-LS-BPNN, DWT-LS-BPNN, VMD-LS-SVM, EEMD-LS-SVM, DWT-LS-SVM,
VMD-LS-ELM, EEMD-LS-ELM, DWT-LS-ELM, VMD-LS-NAR, EEMD-LS-NAR and DWT-LS-NAR to
forecast MP, MMT and MAWS from January, 2011 to December, 2018 respectively. Finally, there are
five evaluation criteria including Nash-Sutcliffe coefficient of efficiency (NSCE), mean absolute error
(MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and normalized
mean squared error (NMSE) are used to evaluate the forecasting precision and stability of PSO-TCM.

2. Study Area and Research Data

China is seriously affected by sandstorm and desertification, especially in the desertified steppe
and steppefied desert transition zones to the west of the Helan mountain with annual precipitation less
than 200 mm, this area is seriously affected by desertification and sandstorm, and it is also the key area
for the construction of non-irrigation reparation and the construction of national ecological barrier in
the north of China [4,5]. The meteorological factors such as temperature, precipitation and wind speed
were collected at the Shapotou Desert Research and Experiment Station (37.270N, 104.570E), operated
by the Chinese Academy of Sciences in the southeastern margin of the Tengger Desert [9,10]. This
region is a transition zone from desertification grassland to steppe desert, with an altitude of 1339 m.
This area is covered with the tall and dense trellised crescent-shaped dune chains, and the soil matrix is
loose and barren flowing sand-sand soil. Precipitation is the only recharge water source in this region,
which plays an important role in maintaining the stable and sustainable development of the desert
ecosystem. The change of soil moisture is divided into three periods: the water loss period from April
to summer and autumn rainy seasons, the replenishment period in summer and autumn rainy seasons,
and the stable period in winter and spring. The influence of precipitation is only shown in the soil
layer of 0~40 cm, and the stable water content of the sand layer is only 2%~3% [11]. From 1991 to
2018, the average temperature was 10.78 °C, the low-temperature extreme value was —26.2 °C and the
high-temperature extreme value was 40 °C, the average sunshine hours were 2649.725 h, the average
annual precipitation was 180.58 mm but the average evaporation was 2520.4 mm and the average wind
speed was 2.8 m/s. Figure 1 shows the curve and histogram of MP, MMT and MAWS time series and
Table 1 shows the numerical characters of those meteorological factors for study area from the year
1991 to 2018. The Kolmogorov-Smirnov test result shows that the MAP, MMT and MAWS time series
disobey normal distribution, which can also be intuitively seen from the histogram in Figure 1 or from
the skewness and kurtosis in Table 1.

Table 1. The numerical characters of the meteorological factors time series for the study area.

MF Mean Median Range  Skewness Kurtosis ~ Minimum Maximum
MP 15.05 + 20.10 7.55 117.30 1.99 4.37 0.00 117.30
MMT 10.77 + 10.70 11.80 38.00 -0.21 -1.34 -11.30 26.70

MAWS 2.80 £ 0.66 2.80 3.20 0.01 -0.43 1.20 4.40
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Figure 1. The curve and histogram of mean absolute percentage (MAP), monthly mean temperature
(MMT), monthly average wind speed (MAWS) time series from 1991 to 2018.

3. Methods

3.1. Data Pre-Processing Techniques

In reality, due to the fact that the precipitation, temperature and wind speed are closely related to
other meteorological parameters such as barometric pressure, airflow and humidity, the precipitation,
temperature and wind speed time series could be easily influenced by the landform and geomorphology
parameters. Predicting precipitation, temperature and wind speed with the time series directly often
has large errors. In order to overcome those deficiencies, the data pre-processing techniques such as
DWT, EEMD and VMD are used to reduce noises.

3.1.1. Daubechies Wavelet Transform

Given a meteorological factor time series of x(t) with the length N, the DWT consists of log,N
steps at most, and is used to decomposes the time series into low-pass filter A and high-pass filter D,
the low-pass filter A reflects the main features and the high-pass filter D represents random factors
often called the noise of the signal [36]. The DWT can be achieved by using the Matlab wavelet toolbox
and the decomposition processes is shown in Figure 4.

3.1.2. The Ensemble Empirical Mode Decomposition Method

The EEMD, which is extended from EMD to overcome the drawback of frequency mixing, is
widely used to decompose non-linear and non-stationary signal sequences [37-39]. It defines the true
IMFs components as the mean of an ensemble of trials and each trial consists of the decomposition
results of the signal plus a white noise of finite amplitude.
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3.1.3. The Variational Mode Decomposition Method

VMD is a new signal decomposition method that decomposes the complex signals into amplitude
modulation and frequency modulation signals [40]. It is a non-stationary signal processing method
with preset scale, which can be used in wind time series analysis. In the processes of obtaining the
components of the signal, VMD completely abandoned the EMD using the loop filter processing method,
through an iterative search for the optimal solution of variational model to determine each modal
function of center frequency and bandwidth. The signal frequency band was adaptively decomposed
to get the default scale of several band-limited intrinsic mode functions, which is a kind of completely
non-recursive signal decomposition method. The overall framework of the VMD is the variational
problem, which mainly includes constructing the variational problem and its solution. Compared
with the recursive filter mode of EMD and EEMD, VMD transforms the signal into non-recursive and
variational mode decomposition mode. The principle and mathematical derivation of VMD can be
found in Dragomiretskiy K. et al., 2014 [40].

In this paper, precipitation, temperature and wind speed time series are decomposed as a series of
bandwidth-limited sub-sequences to reduce the complexity and instability of the original time series
by using WT, EEMD and VMD. Due to the different time series have their inherent nonlinear variation
rules, the collected data would be polluted with different forms of noise for different reasons, which
means that no single de-noising method can realize the de-noising of all different time series, different
de-noising method should be used to clean data set, then the best de-noising method can be selected
according to one or more evaluation criteria.

3.2. The Single Neural Network Forecasting Models

3.2.1. Back-Propagation Neural Network

As a mature and robust neural network model, the BPNN was proposed by Rumelhart and Mc
Celland in 1986, and has been widely used in non-linear curve fitting to uncover the nonlinearity even
in the absence of the relationship information between inputs and outputs. The BPNN usually consists
of an input layer, one or more hidden layers and an output layer. The nodes of each adjacent layer are
interconnected with weights. Each node in the network is a neuron whose function is to calculate the
inner product of the input vector and weight vector by a nonlinear transfer function to get a scalar
result. BPNN is a feed-forward neural network practiced by the back-propagation algorithm [25].

3.2.2. Support Vector Machine

SVM was proposed by Cortes and Vapnik in 1995 to solve the classification and predict problems
under the limited sample sizes [41]. The main idea of SVM for forecasting is to map the data into a
high dimensional feature space via the kernel function and construct a linear regression model in high
dimensional space based on the structural risk minimization principle.

3.2.3. Extreme Learning Machine

ELM is a single-layer feed-forward neural network [42,43] and it achieves the learning process
with the input weights and hidden biases are initialized with random numbers, the calculation of the
output weight can be obtained by solving the inverse operation on the hidden layer output matrix.
Due to the input weights and hidden biases is randomly initialized, the feature mapping of the ELM is
also random.

3.2.4. Nonlinear Auto-Regressive models (NAR)

A typical NAR neural network consists of input layer, hidden layer and output layer and input
delay function [34,44] the output of NAR is denoted as

y(t) = fly(t=1),y(t=2),--- ,y(t-4d)), 1)
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where d is the delay order. Compared with the normal neural network model, the difference between
the NAR model and the BPNN model is that the delay function is added in the first hidden layer
to record previous data and the delay order determines the number of neural network inputs. The
optimal network model can be selected by adjusting the number of delays, neurons and hidden layers.

3.3. The Ensemble Forecasting Model

3.3.1. The Hybrid Forecasting Model

In this paper, neural networks such as BPNN, SVM, ELM, NAR were selected as the basic
forecasting model to forecast the precipitation, temperature and wind speed of the Tengger desert in
China. Due to the original precipitation time series data are full of noise, as predicting precipitation
with the time series directly often has a large error. The DWT, EEMD and VMD were selected separately
to eliminate the noise in the original data. It is already widely known that different input dimensions
can produce different forecast results with various accuracies, therefore, it is crucial for BPNN, SVM,
ELM, NAR to determine the input samples for better forecasting performance. In this study, the LS
method was adopted to determine the input dimensions. The main step of the hybrid VMD-LS-BPNN,
EEMD-LS-BPNN, DWT-LS-BPNN VMD-LS-SVM, EEMD-LS-SVM, DWT-LS-SVM, VMD-LS-ELM,
EEMD-LS-ELM, DWT-LS- ELM, VMD-LS-NAR, EEMD-LS-NAR, DWT-LS-NAR models are listed
as follows:

Step 1. VMD, EEMD and DWT are applied to decompose the original time series and extract
the basic characteristics from the non-stationary precipitation, temperature and wind speed time
series, respectively.

Step 2. The best de-noising method is selected according to the NSCF [46] and RMSE [45].

Step 3. The longitudinal data selection method is used to determine the input dimensions. It divides
the original data set into subsets according to a particular date and uses the dimension (d) of input
data set determined by BPNN, SVM, ELM, NAR to select training samples and testing samples. In the
iterative process, let i denote the starting point of the sample selection, the group of training sample
input is a vector from i 4 1 to i + d, and the output isi + d + 1 from the subset. Testing samples input
is a vector from i + 2 to i+ d + 1 the input dimension here is three and the previous forecasting results
will also be applied to calculate the future-step results.

Step 4. Four neural network models BPNN, SVM, ELM, NAR were selected to forecast the original time
series and de-noised time series of precipitation, temperature and wind speed based on the historical
data, respectively.

Step 5. The evaluation criteria NSCE, MAE, RMSE, MAPE and NMSE, which are defined and shown
in Table 2, were used to compare the forecasting performance of single BPNN, SVM, ELM, NAR
neural network and the hybrid VMD-LS-BPNN, EEMD-LS-BPNN, DWT-LS-BPNN, VMD-LS-SVM,
EEMD-LS-SVM, DWT-LS-SVM, VMD-LS-ELM, EEMD- LS-ELM, DWT-LS-ELM, VMD-LS-NAR,
EEMD-LS-NAR, DWT-LS-NAR models.
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Table 2. The model evaluation criteria of Nash-Sutcliffe coefficient of efficiency (NSCE), mean absolute
error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE) and normalized
mean squared error (NMSE).

Metric Description Equation
i (xi-%;)?
NSCE Nash-Sutcliffe Coefficient of Efficiency NSCE=1-5 —
i:l(Xi_X)
n
MAE Mean Absolute Error MAE = % Y |x; — &
i=1
n
RMSE Root Mean Squared Error RMSE = % |x; — J?,'I2
i=1
n a
MAPE Mean Absolute Percentage Error MAPE = % Y, |%| X 100%
=1
. 1 n Xi—%2:\2
NMSE Normalized Mean Squared Error NMSE = Y, (%)
=1

In Table 2, x; and %; represent the i-th actual and forecasted values(or de-noised data), respectively,
and 7 is the sample size.

3.3.2. The Traditional Combination Model Optimized by the Particle Swarm Optimization Algorithm
The TCM takes the form

m
yi=Y Wiyt =12, @)
j=1
where y; denote the output of TCM at time ¢ and y;; denote the forecasting results of the j-thforecast
model for time series x¢, w; is the weight of the j-th forecast model which are all constrained to be
w; € [0,1] and meet the normative constraint Z}":l w; = 1. The best weight w; of the jth,j =1,2,---m
forecast model can be obtained by using the particle swarm optimization(PSO) to solve the following
optimization problem:
T T m m
minobj = Y, &2, = Y. Y Y wiwje; e,
=1 t=1j=1i=1
y w i = 1, (3)
S.t.q j=1
wj = 0,j=12,---m.

where ¢ it =Xt —Yjpt= 1,2,--- T denote the residual of thej-th individual model at time .

In order to fast and effective get the weight of the traditional combination model to enhance the
forecasting performance, the evolutionary algorithms, PSO is applied to optimize the weight of TCM.
The particle swarm optimization technology and has been widely applied to non-linear optimization
problems [28]. It can solve both continuous and discrete optimization problems, and this is because
that PSO only needs function evaluations instead of initial values. Besides, it can also escape local
optimal solutions. In the standard PSO algorithm, the basic idea is that the particles adjust their speed
based on their experience. The main idea of PSO is as following;:

Let x; = (xj1,Xj2,---,XxiN) represent the position of the i-th particle, P; = (Pj1,Pp, -+, PiN)
represent the best position, that is Pp.y, and V; = (Vj1, Vip,- -+, Vin) denote the speed of the particles,
Qpest represent the index of the best particle among all the particles in the group. The update of particles’
speed and position using the following formulas:

vig(t+1) = woig(t) + c1Us (pig — Xia(t)) + c2Uo(&pest — Xia(t)), 4)
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Xig(t+1) = x34(t) +oi(t + 1), @)

where c; and c; are acceleration coefficients, w is the inertia factor, U; and U, are two independent
identically distribute random variables uniformly distributed in the range of [0, 1] and N represents
the number of particles. The proper value of inertia weight w provides a balance between global and
local explorations and lower iteration times to find an adequately optimal solution.

4. Results and Discussion

In this section, three simulation experiments are designed to forecast the MP, MMT and MAWS time
series respectively, the experimental results and related analysis will be included in order to demonstrate
the forecasting performance of proposed four single neural network forecasting models (BPNN,
SVM, ELMNAR) and twelve hybrid models (VMD-LS-BPNN, EEMD-LS-BPNN, DWT-LS-BPNN,
VMD-LS-SVM, EEMD-LS-SVM, DWT-LS-SVM, VMD-LS-ELM, EEMD-LS-ELM, DWT-LS-ELM,
VMD-LS-NAR, EEMD-LS-NAR, DWT-LS-NAR) models and one traditional combination model
(TCM) optimized by the PSO algorithm.

4.1. Experiment I: The Monthly Precipitation Forecasted by the Ensemble Model

Precipitation plays an important role in maintaining the stable and sustainable development of
desert ecosystem [11,12], the variation of precipitation is expected to influence the functioning of desert
ecosystems by altering the community species richness, abundance, coverage and biomass of BSC.
Due to the metabolically active of BSC only happens in wet conditions, the drying rates of soil surfaces
in deserts has significant impacts on the physiological functioning of these communities [16], and the
precipitation intensity and intermittency play an important role in the dynamics of vegetation cover
and deep soil moisture [17]. Therefore, it is of great significance to forecast the long-term changes
of precipitation for the restoration and protection of desert ecosystems in the desertified steppe and
steppefied desert transition zones with a fragile ecological environment.

Experiment I was designed to predict the monthly precipitation, the dataset from January 1991
to December 2010 is used for calibration of the proposed method and the dataset from January
2011 to December 2018 is used for validation. The experiment processes are shown in Figure 2.
Figure 2 show that DWT and VMD have better de-noising performance than the EEMD, the NSCE
and RMSE of DWT and VMD are significantly smaller than the NSCE and RMSE of EEMD. In the
data preprocess, the main experimental parameters of the VMD are @ = 0.05, 7 = 0, K = 7, where
a is the balancing parameter of the data-fidelity constraint, 7 is time-step of the dual ascent and K
is the number of modes to be recovered. The level of DB3 wavelet transformation is 5. The input
dimension is 3 and the output dimension is 1 for BPNN, SVM, and the input dimension is 4 and the
output dimension is 1 for ELM, the feedback delays is 12 and the number of hidden layer nodes is 10
for NAR, each model is separately trained by using the training and test sets, respectively. Therefore,
there are four single neural network models including BPNN, SVM, ELM and NAR and eight hybrid
models including VMD-LS-BPNN, DWT-LS-BPNN, VMD-LS-SVM, DWT-LS-SVM, VMD-LS-ELM,
DWT-LS-ELM, VMD-LS-NAR, DWT-LS-NAR were constructed to forecast the monthly precipitation.
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EEMD is discarded due to unsatisfactory denoising effect

Fourth step: Construct the monthly precipitation forecasting model

1) The BPNN, SVM, ELM and NAR are used to foracast the monthly precipitation using original data set;
2) The BPNN, SVM, ELM and NAR are used to foracast the monthly precipitation using denoised data set;
3) The evaluation criteria are used to select the best sub-model for the traditional combination model;
4) The PSO algorithm is used to determine the weight of sub-model in The traditional combination model.

Fifth step: NSCE, MAE, RMSE, MAPE and NMSE are used to compare the forecasting performance

Figure 2. The flowchart of the monthly precipitation forecasting processes.
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The evaluation criteria of NSCE, MAE, RMSE, MAPE and NMSE were computed and listed in
Table 3. Due to the monthly precipitation being zero in some months, the value of NSCE was negative
and the value of MAPE and NMSE were infinite. In order to get robust forecasting performance, the
sub-models are selected based on the order of MAE, RMSE and NSCE. If the selected sub-models have
the same neural network structure, the minimum value of MAE was selected as the final benchmark.
According to this selection criterion, the hybrid models VMD-LS-BPNN and VMD-LS-NAR were
selected as the sub-models and combined by using the PSO-TCM, The MAE, RMSE, NMSE are

computed and listed in Table 3.
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Table 3. The MAE, RMSE, NSCE, MAPE and NMSE of the monthly precipitation (MP) forecasting model.

Model MAE RMSE NSCE
BPNN 14.3349 21.8221 0.5243
SVM 12.5711 18.6225 0.1717
ELM 18.4067 24.6299 —0.4489
NAR 11.7573 16.7972 0.3261
DWT-LS-BPNN 12.8633 17.5261 0.2664
VMD-LS-BPNN 9.1415 14.1088 0.5246
DWT-LS-SVM 12.0177 18.0344 0.2232
VMD-LS-SVM 12.4808 18.5673 0.1766
DWT-LS-ELM 17.2653 23.7715 —-0.3497
VMD-LS-ELM 16.6073 23.566 —-0.3264
DWT-LS-NAR 11.6756 16.7063 0.3334
VMD-LS-NAR 10.9273 16.7594 0.3291
PSO-TCM 8.9410 13.2480 0.5808

As shown in Table 3, the best single predictor model is NAR and the worst single predictor model
is ELM. Compared with the single BPNN, SVM and ELM models and the hybrid DWT-LS-BPNN,
DWT-LS-SVM, VMD-LS-SVM, DWT-LS-ELM and VMD-LS-ELM models, the MAE of NAR is 11.7573,
which is the smallest among the single neural network models and hybrid models if we select the MAE
as the final benchmark. Under the sub-model selection strategies, BPNN, SVM, ELM, DWT-LS-BPNN,
DWT-LS-SVM, VMD-LS-SVM, DWT-LS-ELM and VMD-LS-ELM models are all eliminated. The MAE
of VMD-LS-NAR is 10.9273, which is smaller than the MAE of NAR and the hybrid VMD-LS-NAR
model is selected as the sub-model of PSO-TCM accordingly.

The MAE and RMSE of single neural network models are all bigger than the corresponding
hybrid models, and the changing trend of NSCE showed in opposite direction, which means that
under the same input dimension and the output dimension, the hybrid models have higher prediction
accuracy than the single neural network models, data preprocess methods can effectively improve the
forecasting performance, the most obvious improvement in prediction is the hybrid VMD-LS-BPNN
model, the value of MAE decreased 5.1934 compared with BPNN. Under the sub-model selection
strategies based on the value of MAE, the hybrid VMD-LS-BPNN model is selected as the sub-model
of PSO-TCM.

The MAE, RMSE and NSCE of PSO-TCM were 8.9410, 13.2480 and 0.5808, respectively. Compared
with the hybrid VMD-LS-NAR model, the MAE and RMSE of PSO-TCM decreased 0.2005 and 0.8608,
while the NSCE improved 0.0562. The MAE and RMSE are all the smallest and the NSCE is the
maximum among the single neural network models and the hybrid models, which means that the
ensemble PSO-TCM is an effective forecasting method with higher prediction accuracy.

The forecasting results of BPNN, SVM, ELM, NAR, VMD-LS-BPNN, DWT-LS-BPNN,
VMD-LS-SVM, DWT-LS-SVM, VMD-LS-ELM, DWT-LS-ELM, VMD-LS-NAR, DWT-LS-NAR and
PSO-TCM and the forecasting performance of model evaluation criteria for the monthly precipitation
are plotted as shown in Figure 3.



Sustainability 2020, 12, 1489

Part A: The hly p by BPNN, DWT-LS-BPNN, VMD-LS-BPNN.
= ———— ! ! . ! ! !
= ——  Acual Precipitation(mm)

= —— BPNN

EE - —— DWT-LS

£ = VMD-LS-BPNN

=3

2

=

2011 T 2012

E « Acual Precipitation VS BPNN sAcual pmciﬁit=||i,|1 VS DWT-LS-BPNN S| ®Acual Precipitation VSVMD-LS- BPNN
— — Acual Precipitation — Acual Precipitation Acual Precipitation
Es - Pred bnds(9sv) Bred bods(o3e) |E: Pred bads(95%)
H £
H : :
2% 2 - - -

B0 120 0 R0 120 0

40 120
DWT-LS-BPNN

40 80
VMD-LS-BPNN

BPNN
Part C: The monthly precipitation forecasted by ELM, DWT-LS-ELM, VMD-LS-ELM

a ———  Acual Precipitation(mm)
'g = ELM

=
H
|
BT
2

-
=
2011 2012 2013 2014 2016 2017 2018
Time (Year)
= T -
S . Acual Precipitation VS ELM 2+ Acual Precipitation VS DWT-LS-ELM F = Acual Precipitation VSVMD-LS- ELM
L B Acual Precipitation —  Acual Precipitation
= — Acual Precipitation >, o
) — Pred bnds(95%) E_ --- Pred bnds(95%
E’E Pred bnds(95%) = | sl reu S(95%)
g ] S

B E 3
f g .
£ 2 | &

o0 40 80 120 o 40 80 120 o 40 80 120
EILM DWT-LS-ELM VMD-LS-ELM
Part E: The monthly precipitation forecasted by traditional combination model (TCM) by the PSO algorith

v
Acual Precipitation(mm)

F d by PSO-TCM E"\ = Acual Precipitation VS PSO-TCM

'E' = = Acual Precipitation
£ 2 Pred bnds(95%)
= 2
2 &
! £
é E

-

2018 [ 40 B8O 120
PSO-TCM

2014 2015 2016 2017

Time (Year)

2011 2012 2013

120

Precipitation(mm)
44 80

120

80

4

Precipitation(mm)

120

Precipitation(mm)
40 &0

120

Preciptaion(mm)

145 M 58

9

45

L

11 0f 22

Part B: The monthly precipitation forecasted by SVM, DWT-LS-SVM, VMD-LS-SVM.

. .
Acual Precipitation(mm)

2011 2(1[2- 2013 i 201

«  Acual Precipitation VS SVM & s Acual Precipitation VS DWT-1.S-SVM S e Acuai.l’rccipi-t?liqn VSVMD-LS- SVM
— Acual Prec it e 11:“'.“;“{},5“55“:3"0" v, A}r’.m:’] rn;;.mgl?:mn
“~ Pred bnds(95%) g red bnds(35%) B red bnds(95%a)
c E= =]
= g
g é
! |
BT E¥
e =
x = Ky

RO 120

120 0 40 %
VMD-LS-SVM

40 RO
DWT-LS-SVM
by NAR, DWT-LS-NAR, VMD-LS-NAR.

Part D: The P

. ' . : . . .
Acual Precipitation(mm)

e NAR.
—— DWT-LS-NAR
— VMD-1LS-NAR

014 2015 2016 2017 2018
Time (Year)

& ® Acual Precipitation VSVMD-1S- NAR

== Acual Precipitation
=== Pred bnds(95%)

=
= Acual Precipitation VS NAR =
— Acual Precipitation
=== Pred bnds(95%)

* Acual Precipitation VS DWT-LS-NAR
Acual Precipitation
Pred bnds(95%)

80 0 40 80
NAR DWT-LS-NAR
Part F: The MAE, RMSE, NSCE of the monthly precipitation forecast models.

120 0 120

=
ot o® ‘\%5\1\4\ ’»%x;\x R
S e S e’

Figure 3. (A)-(D) The results and performance of monthly precipitation forecasted by single neural network model and hybrid models; and (E) The results and
performance of the monthly precipitation forecasted by particle swarm optimization (PSO)- traditional combination model (TCM) PSO from 2011-2018; and (F) the

evaluation criteria of the forecast performance.
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As shown in Figures 2 and 3 and Table 4, the following main conclusions can be obtained:

(1) The MP is the accumulation of the daily precipitation related with other meteorological
parameters and unknown factors, the collected time series is inevitably accompanied with higher noise,
predicting the monthly precipitation with the time series directly will inevitably cause larger error.
The appropriate de-noising method selection is an effective way to overcome this defect.

(2) In the decomposition process of precipitation time series, DWT and VMD have better de-noising
performance than the EEMD. There are some negative results in the series of EEMD, it is because the
monthly precipitation is zero in some months and the standard deviation of monthly precipitation
time series is 20.1. The IMF components defined as the mean of an ensemble of trials and each trial
consists of the decomposition results of the signal plus a white noise of finite amplitude, it inevitably
leads to negative values in the decomposition sequence.

(3) The forecasting performance of NAR is better than BPNN, SVM and ELM under the evaluation
criteria of NSCE, MAE, RMSE. The forecasting model based on the data preprocessing technology and
the longitudinal data selection method can significantly improve the prediction accuracy, which means
that the hybrid models have better forecasting performance than the corresponding single machine
learning model.

(4) The established PSO-TCM model can significantly improve the prediction accuracy, and the
sub-model selection processes is also important according to the forecasting performance of a single
neural network and hybrid models. Numerical results show that the combined model has good
robustness and high precision.

The precipitation is considered to be the most important a-biological factor affecting the ecological
and physiological functions of BSC. As shown in Figure 3, the precipitation in Shapotou area of the
Tengger Desert has a significant difference and obviously intermittent between different years and
months. The intermittent precipitation and instantaneous high evaporation of the soil-surface result in
the shallow layer of dune soil has frequent alternations between the wet and dry state during the rainy
season, which inevitably affects the functioning of desert ecosystems by altering biotic components
such as the species composition of BSC. In fact, the vegetation restoration processes and the variation
of vegetation cover in arid and semiarid regions are complicated with the uncertain precipitation
intensity or precipitation intermittency. it remains unclear how the components of BSC will respond to
the prolonged warming and reduced precipitation that is predicted to occur with climate change [2].

4.2. Experiment II: The Monthly Mean Temperature Forecasted by the Ensemble Model

Temperature and precipitation determine the distribution limit of the biotic community, restricting
the germination and growth rate of plants and all physiological changes in plants [12]. The physiological
functions and metabolic rate of the biotic community are closely related to temperature changes. In
order to investigate how climate change, especially the effect of temperature affect the hydrological
functioning of the biotic community [10], constructing an accurate and robust temperature prediction
program became an important part of the experiment.

Experiment Il was designed to forecast the MMT from January 2011 to December 2018, the dataset
from January 1991 to December 2010 is used as the training set in the predicting procedure. The main
experimental steps such as the data pre-process methods and results, the main parameters settings of
hybrid mode and the sub-model selection strategy are shown in Figure 4.

Due to the MMT is the average of the daily average temperature, some of the noise in the MMT
time series has been eliminated by averaging and as shown in part A of Figure 4. Part B of Figure 4
shows that the de-noising effect of DWT, EEMD and VMD are nearly the same and the values of NSCE
and RMSE have little difference in general. Therefore, the data pre-processes techniques DWT, EEMD
and VMD methods are all used to find the main features of the original time series. The optimal input
dimension and the number of hidden layers for BPNN, SVM and ELM, the number of feedback delay
and hidden layer nodes of NAR, DWT-LS-NAR, EEMD-LS-NAR and VMD-LS-VAR are shown in part
B of Figure 4. The monthly mean temperature is zero in February 2013, the value of MAPE and NMSE
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are infinite, therefore, the sub-models are selected according to the values of MAE, EMSE and NSCE
for PSO-TCM as shown in Part C of Figure 4.

Part A: The monthly mean temperature(C) is decomposed by DWT, EEMD and VMD seperately
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Part B: DWT, EEMD and VMD are all selected according to the values of NSCE and PMSE
Decomposition method DWT EEMD VMD Decomposition method DWT EEMD VMD
NSCE 0.9498 0.9496 0.9510 RMSE 2.3921 23991 23638

The paramuen of pr(.du.‘ mudel dl.termmed by the furs casting performance

Parameter BPNN SVM ELM Parameter NAR WT-LS-NAR EEMD-LS-NAR VMD-LS-NAR
Input dimension 3 4 4 The feedback delays 12 12 4
Hidden layer 7 9 7 Hidden layer 10 ] 10 7

1) The hybrid VMD-LS-BPNN model is selected because the forecasting performance of VMD-LS-BPNN model is the second best |
among the hybrid models and single neural network models . :
2) The hybrid EEMD-LS-BPNN is not selected because it has the same predict model as the hybrid VMD-LS-BPNN model.

3) The hybrid EEMD-LS-SVM model is selected due to the forecasting performance of EEMD-LS-SVM is the best among the
hybrid models and single neural network models .
:4) The hybrid VMD-LS-NAR is selected because the value of MAE is the smallest among the hybrid EEMD-LS-NAR , DWT-LS-
H VAR and VMD-LS-NAR models, and the main predict model is different from BPNN and SVM.

Weight determination of combined model: The PSO algorithm is used to optimize the weight of sub-model in TCM.

Model evaluation: NSCE, MAE, RMSE, MAPE and NMSE are used to evaluate the forecasting performance.

Figure 4. The main experimental steps of the monthly mean temperature forecasting processes.

The monthly mean temperature forecasting results of single neural network models, hybrid
forecasting models and the traditional combination model (TCM) optimized by the PSO algorithm are
plotted as shown in Figure 5, the values of model evaluation criteria for the monthly mean temperature
are computed and listed in Table 4. As shown in Table 4, the best single predictor model is BPNN and the
best hybrid predictor model is EEMD-LS-SVM. Compared with the single BPNN, SVM, ELM and NAR
models, The MAE and RMSE of the corresponding hybrid models are all smaller than the single neural
network models. The hybrid EEMD-LS-SVM model is selected due to the forecasting performance
of EEMD-LS-SVM is the best among the hybrid models and single neural network models. The
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hybrid VMD-LS-BPNN and VMD-LS-NAR models are selected because the forecasting performance
of VMD-LS-BPNN model is the second-best among the hybrid models and the main predict model
of VMD-LS-NAR is different from BPNN and SVM. The hybrid EEMD-LS-BPNN is not selected
because it has the same main predict model as the hybrid VMD-LS-BPNN model. The ELM model and
the DWT-LS-ELM, EEMD-LS-ELM, VMD-LS-ELM models were not selected due to the forecasting
risks increasing. Based on the above strategy, there were three hybrid models, EEMD-LS-SVM,
VMD-LS-BPNN and VMD-LS-NAR selected as the sub-models for PSO-TCM. Numerical results
show that the optimal combination weight of EEMD-LS-SVM, VMD-LS-BPNN and VMD-LS-NAR are
0.455,0.311and 0.250 respectively.

Table 4 show that the forecasting performance of hybrid models are markedly increased than the
single neural network models, and the ensemble PSO-TCM model has higher forecasting accuracy
than the selected optimal sub-models. The MAE and RMSE of PSO-TCM are 1.1793 and 1.4846, and
NSCE of PSO-TCM is 0.9812, which is very close to 1, this suggests that the PSO-TCM model has high
robustness and prediction accuracy.

Table 4. The evaluation criteria of the MMT forecasting model.

Model MAE RMSE NSCE
BPNN 1.4558 1.9365 0.9680
DWT-LS-BPNN 1.4197 1.8276 0.9715
EEMD-LS-BPNN 1.2588 1.5988 0.9782
VMD-LS-BPNN 1.2331 1.5583 0.9793
SVM 1.5605 2.0206 0.9652
DWT-LS-SVM 1.4810 1.8134 0.9720
EEMD-LS-SVM 1.2283 1.5551 0.9794
VMD-LS-SVM 1.4737 1.8139 0.9720
ELM 6.1206 7.2023 0.5578
DWT-LS-ELM 5.3415 6.2545 0.6666
EEMD-LS-ELM 5.2792 6.0550 0.6875
VMD-LS-ELM 5.1054 6.0399 0.6891
NAR 1.9643 2.4157 0.9503
DWT-LS-NAR 1.8873 2.5191 0.9459
EEMD-LS-NAR 1.5364 2.0545 0.9640
VMD-LS-NAR 1.3944 1.8103 0.9721
PSO-TCM 1.1793 1.4846 0.9812

As shown in Figures 4 and 5 and Table 4, the following main conclusion can be obtained:

(1) The variation of MMT time series is relatively stable compared with the monthly precipitation,
the data preprocess methods DWT, EEMD and VMD almost have the same effect and the NSCE and
RMSE have little difference in this case. In the decomposition process of MMT time series, EEMD and
VMD have better de-noising performance than the DWT. Accordingly, the best data preprocessing
method is selected only based on the forecasting performance of the hybrid models. The appropriate
de-noising method selection combined with the best neural network model is an effective way to
improve the forecasting accuracy.

(2) Elaborately select the sub-models for PSO-TCM according to the forecasting performance of
single neural network and hybrid models is crucial for improve the prediction accuracy, the PSO-TCM
model can effectively improve the forecasting accuracy and decrease the predicted risk.

The increase in temperature leads to an increase in surface evaporation, which influenced the
physiological functions and metabolic rate of the biotic community in the desertified steppe and
steppefied desert transition zones. Recently, a ten-year observational study shows that moss cover
was more sensitive to temperature rise, with the increase of temperature, the proportion of mosses in
moss-and lichen-dominated crusts was decreased, which means that moss biomass was negatively
correlated with warming intensity [10,12].
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Figure 5. The monthly mean temperature forecasting results of single neural network models, hybrid forecasting models and PSO-TCM model. Parts (A-D) are
forecasting results and performance of sub-models, and part (E) is the forecasting result and performance of PSO-TCM.
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4.3. Experiment III: The Monthly Average Wind Speed Forecasted by the Ensemble Model

The wind is the movement of air, carbon dioxide and oxygen in the air are the main raw materials
and material conditions for plant photosynthesis, the concentration of these two gases directly affects
the healthy growth and flowering of plants. The ecological benefits of plants are reflected in helping
pollinate and spread seeds, wind speed is an important abiotic factors for the variation of vegetation
cove, it affects the physiological, biochemical, material metabolism and ecological adaptability of BSC
in arid and semi-arid ecosystems, Long-term observations have shown that the higher the wind speed
often companioned with the lower the development degree of BSC [15]. The atmospheric dust removal
is one of the important nutrient input sources in the desert ecosystem, the higher the wind speed, the
more serious the surface wind erosion and soil nutrient loss. On the other hand, sand buries caused
by strong winds can also cause the death of BSC photosynthetic components, and then caused the
changes in the stability of the BSC subsoil and the structure of the BSC community [2].

Experiment III was designed to forecast the MAWS from January 2011 to December 2018, the
dataset of MAWS from January 1991 to December 2010 was used as the training set. The data
pre-process methods, the longitudinal data selection method, parameter settings of hybrid models
and the sub-model selection are shown in Figure 6. The MAWS is the average of the daily average
wind speed and shows periodic changes, and noise still exists in the wind speed time series. Part A of
Figure 6 shows that the de-noising effect of DWT, EEMD and VMD and the values of NSCE and RMSE.
The NSCE of DWT is the smallest and the RMSE of DWT is the biggest among the values of NSCE and
RMSE. Although the values of NSCE and RMSE have little difference, the forecasting performance of
the sub-models has a big difference as shown in Figure 5, therefore, the data pre-processes techniques
EEMD and VMD methods are all selected to decompose the MAWS time series. The main parameters
of sub-models such as the number of input dimensions, the hidden layers and the feedback delays are
listed in Part B of Figure 6. Part C of Figure 6 shows the detailed sub-model selection process and
combination processes.

The evaluation criteria of MAE, RMSE, NSCE, MAPE and NMSE for single neural network
models and hybrid models are computed and shown in Table 5. The single BPNN, SVM and NAR
almost have the same forecasting performance and the MAE, RMSE, NSCE, MAPE and NMSE have
little difference. The predicted result of ELM seems to be not satisfactory due to the ELM randomly
initializes the input weights. Table 5 shows that the MAE, RMSE and MAPE of single BPNN, SVM,
ELM, NAR models are all bigger than the corresponding hybrid models in general. Contrary to the
variation tendency of MAE, RMSE and MAPE, the NSCE and NMSE of the single neural network
models showed in opposite direction, which means that under the same parameter settings, the
hybrid models have better forecasting performance than the single BPNN, SVM, ELM, NAR models,
and appropriately choose the data preprocessing methods can effectively improve the forecasting
accuracy. Among the hybrid models, if the evaluation criteria of MAE, RMSE and NSCE are selected
as the prediction standards, the hybrid VMD-LS-BPNN, VMD-LS-SVM and VMD-LS-NAR models
are selected as the optimal sub-models of PSO-TCM. In addition, MAPE is a unit-free evaluation
criterion, it has good sensitivity and very low outlier protection for small changes in data, if the
MAPE is selected as a sub-model selection criteria, the hybrid VMD-LS-BPNN, VMD-LS-S5VM and
DWT-LS-NAR models are selected as the optimal sub-models of PSO-TCM. In order to reduce the
prediction risk of the PSO-TCM model, both of these two sub-models select strategies are adopted.
The finally forecasting performance can be determined by the evaluation criteria of MAE, RMSE,
NSCE, MAPE and NMSE. If the results are not consistent with each other, the MAE, RMSE, NSCE and
MAPE will be selected as the final benchmark. Experiment results show that the weight of sub-models
VMD-LS-BPNN, VMD-LS-SVM and VMD-LS-NAR are 0.681, 0.019 and 0.300 respectively, while the
weight of sub-models VMD-LS-BPNN, VMD-LS-SVM and DWT-LS-NAR are 0, 1 and 0, which means
that the sub-models select strategy based on prediction standards of MAE, RMSE and NSCE is robust
and reliable.
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Figure 6. The main experimental steps of the monthly average wind speed forecasting processes.
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Table 5. The evaluation criteria of the MAWS forecasting model.

Model MAE RMSE NSCE MAPE NMSE

BPNN 0.3766 0.4694 0.2740 17.38% 24103
DWT-LS-BPNN  0.2731 0.3371 0.6257 11.78% 2.4656
EEMD-LS-BPNN  0.2203 0.2694 0.7609 9.69% 2.4641
VMD-LS-BPNN  0.1968 0.2395 0.8111 8.42% 2.4912

SVM 0.3692 0.4590 0.3060 16.88% 2.3899
DWT-LS-SVM 0.2559 0.3136 0.6760 11.29% 24321
EEMD-LS-SVM  0.2279 0.2919 0.7192 10.47% 2.4259
VMD-LS-SVM 0.2123 0.2545 0.7866 9.41% 2.4429

ELM 0.4838 0.5669 —-0.0589 21.5% 2.4136
DWT-LS-ELM 0.4876 0.5670 -0.0592  20.88% 2.4999
EEMD-LS-ELM  0.5601 0.6800 -0.5235  23.82% 2.5594
VMD-LS-ELM 0.5248 0.6165 -0.2523  22.63% 2.5694

NAR 0.3828 0.4673 0.2807 16.78% 2.5353
DWT-LS-NAR 0.2389 0.2977 0.7079 10.66% 2.4947
EEMD-LS-NAR  0.2109 0.2552 0.7855 21.09% 0.2552
VMD-LS-NAR 0.1896 0.2350 0.8180 18.96% 0.2350

PSO-TCM 0.1883 0.2291 0.8271 7.97% 2.5416

The MAWS predicts results of sub-models and PSO-TCM are plotted as shown in Figure 7, the
values of MAE, RMSE, NSCE, MAPE and NMSE of PSO-TCM are also listed in Table 5.

As shown in Figures 6 and 7 and Table 5, the following main conclusion can be obtained:

(1) DWT, EEMD and VMD are all popular and effective data preprocess method, selecting
appropriate de-noising method according to de-noising effect can effectively improve the prediction
accuracy. In experiment III, EEMD and VMD have better de-noising performance than DWT in the
decomposition process of MAWS time series, predicting the MAWS combine with the appropriate
de-noising method is an effective way to improve the forecasting performance. In Table 5, the MAE and
RMSE of hybrid models are significantly smaller than the corresponding single machine learning model.

(2) The forecasting performance of the hybrid VMD-LS-NAR model is the best among the
hybrid models and single neural network models. Compared with the single NAR model, the MAE
of VMD-LS-NAR decreased about 0.1932, the magnitude of the declines is the biggest among all
hybrid models.

(3) The forecasting performance of SVM is the best among the single neural network models
under the evaluation criteria of MAE and RMSE, which means there is no particular one model that can
suitable for all cases, we should compare the model forecasting performance under specific conditions
to determine the most suitable predict model.

(4) The hybrid VMD-LS-BPNN, VMD-LS-SVM and VMD-LS-NAR are selected as the sub-models
for PSO-TCM according to the forecasting performance, the established PSO-TCM model can improve
the prediction accuracy and the MAE, RMSE, NSCE and MAPE of PSO-TCM are all achieved relatively
optimal value.

Accurate wind speed prediction can provide a necessary reference for the effective use of grass
checker sand barriers and planting arid shrubs in desert control. It is also interesting to note that
predicting wind speed accurately is very important for wind farm construction such as power grid
operation scheduling, control, maintenance, and resource planning of wind energy conversion systems
etc. [2,10].
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Figure 7. The monthly average wind speed forecasting results of single neural network models, hybrid forecasting models and PSO-TCM model. Part (A-D) are
forecasting results and performance of sub-models, and Part (E) is the forecasting result and performance of PSO-TCM.
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5. Conclusions

Global warming speeds up the water cycle and increases the spatial heterogeneity of precipitation.
The changes in precipitation inevitably affect the species diversity of desert communities, structure and
function. It is particularly important to investigate the changing trend of precipitation, temperature,
wind speed respectively under the background of global climate warming for effectively realizing the
restoration and protection of desert ecosystems.

In this paper, the temperature, precipitation and wind speed time series were collected at the
Shapotou Desert Research and Experiment Station, operated by the Chinese Academy of Sciences in
the southeastern margin of Tengger desert. In order to investigate the change trend of precipitation,
temperature, wind speed, three numerical simulation experiments including four single neural network
models, twelve hybrid models and one combination model optimized by particle swarm optimization
algorithm are used to forecast the monthly precipitation, the monthly mean temperature and the
monthly average wind speed time series respectively. The experimental results show that selecting
appropriate de-noising method according to de-noising effect can effectively improve the prediction
accuracy. The hybrid models based on the data preprocessing technology and the longitudinal data
selection method have better forecasting performance than the single machine learning model. The
monthly precipitation, the monthly mean temperature and the monthly average wind speed are
forecasted by a single artificial intelligence model or the hybrid models based on data preprocessing
technology and proper single model could not achieve favorable performance. Elaborately select the
sub-models for the particle swarm optimization algorithm optimize the weights of the traditional
combination model according to the forecasting performance of single neural network and hybrid
models is crucial to improve the prediction accuracy; The particle swarm optimization algorithm
optimizes the weights of the traditional combination model can effectively improve the forecasting
accuracy and have better adaptability, and robustness. The proposed method is beneficial to analyze
the relationship between sustainable development and the severe natural condition in arid regions
under the impacts of climate change.
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