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Abstract: Coastal flooding from extreme sea levels will increase in frequency and magnitude as
global climate change forces sea-level rise (SLR). Extreme sea-level events, rare in the recent past
(i.e., once per century), are projected to occur at least once per year by 2050 along many of the
world’s coastlines. Information showing where and how built-environment exposure increases
with SLR, enables timely adaptation before damaging thresholds are reached. This study presents
a first national-scale assessment of New Zealand’s built-environment exposure to future coastal
flooding. We use an analytical risk model framework, “RiskScape”, to enumerate land, buildings
and infrastructure exposed to a present and future 100-year extreme sea-level flood event (ESL100).
We used high-resolution topographic data to assess incremental exposure to 0.1 m SLR increases.
This approach detects variable rates in the potential magnitude and timing of future flood exposure
in response to SLR over decadal scales. National built-land and asset exposure to ESL100 flooding
doubles with less than 1 m SLR, indicating low-lying areas are likely to experience rapid exposure
increases from modest increases in SLR expected within the next few decades. This highlights an
urgent need for national and regional actions to anticipate and adaptively plan to reduce future
socio-economic impacts arising from flood exposure to extreme sea-levels and SLR.

Keywords: extreme sea-levels; sea-level rise; flooding; exposure; built-environment; buildings;
infrastructure; RiskScape

1. Introduction

Rising sea-levels in response to global climate change are expected to increase the frequency of
coastal flooding from extreme sea-levels (ESLs) [1]. In many regions, a relatively modest mean sea-level
rise (SLR) of 0.1 m to 0.2 m over the next few decades could double flooding frequency, particularly
on coastlines with small tidal ranges [2–4]. For built-environments, these flood regime changes will
increase ‘nuisance’ flood exposure from smaller and more frequent flooding events [5], along with
higher magnitude impacts from greater built-environment exposure to larger low frequency events.
Information showing where and how built-environment exposure increases with SLR, enables timely
adaptation before damaging thresholds are reached [6,7].

Widening or deep uncertainty in SLR projections towards the latter half of this century and
beyond, creates difficulties for establishing regulatory frameworks and strategies for sustainable
coastal development in a changing climate [3]. Various models and Representative Concentration
Pathways (RCPs) estimate higher global mean sea-levels between 0.3 and 2 m by 2100 [8], threatening
millions of people and USD trillions of built-assets from ESLs annually [9]. Rising sea-levels can
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eventually reach an adaptation threshold where coastal flood impacts exceed the tolerability or adaptive
capacity of communities, governance arrangements, utility services or economies on low-lying coastal
land. Decision-makers, in collaboration with communities, can proactively develop adaptive plans to
manage social and economic impacts if they know the ESL and SLR increment where such ‘adaptation
thresholds’ will emerge [3].

In the last decade, a growing demand for global and national assessments has improved estimates
of present and future coastal flood and SLR exposure or impacts [10,11]. These assessments apply large
spatial-scale flood risk model frameworks to estimate the frequency and magnitude of impacts on
populations and built-environments. While modelling methodologies are often simplified to cope with
computation or data limitations, they form important risk screening tools that inform national priorities
for climate change adaptation strategies, and global trends of population and built-environment
exposure and impacts from coastal flooding and SLR [9–11].

Coastal flooding and SLR assessments rely on high-resolution topography represented as digital
elevation models (DEMs). Recent advancements in satellite topographic mapping methods have
enhanced the vertical resolution of DEMs [12], improving the accuracy of global population and
built-environment flood exposure assessments [10]. However, satellite measurements provide metre
or several decimetre-scale vertical errors that constrain their meaningful application in coastal flood
exposure assessments to only the highest SLR projections. Recent sensitivity analyses of satellite
DEMs in flood exposure assessments, including the Shuttle Radar Topography Mission (SRTM) DEM,
demonstrate substantial underestimates of flood exposure compared to DEMs derived from airborne
light detection and ranging (LiDAR) [13–15]. LiDAR measurements can provide centimetre-scale
accuracy that facilitate flood exposure assessments for smaller SLR increments resolvable over decades;
however, DEM coverage is often limited to sub-national levels [16]. LiDAR DEM application can also
support detailed assessments of individual assets at-risk to coastal flooding such as buildings, roads
and pipelines [17,18].

This study presents a first assessment of New Zealand’s built-environment exposure to future
coastal flooding at a national-scale. Here, we define exposure as the ‘location of built-land and
assets that overlap with coastal flood water levels. We use an analytical risk model framework,
“RiskScape” [19], to enumerate land, buildings and infrastructure component exposure to a 100-year
average recurrence interval ESL flood event, now and after future increments of SLR. Flood exposure
is assessed using a composite national DEM comprising LiDAR infilled with satellite topographic
data. We present built-land and asset exposure information at both national and regional authority
levels and discuss the implications for future coastal adaptation strategies and guidance. This study
contributes to the expansion of global datasets and knowledge on built-environment exposure to future
coastal flooding and SLR.

2. Materials and Methods

2.1. Regional Setting

New Zealand has over 14,000 km of coastline, bordering the Pacific Ocean and Tasman Sea
(Figure 1a). The coastal region is subject to mid-latitude storms and extra-tropical cyclones generated
from the southwest Pacific. Storm-surges < 1 m and typically 0.2–0.4 m formed by these systems
combine with high spring tides to create localised ESLs that can flood low-lying coastal land [20].
National guidance based on four scenarios covering three RCPs suggests to plan for 0.55–1.36 m SLR
over the next 100 years, relative to 1986–2005 mean sea-level (MSL) [21]. A previous national-scale SLR
study estimates a resident population of 38,000 people and 40,000 buildings could be inundated by
a mean SLR within this range [15,22]. Population and built-asset exposure to coastal flooding from
combined ESLs and SLR has not previously been assessed at a national-scale in New Zealand.

Regional and local authorities are required to implement the New Zealand Coastal Policy
Statement (NZCPS) within their jurisdictional areas. The NZCPS stipulates regulatory requirements
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for investigating and managing the risk of adverse consequences of coastal flooding on built-assets and
natural resources. Policies 24 and 25 require authorities to investigate and implement plans to manage
coastal flooding risk from ESLs and SLR over at least a 100-year period. These policies and other
statutory requirements for coastal hazard management have been a drive for authorities to acquire
high resolution LiDAR DEMs for coastal land and urban areas (Figure 1b). In 2019, LiDAR DEM
coverage extends to just under 40% of coastline (Figure 1b), though represents most coastal settlements
occupied by more than 1000 people.
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Figure 1. (a) Map of New Zealand with regional authority jurisdictional boundaries, and (b) coastline
coverage represented by LiDAR and Satellite DEMs.

2.2. The RiskScape Methodology

The analysis presented is based on the “RiskScape” multi-hazard model framework [19]. The
modular framework is configurable to estimate coastal flooding exposure and impacts from ESLs and
SLR in response to present and future climate conditions (Figure 2). The system combines datasets of
hazard, exposure (i.e., elements-at-risk), and vulnerability in a state-of-the-art software engine that
quantifies risk of exposure or impact at national- to local-scales. The application in this study focusses
on enumerating built-environment land and assets, and their geometric quantities directly exposed to
coastal flooding from ESLs and SLR.

Sustainability 2020, 12, 1513 3 of 16 

other statutory requirements for coastal hazard management have been a drive for authorities to 
acquire high resolution LiDAR DEMs for coastal land and urban areas (Figure 1b). In 2019, LiDAR 
DEM coverage extends to just under 40% of coastline (Figure 1b), though represents most coastal 
settlements occupied by more than 1000 people.  

 
Figure 1. a) Map of New Zealand with regional authority jurisdictional boundaries, and b) coastline 
coverage represented by LiDAR and Satellite DEMs. 

2.2. The RiskScape Methodology 

The analysis presented is based on the “RiskScape” multi-hazard model framework [19]. The 
modular framework is configurable to estimate coastal flooding exposure and impacts from ESLs and 
SLR in response to present and future climate conditions (Figure 2). The system combines datasets of 
hazard, exposure (i.e., elements-at-risk), and vulnerability in a state-of-the-art software engine that 
quantifies risk of exposure or impact at national- to local-scales. The application in this study focusses 
on enumerating built-environment land and assets, and their geometric quantities directly exposed 
to coastal flooding from ESLs and SLR. 

 

Figure 2. RiskScape model framework applied in this study. ESL100 = 100-year average recurrence
interval extreme sea-level. DEM = digital elevation model.



Sustainability 2020, 12, 1513 4 of 16

2.3. Extreme Sea-Levels

The present study estimated storm-tide-driven 100-year annual recurrence interval extreme sea-
levels (ESL100) along the New Zealand coastline. ESL100 elevations were calculated for each coastal
segment using the formula:

ESL100 = MSL + ST + WS + SLR (1)

where MSL is mean sea-level relative to local vertical datum calculated from sea-level gauge records
over a recent decade approximately; ST is the storm-tide combination of high tide, meteorological
effects (storm-surge) and monthly sea-level anomaly, affected by both seasonal heating and cooling
and interannual and inter-decadal climate variability such as the El Niño Southern Oscillation (ENSO)
and the 20–30 year Interdecadal Pacific Oscillation (IPO); and WS is the additional wave setup at
the shoreline where breaking waves are present. These components were derived from detailed
investigations on the joint-probabilities of coincident ST and WS (e.g. [23]), previously undertaken
in some regions [24–28]. Sea-level datasets and the methodology to estimate ST at sea-level gauge
locations are described by [20], while MSL offsets relative to local vertical datum were calculated
by [15] and presented in Table S1. In other regions, ESL100 elevations are calculated for four coastal
settings (Table 1): (1) estuaries with sea-level gauges; (2) estuaries with no sea-level gauge; (3) open
coast with high wave exposure and; (4) open coast sheltered with low wave exposure (Figure S1).

Table 1. Summary of methods used to calculate MHWS-10 and ESL100 elevations for coastal settings.

Coastal Setting MHWS-10 ESL100 Formula

Estuaries with sea-level gauge MHWS-10 from sea-level gauge. 100-year ARI storm-tide calculated
from gauge with MSL offset.

Estuaries with no sea-level gauge
MHWS-10 = 1.1 ×MHWS-10

(from nearest open coast
sea-level gauge).

ESL100 = 1.28 (MHWS-10) + 0.34 +
MSL offset

Open coast with high
wave exposure MHWS-10 from tide model [29]. ESL100 = 1.28 (MHWS-10) + 0.34 +

1.5 m wave setup + MSL offset
Open coast sheltered with low

wave exposure MHWS-10 from tide model [29]. ESL100 = 1.28 (MHWS-10) + 0.34 +
0.5 m wave setup + MSL offset

Where records were unavailable, a linear relationship between Mean High-Water Springs 10
(MHWS-10) (representing the highest 10% of all astronomical high tides), and 100-year ST elevation
(ST = 1.28 ×MHWS-10 + 0.34) was applied following [20]. On the open coast, MHWS-10 was derived
from a tidal model [29], while inside estuaries with no gauge, a scaling factor of 1.1 × MHWS-10
outside the estuary was used. This approximation accounts for observations from New Zealand
gauged estuaries that the tide usually amplifies inside estuaries [28]. Wave setup inside estuaries was
assumed to be negligible. Outside of regions with available joint-probability analyses [24–28], a wave
setup approximation of either 0.5 m or 1.5 m was added for relatively sheltered or exposed open-coast
locations respectively (Figure S1). ESL100 elevations were not derived from a probabilistic relationship
in the regions where the wave setup approximation was applied. We consider this to have minimal
impact on this national-scale study as the analysis’ primary focus is on the effect of incremental SLR on
built-land and asset exposure from ESL100 flooding.

The rate and magnitude of future SLR is uncertain, especially from 2050 onwards [8]. We evaluated
small regular 0.1 m SLR increments from 0–3 m above present MSL. This approach avoids the need to
address uncertain rates and timing of SLR and adopt a specific scenario. Further, built-land and asset
exposure to each SLR increment can be used to identify adaptation thresholds beyond which undue
harm and frequent disruption occurs [7]. Land and asset exposure or adaptation thresholds can then
be linked to potential timing of reaching a SLR increment based on projected SLR scenarios [3,21].
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2.4. Digital Elevation Models

Coastal flood maps are reliant on available high-resolution digital elevation models [13]. LiDAR
DEMs with centimetre-scale vertical resolution can be geographically limited at national-scales. In
New Zealand, LiDAR DEMs represent just under 40% of coastlines, with only three regions exceeding
90% coverage (Table S2). The West Coast region on the South Island is the only regional coastline
where no LiDAR DEMs were available for the present study. National-scale coastal flood mapping
therefore required a composite DEM, spatially merging regional LiDAR DEMs with a lower resolution
satellite DEM providing coverage for 60% of New Zealand’s coastlines.

Regional authorities have routinely implemented LiDAR topographic surveys since 2003 (Table S3).
Region specific surveys however, result in LiDAR measurements collected at point density rates ranging
from 1–4 per 1 m2 (urban areas) to 1 per 25 m2 (rural areas). Higher densities for urban areas provide
reported vertical accuracies ranging between ±0.05 to ±0.25 m at 1 standard deviation or ±0.07 to
±0.10 m at the 95% confidence interval. ‘Bare-earth’ DEMs are created for horizontal grids with
1 m representing the majority of urban areas where LiDAR coverage is available. The vertical and
horizontal resolution of available DEMs was then considered sufficient for mapping ESL100 flooding at
regular 0.1 m SLR increments.

The 2017 Multi-Error-Removed Improved-Terrain (MERIT) satellite-derived global DEM [30],
available at time of assessment, provided DEM coverage for coastlines without available LiDAR DEMs.
The global DEM created for ~90 m horizontal grids, applies a regression analysis only to remove
vertical errors from vegetation [10]. Reported vertical errors >2 m indicated the DEM would only be
acceptable for ESL100 flood mapping at SLR elevations approaching 3 m.

2.5. Coastal Flood Maps

ESL100 flooding scenarios were mapped at a 10 m horizontal resolution onto LiDAR and MERIT
DEMs. ESL100 flooding was mapped for present-day MSL and thereafter at 0.1 m increments up to 3 m
MSL on coastlines with LiDAR DEMs. On other coastlines, a single SLR increment of 3 m above MSL
was applied for flood mapping due to lower resolution topography from the MERIT DEM.

A static, “bathtub” approach was applied using ArcGIS 10 software, whereby inundated raster
cells are calculated from ESL100 elevations exceeding the corresponding topographical elevation [31].
The final ESL100 flood scenario raster cells for coastline segments were spatially merged and converted
to vector polygon maps.

2.6. Built-Environment Map

Spatial information of built-environment elements-at-risk to coastal flooding were obtained from
government open access data sources (Table S4). In the present analysis, elements representing
‘built-assets’ include buildings, transport (roads, railway, airports), electricity (national grid:
transmission lines, structures, sub-stations), and ‘three-waters’ (e.g., potable water, wastewater,
stormwater) nodes (e.g., reservoirs, tanks, pumps, and fittings) connected by pipelines (Table 2). Land
cover representing built-asset areas (termed ‘built-land’) for the 2012–2013 period is also included [32].
Built-assets are geometrically represented as either vector points, lines or polygons with location and
sizes approaching 1:10,000 scale. Individual buildings, transport, electricity and three-waters features
are identified; however, physical and non-physical information about assets was inconsistent and
limited to few attributes. Inconsistent attribute information meant we could only report on counts,
linear or areal extents for transport, electricity and three-waters assets.

Usually-resident population, use category, floor area and replacement value were included in
the analysis as contextual information for buildings. Statistics New Zealand performs a national
population census including a count of people usually living in residences stated in the March 2013
census [33]. ‘Usually-resident’ population counts are aggregated to census meshblock areas occupied
by 0 to 1899 people. Here, a population density per building floor area rate was calculated from
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dividing each population count by the meshblock’s total residential building floor area (m2) derived
from a national building database [34]. Population densities were then multiplied by the floor area of
each residential building object to estimate their usually-residential population. Similarly, the approach
by [34] was adapted to attribute 2016 building replacement value rates ($/m2) from [35], to building
objects based on use category and floor area, representing the monetary cost to reconstruct buildings
back to their present form.

Table 2. Built-environment elements-at-risk and contextual information.

Element
Category Object Type Attributes Units Geometry Owner

Land Land Cover Area km2 Polygon
Government

Research
Institute

Buildings Building

Population, use
category, floor

area,
replacement

value

- Point
Government

Research
Institute

Transport
Roads Length km Line Central

Government

Railway Length km Line Central
Government

Airports Area km2 Polygon Central
Government

Electricity

Transmission
lines Length km Line Central

Government

Structures - - Point Central
Government

Substations - - Point Central
Government

Water (potable,
waste, storm)

Nodes - - Point Local
Government

Pipelines Length km Line Local
Government

2.7. Exposure Assessment

ESL100 flooding scenarios were combined with built-land and asset maps in RiskScape to enumerate
asset-level flood exposure. RiskScape applies geoprocessing functions to intersect vector geometries
representing ESL100 flooding, built-land and assets, and regional authority jurisdictional boundary
locations, then recalculates geometric units for land and assets located within flooding and jurisdictional
boundary extents. In this study, built-land and asset exposure is aggregated at national and regional
authority scales and reported for vector point counts, line length (km), and polygon area (km2).

2.8. Limitations

The present national-scale assessment provides several methodological limitations. A composite
LiDAR and satellite DEM was necessary to achieve national topographical data coverage. Just over
60% of New Zealand’s coastline is represented by the lower-resolution MERIT DEM [30], notably the
South Island’s entire West Coast region. MERIT DEM vertical errors >2 m limited its application to
mapping a single ESL100 scenario representing a 3 m SLR. Beyond West Coast region, coastal settlement
areas occupied by more than 1000 people are largely represented by LiDAR DEMs; however, key
transport and electricity infrastructure networks extend outside this coverage.

Another limitation of the assessment is applying a bathtub model that assumes all coastal land
below a given water level and hydrologically connected to the ocean or behind protection structures
such as levees, as potentially exposed directly or indirectly to flooding from extreme coastal water
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levels (including groundwater). The bathtub approach tends to overestimate coastal flooding extents at
local-scales when caused by episodic events and to a larger extent along mildly sloped terrains [36,37].
In New Zealand, these terrains are representative of most major urban areas with >30,000 population.
It is likely the application of hydrodynamic models would estimate lower levels of built-land and asset
exposure relative to the bathtub approach applied in this study.

The assessment of ESL100 flooding exposure is limited to present-day built-land and assets. This
approach was applied as open government organisation provisions of feature datasets enabled accurate
exposure analysis of their geometric attributes. Inconsistent attribute information, however, prevented
the consistent application of vulnerability functions to estimate direct damage and economic loss from
ESL100 flooding. Despite this limitation, quantifying the geometric exposure of built-land and assets
provides valuable insights on the future location, magnitude and timing of flood ‘risk hotspots’ for
future SLR scenarios. This information is critical for national and regional adaptation planning to
identify locations requiring more detailed coastal flood exposure and impact investigations.

3. Results

In this section, a nation-wide description of ESL100 elevations (Section 3.1) is followed by built-land
and asset exposure to ESL100 flooding presented for the ‘first metre of SLR’ (Section 3.2), beyond the
‘first metre of SLR’ (Section 3.3) and ‘3 m SLR’ (Section 3.4). We identify 1 m SLR above present-day
MSL (henceforth called MSLbase) as an important metric for analysing built-land and asset exposure in
New Zealand due to: (1) its close correspondence to relatively high (i.e., RCP 8.5 M) SLR projections
for the climate region by 2120 [21], and (2) the NZCPS requirements for regional and local authorities
to investigate SLR effects over at least a future 100-year timeframe. National and regional built-land
and asset exposure to ESL100, up to 3 m SLR above MSLbase are graphically presented in Figure 4a–d
and Figure 5a–i, and raw data provided in Table S5. The West Coast region is not included in the plots
due the absence of LiDAR DEMs.

3.1. National ESL100 Elevations

ESL100 elevations for the New Zealand coastline are estimated to range between 1.4 m and 4.2 m
(Figure 3, Table S6). Since storm-surges are relatively small in New Zealand [24], the spatial pattern of
ESL100 elevation is influenced mainly by the tidal range and wave exposure. Lower ESL100 elevations
of <2 m above MSL occur within estuaries, wave-sheltered embayed coastlines such as the Waikato’s
east coast and micro-tidal coastlines within Cook Strait (Wellington Region) and Marlborough Sounds
(Marlborough Region). Conversely, the nearby Nelson region adjacent to Marlborough has relatively
low wave exposure but higher ESL100 elevations caused by the largest tides in New Zealand [29].
ESL100 elevations are also larger along New Zealand’s west coast due to larger tidal ranges combined
with higher wave energy from swells originating in the Southern Ocean [38]. On the west coast of
the South Island, tides are smaller. On the South Island’s east coast, Canterbury is exposed to a high
energy southerly wave environment, except in the lee of Banks Peninsula.
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3.2. The First Metre of SLR

New Zealand’s land inundation to ESL100 flooding at MSLbase is 2037 km2 for areas with
LiDAR DEM coverage. This covers 0.8% of New Zealand’s land area. The 50.3 km2 of built-land at
MSLbase (Figure 1a) exposed includes 49,709 buildings with NZD$12.4 B replacement value, and a
usually-resident population of 72,065, or 1.6% of New Zealand’s 2013 population (Figure 4b–d).
Canterbury region represents 19% and 25% of the exposed building replacement value and population.
National building and replacement value exposure increases at an approximately linear rate of 7589 and
NZD$2.5 B respectively for each 0.1 m SLR to 1 m, with exposure doubling by 0.7 m SLR (Table 3). In
Hawke’s Bay, Wellington and Canterbury regions, doubling building and replacement value exposure
results in more than 1000 buildings and NZD$0.35 B value becoming exposed for every 0.1 m SLR
increment to 1 m. Additionally, present-day national population exposure almost doubles by 0.7 m
SLR, with more than 10,000 people becoming exposed per 0.1 m SLR on average. More than 30% of
these people reside in Canterbury, with 10% of the region’s population exposed to ESL100 flooding by
1 m SLR.
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Table 3. Summary of average incremental built-land and asset exposure to ESL100 flooding per 0.1 m
SLR increase on coastlines with LiDAR DEMs.

Element
Category

Asset or
Attribute Type

MSLbase ≤ 1 m
SLR

1 m SLR ≤ 2 m
SLR

2 m SLR ≤ 3 m
SLR

MSLbase ≤ 3 m
SLR

Land Built-land
(km2) 6.3 6.4 5.5 6.1

Buildings
Building (#) 7589 7049 6554 7036
Replacement
Value (NZD$

Billions)
2.55 2.57 2.29 2.4

Population (#) 10,558 10,364 10,389 10,436

Transport
Roads (km) 144 137 119 133

Railways (km) 10.1 10.9 10.1 10.3
Airports (#) 1 1 1 3

Electricity

Transmission
lines (km) 7.2 8.8 7.4 7.8

Structures (#) 14 18 13 14
Substations (#) 3 6 2 11

Water (potable,
waste, storm)

Nodes (#) 9504 9281 7599 8795
Pipelines (km) 400 382 300 361

Just over one percent of national road (1414 km) and rail (86.6 km) networks are presently exposed
to ESL100 flooding at MSLbase (Figure 5a,b). In addition, thirteen of twenty-eight international and
domestic airports are exposed (Figure 5c). National road exposure observes an approximately linear
increase of 145 km per 0.1 m SLR to 1 m. This more than doubles the present network exposure from
1414 km to 2856 km. Over the first 1 m of SLR, ESL100 exposure in Waikato and Canterbury regions
will increase by 17.7 km and 28.1 km per 0.1 m SLR, in addition to the 342 km and 243 km exposed at
MSLbase respectively. Railway networks are most exposed in regions with high use sea ports, including
Auckland, Bay of Plenty and Otago. Railway exposure could more than double to 188.6 km by 1 m SLR.
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The national electricity grid supports 122.5 km of transmission lines with 204 structures on land
presently exposed to ESL100 flooding (Figure 5d,e). ‘Overhead’ lines are predominantly located in
Bay of Plenty (30.7 km) and Marlborough (20.5 km), the region servicing the HVDC Inter-Island cable
South Island branch. Line exposure could increase by over 60% nationally in response to 1 m SLR.
After 1 m SLR, five sites (i.e., substations) servicing the national grid could be potentially exposed to
ESL100 flooding.

Three-waters infrastructure had the highest levels of asset exposure to ESL100 flooding. National
exposure of water nodes exceeds 77,037 at MSLbase, connected to 3179 km of pipelines (Figure 5i,g).
Similar to buildings and other horizontal transport and electricity infrastructure components, the rate
of node and pipeline exposure increase is approximately linear with SLR to 1 m. For each 0.1 m SLR
increment, national node and pipeline exposure increase by 9504 and 400 km on average, with exposure
doubling as SLR exceeds 0.8 m and 0.7 m respectively. In several regions, three-waters node exposure
doubles at lower SLR for nodes in Wellington and Nelson at 0.4 m, Auckland and Gisborne at 0.6 m,
and pipelines in Nelson at 0.4 m, Wellington at 0.5 m, and Auckland at 0.6 m.

3.3. Beyond the First Metre of SLR

Relative to MSLbase, an almost doubling of flood exposed land covered by LIDAR DEMs occurs as
sea-levels rise to 3 m above MSLbase. This is despite a gradual decrease of average incremental exposure
rates per 0.1 m SLR. Incremental land area exposure reduces slightly on average from 69.6 km2 every
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0.1 m SLR up to 1 m, to 65.2 km2 between 1 m and 2 m SLR, and decreases further to 54.1 km2 between
2 m and 3 m SLR.

Built-land and assets at national-scale exhibit an approximately linear trend of increasing
cumulative exposure to ESL100 flooding as sea-levels rise to 3 m above MSLbase. Within this trend,
built-assets exhibit slight variabilities in average incremental exposure per 0.1 m SLR and continues to
increase or begin to decrease relative to rates below 1 m SLR (Table 3). Built-land, railways, transmission
lines, electricity structures and building replacement values show slight exposure increases to exposure
between 1 m and 2 m SLR, decreasing thereafter. Despite an increasing cumulative exposure trend
at national-scale, population and several built-asset types, buildings, roads, three-waters nodes and
pipelines show a gradual easing in average incremental exposure rates.

The gradual easing in average incremental exposure for the usually-resident populations and
buildings as sea-levels rise beyond 1 m could be attributed to higher rates of commercial, industrial
buildings becoming exposed to ESL100 flooding on higher land. At national-scale, average incremental
building replacement value exposure per 0.1 m SLR remains constant up to 2 m SLR (Table 3). Several
populous regions however, show a considerable upturn in average incremental replacement value
exposure per 0.1 m SLR at sea-levels above 1 m. In Auckland, New Zealand’s most populous region,
average value nearly doubles to NZD$0.6 B from 1 m to 2 m SLR. At higher sea-levels, such as the Bay
of Plenty region, a NZD$0.11 B increase occurs between 2 m to 3 m SLR. These regions both support
major urban areas bordering low-lying estuarine shorelines, suggesting higher value commercial and
industrial buildings are becoming increasingly exposed to ESL100 flooding.

Three-waters infrastructure servicing coastal built-environments observe higher asset exposures
for SLR below 1 m (Table 3). Nationally, three-waters infrastructure networks and buildings connected
to their services, exhibit a similar trend whereby a gradual decrease in the rate of incremental exposure
occurs above 1 m SLR. Subsequent higher SLR corresponds to an average exposure rate decrease for
three-waters node and pipelines by 1905 and 100 km per 0.1 m SLR by 3 m. Despite this trend, Auckland
and Bay of Plenty regions show increases in exposed buildings and replacement value between 1 m
to 2 m SLR and 2 m to 3 m SLR respectively. At these sea-levels, the potential exposure of higher
value commercial and industrial buildings would correspond to three-waters infrastructure exposed to
ESL100 flooding which is highly critical for the social and economic functioning of built-environments.

3.4. Exposure at 3 m SLR: Composite National DEM

The composite national DEM used in the present study, supported ESL100 flood mapping for SLR
projected over century scales by various climate models and RCPs [8]. National land exposure to
flooding reaches 3926 km2 at 3 m SLR with LiDAR DEM coverage. An additional 2469 km2 land area is
exposed with MERIT DEM coverage. Built-land flood exposure for 3 m SLR extends to 262 km2, with
28.6 km2 identified from the satellite-derived DEM. This area includes 289,057 buildings (NZD$94 B)
and a usually-resident population of 423,490. Buildings, their replacement values and usually-resident
populations identified from the MERIT DEM represent 9% of the national exposure. This suggests a
large proportion of coastal settlements occupied by more than 1000 people are represented by LiDAR
DEMs; therefore, providing a reasonable estimate of the national-scale building and usually-resident
population ESL100 flood exposure for SLR < 3 m.

Transport and electricity infrastructure components identified from the MERIT DEM form between
21% and 26% of their national ESL100 flood exposure at 3 m SLR. Network components such as roads,
railways, transmission lines and their support structures extend well beyond coastal towns and cities,
and are represented by the MERIT DEM in rural areas. At 3 m SLR, 7194 km and 519 km of roads and
railways respectively and 451.6 km of transmission lines are exposed to ESL100 flooding. Three-waters
node and pipeline infrastructure components represented by the MERIT DEM respectively form just
5% and 6% of their 360,154 and 15,024 km national exposure at 3 m SLR. This is expected as these
components predominantly service coastal settlements represented by LiDAR DEMs.



Sustainability 2020, 12, 1513 12 of 16

4. Discussion

Global SLR projected over the next century, with its widening uncertainty, will exacerbate
built-environment exposure to ESL flooding. In New Zealand, there is already considerable built-land,
asset and population exposure to flooding from an ESL100 event at present-day MSL, which will only
increase with SLR. Based on various climate models and RCPs, New Zealand’s MSL is projected to rise
between 0.55–1.36 m over the next 100 years [21]. This SLR range will drive substantial increases in
coastal flood event frequencies over the next 100 years, and within the next few decades at relatively
low SLR in some locations [2–5,39].

In New Zealand, national exposure of building (including replacement values and usually-resident
populations), transport (roads and railways) and three-waters (nodes and pipelines) infrastructure
components to ESL100 flooding doubles with less than 1 m SLR. This is consistent with global
scale studies that predict large increases in built-asset and population exposure to SLR over this
century [9–11,40–42]. At regional levels, already high exposure or infrastructure network components
including ‘three-waters’ nodes and pipelines to ESL100 flooding doubles before reaching a 0.5 m SLR.
These modest rises in sea-level will cause more frequent ESL flooding exposure that regularly disrupt
or reduce infrastructure service levels within built-areas [43]. This will require adaptation decisions by
property owners and communities to proactively manage and plan for the rising and more frequent
socio-economic impacts from coastal flooding and SLR.

We found the vertical accuracy of available DEMs limited a consistent national-scale exposure
analysis of future ESL100 flooding. The centimetre-scale vertical resolution of LiDAR data versus
metre-scale satellite-derived DEMs, supported more detailed mapping and evaluation of built-asset
exposure to ESL100 flooding and SLR. Our results support findings of [10], that found improved
sub-metre DEM accuracy led to a tripling in the calculated global population exposure to SLR by the
year 2100. An advantage of our study was available high-resolution LiDAR DEMs for 40% of New
Zealand’s coastline, representing most coastal settlements and urban areas of >1000 people. This
enabled differences in ESL100 flooding exposure to be resolved at 0.1 m SLR increments. Despite
significant recent improvements in the vertical accuracy of global satellite DEMs, their relatively
lower resolution allows to resolve only large SLR projections over future centuries. In New Zealand,
satellite DEMs with at least >2 m vertical accuracy covers the remaining 60% of coastal land where
no LiDAR DEMs are available. In the present study, we limited the assessment of ESL100 flooding
exposure to ≤3 m SLR for these areas. For many countries, application of coarser DEMs is inevitable in
national-scale exposure assessments but our work shows that substantial improvements can be gained
from investment in high-resolution topographic data.

Large uncertainty in projected SLR over the latter part of this century and beyond creates difficulties
for investigating and managing coastal flooding impacts on built-environments. Statutes and strategies
for managing SLR impacts for prescribed years (e.g., 2100) encounter large SLR ranges coinciding with
designated risk interventions, for example, 0.55–1.36 m SLR projections by 2120 for New Zealand.
In these situations, applying management interventions too early or too late can be managed using
a dynamic adaptive policy pathways (DAPP) approach, where coastal flood exposure or impact
indicators trigger adaptive actions ahead of adaptation thresholds [6,7,44]. Identification of coastal
flooding adaptation thresholds and triggers over decades and centuries in response to SLR, requires
detailed information on the location and timing of flooding and socio-economic impacts for present and
future environments [44–47]. Applying 0.1 m SLR increments in coastal flood exposure assessments
using high-resolution topographic data identifies the spatial variability of present built-asset exposure
on temporal scales representing decadal change in SLR and thus included within a DAPP pathway.
The timing of these SLR increments can be obtained from projected SLR rates [3,5].

National-scale adaptation strategies for future coastal flooding need to consider subnational-scale
exposure profiles for increasing increments of SLR. In the present study, we investigated regional
built-land and asset exposure to inform a national-scale assessment. There were notable inter-regional
differences and differences between the regional and national analyses. At national-scale,



Sustainability 2020, 12, 1513 13 of 16

an approximately linear trend of increasing built-land and asset exposure is observed as sea-levels rise.
However, regions with a high number of built-assets on low-lying coastal land exhibit rapid exposure
increases with an only modest SLR, such as Hawke’s Bay, Wellington and Canterbury. In other regions
like Auckland and Bay of Plenty where built-assets were located further above sea level due to steeper
topography, building and replacement value incremental exposure rates accelerated between 1 m to 2 m
and 2 m to 3 m SLR respectively. However, built-assets in most regions, and nationally, will experience
their highest average incremental exposure rates below 1 m SLR. This supports the findings of [3] that
coastal adaptation planning and action at all-scales is urgently required to avoid the consequences of
deeper and more frequent flooding with rising sea levels.

While this study delivers a first assessment of built-environment exposure to ESLs and SLR in
New Zealand, information on social and economic impacts and criticality of built-assets is not provided.
Several national- and continental-scale flood impact assessments represent built-environments as
continuous land cover maps of simplified built-asset typologies for applying economic vulnerability
functions [36,48–50]. Our asset-level approach enabled exposure metrics to be aggregated at scales
consistent with local authority decision-making. However, incomplete and inconsistent asset-level
attribute information across multiple built-asset typologies limits a detailed spatio-temporal impact
analysis. A focus on developing reliable asset-level datasets, coupled with nationally coordinated
LiDAR acquisition on low-lying coastal land will considerably improve national-scale assessments of
socio-economic impacts arising from built-environment exposure to ESLs and SLR.

5. Conclusions

This study presents a first national-scale assessment of New Zealand’s present and future
built-environment exposure to coastal flooding from 100-year extreme sea-levels (ESL100) and SLR. The
RiskScape framework was used to identify the flooding exposure of built-land and assets including
buildings, transport, electricity, and three-waters infrastructure. The framework used a composite
national DEM of high-resolution LiDAR and lower-resolution satellite topographic data. Built-land
and asset exposure to flooding was quantified using LiDAR DEMs for present-day MSL and for 0.1 m
sea-level increments up to 3 m SLR above present. For the satellite DEM, exposure assessment was
limited to a single ≤3 m SLR elevation due to the lower vertical resolution.

We investigated regional built-land and asset ESL100 flooding exposure to inform the national-scale
assessment. National exposure to ESL100 flooding doubles with less than 1 m SLR, an observation
consistent with global-scale studies on coastal flooding exposure over the next century. Notable
inter-regional differences and differences between regional and national exposure trends are observed.
An approximately linear trend of increasing built-land and asset exposure occurs in response to SLR at
a national-scale. Regions with a high number of built-assets on low-lying coastal land experience rapid
increases in exposure at relatively low SLR elevations expected in future decades. This emphasises
that national-scale adaptation strategies for future coastal flooding and sea-level rise need flexibility to
consider regional and local exposure rates and must facilitate local adaptation planning.

The application of small, regular 0.1 m increments of SLR provides the required resolution to
detect variable rates in the magnitude and potential timing (i.e., decadal scale) of future flooding
exposure when coupled with SLR projections. This assessment methodology is only possible with
high-resolution topographic data, such as LiDAR, and reduces the underestimates that are implicit
when using satellite-derived DEMs. Higher resolution built-environment exposure data will facilitate
adaptation planning processes by informing adaptation thresholds to be avoided and triggers to begin
adaptation actions. Substantial amounts of built-land and assets are already exposed to ESL100 flooding
exposure and SLR will drive rapid flooding frequency increases in these areas. This indicates an urgent
need for adaptation planning and action to mitigate future socio-economic impacts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/12/4/1513/s1,
Figure S1: Map showing ESL100 analysis sites around the New Zealand coastline used in this study, Table S1:
MSL offsets for sea-level gauge and measurement sites, Table S2: New Zealand coastline coverage for available
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LiDAR and satellite (MERIT) DEMs in the present study, Table S3: Regional LiDAR DEMs available for the present
study, Table S4: New Zealand built-land and asset datasets available for the present study, Table S5: New Zealand
built-land and asset exposure datasets for ESL100 flooding, Table S6: MSL and ESL100 elevations (m) estimated for
the New Zealand coastline.
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