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Abstract: Prediction of the mechanical characteristics of the reservoir formations, such as static Young’s
modulus (Estatic), is very important for the evaluation of the wellbore stability and development of
the earth geomechanical model. Estatic considerably varies with the change in the lithology. Therefore,
a robust model for Estatic prediction is needed. In this study, the predictability of Estatic for sandstone
formation using four machine learning models was evaluated. The design parameters of the machine
learning models were optimized to improve their predictability. The machine learning models were
trained to estimate Estatic based on bulk formation density, compressional transit time, and shear
transit time. The machine learning models were trained and tested using 592 well log data points
and their corresponding core-derived Estatic values collected from one sandstone formation in well-A
and then validated on 38 data points collected from a sandstone formation in well-B. Among the
machine learning models developed in this work, Mamdani fuzzy interference system was the highly
accurate model to predict Estatic for the validation data with an average absolute percentage error of
only 1.56% and R of 0.999. The developed static Young’s modulus prediction models could help the
new generation to characterize the formation rock with less cost and safe operation.
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1. Introduction

Prediction of the mechanical characteristics of the reservoir formations, such as Young’s modulus
(E), is necessary for the evaluation of the wellbore stability, reservoir compaction, hydraulic fracturing,
and formation control [1]. E is a mechanical parameter that gives an indication of the resistance of
the rock samples when exposed to a uniaxial load [2]. On the other hand, static Young’s modulus
(Estatic) is a critical parameter needed to build the earth geomechanical model [3]. It is also used for
fractures’ designing and mapping [4,5]. While drilling hydrocarbon wells, Estatic is also needed with
other mechanical and petrophysical properties to make a full description of the in-situ stresses to
ensure wellbore stability [6].

Estatic varies significantly with the change in lithology [2,7]. Estatic for shale ranges from 0.69 to
6.89 GPa. For limestone, it is between 55.16 and 82.74 GPa, and for sandstone, it is between 13.79 and
68.95 GPa [7]. These ranges confirm the wide difference in Estatic from one formation type to another
and the huge change within the same lithology. Therefore, it is necessary to estimate Estatic along the
whole drilled hydrocarbon well.

Two methods for rock elastic parameters’ estimation are currently available. These are the
experimental laboratory method or the use of empirical correlations. The experimental laboratory
method is based on conducting laboratory experiments on the rock samples using static or dynamic
testing techniques. In the static technique, the sample is subjected to a uniaxial or triaxial load and the
deformation of the sample is measured, while in the dynamic technique, shear and compressional
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wave velocities along the tested sample are measured and then the sample’s elastic parameters are
calculated based on the shear wave (Vs) and compressional wave (Vp) velocity [8]. In the field, wireline
logging tools are used to measure Vs and Vp. The dynamic Young’s modulus (Edynamic) can then be
evaluated based on Vs and Vp and using Equation (1).

Edynamic =
ρVS

2
(
3VP

2
− 4VS

2
)

VP
2 −VS

2 (1)

where ρ denotes the formation’s bulk density in g/cm3, VS and VP are in km/s, and Edynamic is in GPa.
Several previous studies confirmed that the laboratory-measured Edynamic for the same rock

sample is significantly greater than Estatic [9–11]. Edynamic could be 1.5 to 3 times greater than Estatic [12]
and some recent studies reported that Edynamic could be ten times greater than Estatic [13,14]. The strain
amplitude between the two experimentally testing methods is the main reason for this huge difference,
which decreases as the rock strength increase [15].

The static elastic parameters are actually representative of the in-situ stress–strain conditions
of the reservoir [16]. Accurate determination of the static elastic parameters requires conducting a
time consuming and costly experimental tests on real core samples [17]. The common practice to
decrease this high cost is to select core samples at specific intervals and conduct the experimental
tests of these cores only. Then an empirical correlation between the laboratory-derived parameters
and the conventional well log data will be developed based on the results of laboratory tests. The
static moduli throughout the whole reservoir depths can then be predicted by calibrating the dynamic
moduli using the developed correlations [4]. Because of the heterogeneity of the reservoir formations,
the developed well log-based empirical equations are usually not generalized to all formation types.
Therefore, different correlations need to be developed for every formation type to track the changes in
the static parameters along the whole reservoir.

The correlation in Equation (2) was developed by Fei et al. [18] for the evaluation of Estatic for
sandstone formations; this correlation evaluates Estatic as a function of Edynamic, which was developed
based on 22 triaxial tests results.

Estatic = 0.564 Edynamic − 3.4941 (2)

where Estatic and Edynamic are in GPa.
Mahmoud et al. [19] developed a set of equations to estimate Estatic for different types of formations.

The main advantage of the correlations developed by Mahmoud et al. [19] is the ability to implement
these correlations directly to evaluate Estatic without the need for Edynamic, these correlations are only a
function of the bulk formation density (RHOB), compressional transit time (DTc), and shear transit
time data (DTs).

Different recent studies confirmed the ability of machine learning techniques to accurately estimate
rock mechanical properties. Abdulraheem et al. [20] optimized three machine learning models of
the artificial neural networks (ANN), fuzzy logic model, and functional neural networks (FNN) for
estimation of Estatic and the static Poison’s ratio for the hydrocarbon reservoirs. The authors did not
specify the reservoir rock formation type. The developed models confirmed their ability to estimate
the reservoir rock mechanical properties.

In another study, Tariq et al. [21] developed three machine learning models of ANN, fuzzy logic,
and support vector machine (SVM) to estimate Estatic for limestone formation. The ANN model
overperformed the other machine learning models and the currently available empirical correlation for
Estatic estimation.

Tariq et al. [22] developed empirical correlations for the estimation of the mechanical properties
of Estatic, Poisson’s ratio, and unconfined compressive strength based on the application of the artificial
neural networks (ANN) and the use of the conventional well log data, the authors also did not specify
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the type of the formation they used in this study. The developed correlations improved their ability to
accurately estimate the rock mechanical properties.

In 2017, Parapuram et al. [23] developed an ANN model to estimate the geomechanical properties
of the upper Bakken shale based on well log data. The results of this study confirmed the ability of the
ANN model to accurately estimate the rock mechanical properties.

Recently, in our previous study, Mahmoud et al. [24], we evaluated the use of the ANN in
estimating Estatic for sandstone formations. Mahmoud et al. [24] reported that ANN is able to predict
Estatic with very high accuracy, and it overperformed all available empirical equations currently in use.

Sustainable development can be defined as development that meets the needs of the present
without compromising the ability of future generations. This study is aimed at evaluating the ability
of four machine learning techniques namely ANN, SVM, FNN, and the Mamdani fuzzy interference
system (M-FIS) in estimating Estatic for sandstone formations as a function of RHOB, DTs, and DTc. The
new systems of static Young’s modulus prediction are examples of the new development which will
help the new generation to discover and extract the oil and gas at lower cost and with safer operation.
The developed method depends on taking the reading from the well logging tools and applying the
artificial neural network models to predict the static Young’s modulus and provide a continuous
profile of the elastic property through the whole reservoir. This will improve the time necessary for the
decision on the required action based on given information.

2. Theory of Machine Learning Techniques Considered in This Study

The first machine learning technique used in this work was the ANN, which is a computing
system that is designed to mimic the way the biological systems, such as the human or animal brains,
behave. ANN is developed to identify, estimate, classify, or make a decision by using a machine
program. ANN is available in different structures; the simplest ANN structure, which was used in
this study, is called multi-layered perceptron (MLP) which consists of one input layer, one or several
hidden (learning) layers, and one output layer, as shown in Figure 1 [25]. The ANN systems are trained
originally using training data (supervised learning) to perform the needed tasks [26].

Figure 1. Artificial neural networks model with input layers of three inputs, one hidden layer, and an
output layer.

M-FIS was the second machine learning technique used in this study, which combines the adaptive
neuro-fuzzy inference system (ANFIS) and subtractive clustering, where ANFIS is a multilayer
feed-forward adaptive network in which the incoming signal will be subjected to a particular function
performed by each training node where every node has its own parameters pertaining (Figure 2). The
hybrid learning procedure was performed in two steps; the first step was the forward pass in which
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the functional signals representing the input data go forward and the least square formula was used to
identify the parameters in the output layer (layer 5). The second step was the backward pass, in which
the error rates propagate, in the opposite way, and the gradient method was implemented to update
the parameters in the input layer (layer 1) [27].

Figure 2. Adaptive neuro-fuzzy inference system architecture of a model using two inputs layers and
one output parameter.

The subtractive clustering is an unsupervised clustering algorithm that aims to examine the
density of the available input data. Then it defines the point surrounded by the highest number of
neighbors as the cluster’s center. It then subtracts (removes) the other data points within a pre-specified
fuzzy radius, and the subtractive clustering algorithm considers only the point defined as the cluster’s
center. This process is repeated to examine all input data points. Subtractive clustering generates the
rules that approximate a function [28].

The third machine learning technique used in this study was the FNN model, compared to the
ANN which uses the sigmoidal common model. The FNN model works with the generalized functional
models. In FNN, the neuron’s function is learned from the existing data, which means they are not
constant. Therefore, the weights related to links are not needed because the neuron functions include
the effect of weights [29]. FNN contains an input layer, an output layer and layers of computing units
that are related to each other. In FNN, there are different arguments in neural functions instead of one
argument, such as in ANN [30].

The fourth machine learning model considered in this study was the SVM, which is one of the
most famous classifying algorithms developed by Vapnik [31] in the framework of statistical learning
theory. It performs classification of the data optimally into two or more divisions by applying a
multidimensional hyperplane; this hyperplane is set to classify the data based on the tuning parameters
(design parameters) of the kernel, regularization parameter (C), gamma, and margin. In its nature,
SVM is very similar to a neural network, where the use of SVM with sigmoid kernel function is almost
identical to the use of the perceptron neural network, having two hidden layers. Although it was
originally developed in the statistical learning theory, the SVM technique is applicable in regression
and classification problems, and it is also suitable for solving non-linear problems [32].

3. Applications of Machine Learning in Petroleum Engineering

Machine learning techniques are used in several scientific and engineering fields since the early
1990s to solve complicated non-linear problems. Petroleum engineers and petroleum geologists
use different machine learning techniques to solve problems related to petroleum industry, such as
the characterization of the heterogeneous hydrocarbon reservoirs [33,34], evaluation of the reserve
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of unconventional reservoirs [35–38], estimation of the rock mechanical parameters, such as the
static Poisson’s ratio in carbonate reservoirs [39] and the static Young’s modulus for sandstone
reservoirs [24,40], evaluation of the integrity of wellbore casing [41,42], optimization of drilling
hydraulics [43], evaluation of pore pressure and fracture pressure [44,45], hydrocarbon recovery factor
estimation [46,47], determination of the alteration in the drilling fluids rheology in real-time [48,49],
optimization of rate of penetration [50,51], prediction of the formation tops [52], and others.

4. Application to the Well Log Data

The predictability of the machine learning models depends on the amount of training data
points and the design parameters of every model. In this work, the machine learning model’s
design parameters and the selection of the optimum training data points were conducted based on
the optimization process of all combinations of the design parameters, as will be discussed in the
following sections.

4.1. Data Preparation

The machine learning models are trained in this study to predict Estatic based on the RHOB, DTs,
and DTc as inputs. In this study, core-derived Estatic and their corresponding well log data collected
from two different sandstone wells (598 collected from Well-A and 38 from Well-B) were used. The
data of Well-A was used to build and test the machine learning models, and Well-B data (unseen data)
was used to validate the trained machine learning models. Both formations considered in wells A and
B were sandstone formations.

Before training the machine learning models, the data were studied statistically to remove all
noise, unreal values, and outliers from the training data. The standard deviation (SD) was considered
for removing the outliers; based on this, all data points without the range of ± 3.0 SD were considered
as outliers and removed from the input dataset. This preprocessing is very important to ensure accurate
estimation of the targeted parameter by applying the machine learning techniques [53]. Out of the 598
data points collected from Well-A, 6 data points were considered as outliers, these data points were
removed from the data before the start of the training process.

Since the core derived Estatic was estimated based on well log data, it was very important to
perform depth matching between the well log input data and core derived Estatic. Although the
gamma-ray log was not considered as input in this study, it was considered at this step to perform the
depth matching.

4.2. Training the Machine Learning Models

After data preprocessing, 592 well log data points and their corresponding core derived Estatic

were considered valid for machine learning models training. Four hundred and fourteen, 178, 355, and
444 well log data points (out of the 592) were considered to train ANN, M-FIS, FNN, and SVM models,
respectively. The number of the training data was selected based on the optimization process, where
the optimum number of the training data that optimize the predictability of the different machine
learning models was selected in every case. The statistical characteristics for the training datasets for
the different machine learning models are summarized in Table 1. The data of Table 1 is very important
when the machine learning models are to be used for evaluating Estatic for a new dataset; the new
testing data should be within the ranges in Table 1.
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Table 1. The statistical characteristics for the training data set.

Artificial Neural Networks.

RHOB, g/cm3 DTc, µs/ft DTs, µs/ft Estatic, GPa

Minimum 2.32 44.4 73.2 7.50
Maximum 2.98 78.9 136 92.8

Range 0.66 34.6 62.4 85.3
Standard Deviation 0.114 5.06 8.91 14.9

Sample Variance 0.013 25.6 79.4 221

Mamdani Fuzzy Interference System

RHOB, g/cm3 DTc, µs/ft DTs, µs/ft Estatic, GPa

Minimum 2.33 44.6 73.2 8.63
Maximum 2.98 78.7 133 92.8

Range 0.66 34.1 60.0 84.2
Standard Deviation 0.114 5.45 9.47 15.2

Sample Variance 0.013 29.7 89.6 232

Functional Neural Networks

RHOB, g/cm3 DTc, µs/ft DTs, µs/ft Estatic, GPa

Minimum 2.31 44.5 73.6 7.50
Maximum 2.98 78.9 136 92.6

Range 0.67 34.4 62.5 85.1
Standard Deviation 0.112 5.27 9.20 14.9

Sample Variance 0.013 27.7 84.7 222

Support Vector Machine

RHOB, g/cm3 DTc, µs/ft DTs, µs/ft Estatic, GPa

Minimum 2.31 44.3 73.2 7.50
Maximum 2.98 78.9 136 92.8

Range 0.67 34.6 62.9 85.3
Standard Deviation 0.113 5.21 8.99 14.5

Sample Variance 0.013 27.1 80.8 210

The input training well logs data were selected based on their relative importance on the actual
Estatic which was determined in this study based on the correlation coefficient (R), Figure 3 compares R
for the input well log data used to train the different machine learning model. As indicated in Figure 3,
all well log parameters used to train the machine learning models are strongly related to Estatic with
high Rs of >0.7 for the bulk density, >0.8 for the compressional transit time, and >0.95 for the shear
transit time.

Figure 4 shows the inputs used to learn the machine learning models. Inserted for loops were
designed using MATLAB software to optimize all combinations of the machine learning model’s design
parameters for Estatic estimation; every single for loop represents one design parameter. Sensitivity
analysis was conducted to evaluate the effect of changing every single design parameter on the
predictability of Estatic by the different machine learning models considered in this study. The
sensitivity analysis is a critical step in optimizing the design parameters of the machine learning
models and several previous studies considered it as a crucial step in optimizing the performance of
different mathematical models [54–56]. Based on the sensitivity analysis results, the combinations of
the variables in Table 2 were found to optimize Estatic estimation using the different machine learning
models; these parameters predicted Estatic with the lowest average absolute percentage error (AAPE)
and the highest R; the AAPE was calculated using Equation (3).

AAPE =
1
N

N∑
i=1

(∣∣∣∣∣∣ (Estatica)i − (Estaticm)i

(Estatica)i

∣∣∣∣∣∣× 100
)

(3)
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where N represents the number of the data points, a and m denote the actual and estimated
Estatic, respectively.

Figure 3. Comparison of the relative importance of the training parameters used to develop (a) ANN,
(b) the Mamdani fuzzy interference system (M-FIS), (c) functional neural networks (FNN), and
(d) support vector machine (SVM) models.

Table 2. Optimized design parameters for the machine learning models.

Artificial Neural Networks

Training Data (out of total data from Well-A) 70%
Testing Data (out of total data from Well-A) 30%

Learning Function Trainbr
Transfer Function Logsig

Number of Training Layers Single Layer
Neurons per Training Layer 20

Mamdani Fuzzy Interference System

Training Data (out of total data from Well-A) 30%
Testing Data (out of total data from Well-A) 70%

Cluster Radius 0.3
Number of Iterations 180

Functional Neural Networks

Training Data (out of total data from Well-A) 60%
Testing Data (out of total data from Well-A) 40%

Training Method Forward Selection Method
Function Type Non-linear Function with No Iteration Terms

Support Vector Machine

Training Data (out of total data from Well-A) 75%
Testing Data (out of total data from Well-A) 25%

Verbose 0.7
C 3000

Epsilon 0.5
Lambda 1 × 10−7

Kernel gaussian
Kerneloption 9
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Figure 4. The training input well log data collected from Well-A.

4.3. Evaluation of the Developed Machine Learning Models

After training, the developed machine learning models were then tested using the remaining
data collected from the same training sandstone formation in Well-A and then validated using 38 data
points (unseen data) collected from a sandstone formation in Well-B.

Uncertainty quantification is at the heart of decision making, especially in subsurface applications.
Uncertainty about the geological structures, rocks, and fluids is because of the lack of access to the
subsurface geological medium [57,58]. The uncertainty in the prediction results of all machine learning
models developed in this study was directly controlled by the uncertainty on the well log data used
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to develop these models which were highly controlled by the depth of investigation and vertical
resolution of every logging tool.

5. Results and Discussion

5.1. Machine Learning Models Development

The machine learning models were trained to predict Estatic as a function of the RHOB, DTs, and
DTc. The training data were collected from Well-A. Figure 5 compares the actual and estimated Estatic

for the training dataset.

Figure 5. Actual and estimated static Young’s modulus (Estatic) for the training dataset collected
from Well-A.

Figure 5 shows that all machine learning models predicted Estatic with very high accuracy. M-FIS
predicted Estatic with AAPE of only 0.05% and R of 0.999995. FNN model estimated the Estatic with
AAPE and R of 0.78% and 0.999491, respectively, while SVM model estimated Estatic with AAPE of
0.55% and R of 0.999634, and the ANN model predicted Estatic with AAPE of 0.98% and R of 1.000000.
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The good matching between the actual and estimated Estatic for the training dataset shown in Figure 5
proves the high accuracy of the machine learning models in evaluating Estatic.

5.2. Testing the Developed Machine Learning Models

The performance of the developed machine learning models in evaluating the Estatic for the testing
dataset, which was collected from the same training formation used to developed machine learning
models (i.e., from Well-A), was evaluated. As indicated in Figure 6, all machine learning models
predicted Estatic with very high accuracy. M-FIS predicted Estatic for the testing dataset with AAPE
and R of 0.09% and 0.999992, respectively, FNN model predicted Estatic with AAPE of 0.85% and R
of 0.999311, then SVM model which estimated Estatic with an AAPE and R of 0.62% and 0.999813,
respectively, and the ANN estimated Estatic with AAPE of 1.46% and R of 1.000000. Visual check of the
actual and estimated Estatic of the testing data set also confirmed the high accuracy of the machine
learning models, as indicated by the good matching between the actual and estimated Estatic.

Figure 6. Actual and estimated Estatic for the testing dataset collected from Well-A.
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5.3. Validation of the Developed Machine Learning Models

The machine learning models’ accuracy was finally validated using 38 data points collected from
another sandstone formation in Well-B. Figure 7 compares the actual core derived and estimated Estatic

using the developed machine learning for the validation data set. The results in Figure 7 confirmed
that all machine learning models predicted Estatic with very high accuracy. This figure also confirmed
that M-FIS technique is the best among the others on estimating Estatic for the validation data set, where
the developed M-FIS predicted Estatic with AAPE of 1.56% and R of 0.999, followed by SVM model
which predicted Estatic with AAPE of 2.03% and R of 0.999, then FNN model which estimated Estatic

with AAPE of 2.54% and R of 0.997, and the least accurate model was the ANN which predicted Estatic

with AAPE of 3.80% and R of 0.991.

Figure 7. Core-derived and predicted Estatic for the validation dataset collected from Well-B.

A visual check of the actual and estimated Estatic of the validation data set also confirmed the
high accuracy of all machine learning models considered in this work, as confirmed by the good
matching between the estimated and core derived Estatic. A continuous profile of Estatic along the
drilled sections of Well-B was obtained using the machine learning models. This is not possible to
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achieve by conducting laboratory work only. The confidence intervals for the validation data were ±
0.574, ± 0.804, ± 0.843, and ± 0.877, with a confidence level of 99% for M-FIS, SVM, ANN, and FNN
models, respectively.

Figure 8 compares the AAPE for the calculated Estatic for training, testing, and validation datasets
using the different machine learning models. This figure confirms that the developed M-FIS model
overperformed the other machine learning models in predicting Estatic for the training, testing, and
validation datasets in terms of AAPE. M-FIS predicted Estatic with the lowest AAPE of 1.56 %, while
the AAPE for the SVM, FNN, and ANN were 2.03, 2.54, and 3.80, respectively.

Figure 8. Comparison of the AAPE for the training, testing, and validation datasets for all machine
learning models.

Out of the results of training, testing, and validation data and considering the similarity of the
results of the evaluation parameters (AAPE and R) and taking into consideration that adding or
omitting a few points may change the highest-to-lowest order of the models accuracy, we conclude
that the four models are equally adequate to estimate Estatic using only the conventional well log used
in this study. Nevertheless, we recommend using the M-FIS model as it is the best-performed model
for estimating Estatic for the training, testing, and validation data.

The machine learning models developed in this work are very helpful for the petroleum engineers
and petroleum industry since they could positively improve Estatic estimation, therefore, enabling
petroleum engineers and geoscientists to construct the earth geomechanical map and to evaluate
the wellbore stability condition, the reservoir compaction, hydraulic fracturing, and the formation
control [1,3].

6. Conclusions

Four machine learning techniques were applied in this study to develop models for estimating
Estatic for sandstone formations, these machine learning techniques were ANN, FNN, M-FIS, and SVM.
The machine learning models were trained to evaluate Estatic based on conventional well log data of the
RHOB, DTs, and DTc. The machine learning models were trained and tested based on data gathered
from sandstone formation in Well-A and then the developed models were validated on unseen data
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collected from a sandstone formation in Well-B. The outcomes of this work confirmed the high accuracy
of all machine learning models, and M-FIS models overperformed all others in estimating Estatic for
training, testing, and validation data sets. For the validation data, M-FIS predicted Estatic with a very
low AAPE of 1.56% and R of 0.999. The high accuracy of the developed machine learning models was
also confirmed by visual comparison of the estimated and actual Estatic.

Author Contributions: Conceptualization, S.E; data preparation, S.E., and A.A.M.; models development, A.A.M.;
results analysis, A.A.M.; writing—original draft preparation, A.A.M.; writing—review and editing, S.E., and
D.A.S.; supervision, S.E. All authors have read and agreed to the published version of the manuscript.
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Nomenclature

AAPE Average absolute percentage error
ANN Artificial neural networks
DTc Compressional transit time
DTs Shear transit time
Edynamic Dynamic Young’s modulus
Estatic Static Young’s modulus
FNN Functional neural networks
M-FIS Mamdani fuzzy interference system
SVM Support vector machine
R Correlation coefficient
RHOB Formation bulk density
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