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Abstract: Service innovativeness is a key sustainable competitive advantage that increases
sustainability of enterprise development. Literature suggests that big data and big data analytics
capability (BDAC) enhance sustainable performance. Yet, no studies have examined how big
data and BDAC affect service innovativeness. To fill this research gap, based on the information
processing theory (IPT), we examine how fits and misfits between big data and BDAC affect service
innovativeness. To increase cross-national generalizability of the study results, we collected data from
1403 new service development (NSD) projects in the United States, China and Singapore. Dummy
regression method was used to test the model. The results indicate that for all three countries, high big
data and high BDAC has the greatest effect on sustainable innovativeness. In China, fits are always
better than misfits for creating sustainable innovativeness. In the U.S., high big data is always better
for increasing sustainable innovativeness than low big data is. In contrast, in Singapore, high BDAC
is always better for enhancing sustainable innovativeness than low BDAC is. This study extends
the IPT and enriches cross-national research of big data and BDAC. We conclude the article with
suggestions of research limitations and future research directions.

Keywords: big data; big data analytics capability; innovations and sustainability; information
processing theory; sustainable innovativeness

1. Introduction

The explosive growth of big data has brought opportunities and challenges for firms to rapidly
develop and improve their competitiveness and sustainability of the enterprise development [1,2].
Sustainable innovation, particularly service innovation, is a key driver of sustainable competitive
advantage [2]. Studies have demonstrated that big data is an invaluable resource in the development
of service innovation [2–4], but also places great demands on the information processing capability of
firms [5]. In the innovation literature, the information processing theory (IPT) [6] suggests that it is
important to consider the fit between information processing demands and information processing
capability [7,8]. IPT predicts that when there is a fit between a firm’s demands for information and its
information processing capability, the firm will gain greater sustainable competitive advantage. In the
era of big data, the big data processing and analysis requirements have increased significantly [4].
Firms need to use advanced technologies and tools, such as deep learning [5,9] and essential analytics
capability [10,11], to identify market trends and evolution patterns contained in big data. A lack of big
data analytics capability (BDAC) can leave firms with unharnessed big data, resulting in increased
data storage costs and greater difficulty in converting data into useful, timely information [12,13].

Big data refers to the enormous volume of rapidly and incessantly compiled data from an
immeasurable variety of market, consumer, social, and other activities. The increasingly digital modern
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era has seen the exponential growth of big data as an important information resource [14]. However,
extracting value from big data requires analysis and utilization capabilities that can translate big data
into usable information and create sustainable competitive advantages in innovation [12,15]. Thus,
BDAC has become the focus of many recent researches [2,5]. With BDAC, managers can gain new
perspectives and technologies to improve existing theoretical knowledge, enhance decision-making
capability, and promote innovation [5,10,16]. Many scholars have begun realizing the importance of fit
between big data and BDAC. Isik [4] pointed out that firms can align their big data processing demands
with their BDAC to effectively use big data to advance their products or competition mode. Wang and
Hajli [17] using the medical industry as their research setting, constructed a theoretical model of how
BDAC implements the integration, processing, and visualization of big data to achieve sustainable
growth in operational, organizational, management, and strategic areas. Hao et al. [2] examined the
positive moderating effect of BDAC on the relationship between big data and sustainable innovation
performance. Nevertheless, few researchers have focused on the measurement and empirical testing of
the fit between big data and BDAC [4] and there has been little in-depth discussion on the impact of
big data/BDAC fit on service innovation.

Innovativeness is a key indicator of service innovation success, which can help firms attract new
customers and obtain sustainable competitive advantages [18]. As service innovation is a process of
identifying and solving problems through the integration of resources and capabilities, the degree
of sustainable innovativeness is largely affected by the type and level of resources and capabilities
a firm has. The rapid development of big data has provided new development opportunities for
firms [11] by helping them quickly understand changing market demand, identify and create new
business opportunities, and achieve successful innovation [3,12,19,20]. BDAC encompasses a firm’s
ability to obtain a new strategic and operational perspective through the combination, integration,
and deployment of specific big data resources [10]. The effect of the fit between big data and BDAC
on sustainable innovativeness is thus very important in discussing the process of service innovation.
To facilitate our study of these issues, we developed three research questions:

RQ1: Do fits (the fit between high big data and high BDAC and the fit between low big data and
low BDAC) increase sustainable innovativeness more than misfits (the misfit between high big data
and low BDAC and the misfit between low big data and high BDAC) do?

RQ2: Does high-high fit (the fit between high big data and high BDAC) increase sustainable
innovativeness more than low-low fit (the fit between low big data and low BDAC) does?

RQ3: Does low-high misfit (the misfit between low big data and high BDAC) increase sustainable
innovativeness more than high-low misfit (the misfit between high big data and low BDAC) does? Or
is the reverse true?

To answer these three questions, we draw on the IPT to develop a theoretical model of the effects
of fits and misfits between big data and BDAC on sustainable innovativeness. We consider two types of
alignments (fits): the fit between high big data and high BDAC (high-high fit) and the fit between low
big data and low BDAC (low-low fit). We also evaluate two types of misfits: the misfit between high big
data and low BDAC (high-low misfit) and the misfit between low big data and high BDAC (low-high
misfit) (see Figure 1). Therefore, we examine four possible scenarios: high-low misfit, high-high fit,
low-low fit, and low-high misfit.

We empirically test the theoretical model and conduct a three-country comparative study to assess
its cross-national applicability by collecting data from 477 new service development (NSD) projects
in the United States, 632 NSD projects in China, and 294 NSD projects in Singapore. We use dummy
regression method to analyze the data.

Our study results suggest: (1) For the United States, China, and Singapore, high-high fit has the
greatest impact on sustainable innovativeness. (2) For China, sustainable innovativeness is higher
when big data and BDAC align (either high-high fit or low-low fit). Managers of NSD projects in China
should increase big data and BDAC simultaneously to ensure that they are always in balance. (3) For
the United States and Singapore, when either big data or BDAC is at a low level, fit is not always better



Sustainability 2020, 12, 1984 3 of 23

than misfit. The U.S. NSD projects should strive to improve the level of big data, while Singapore NSD
projects should focus on improving BDAC to achieve greater sustainable innovativeness.

 

3 

 

Figure 1. Four scenarios of the fits and misfits between big data and BDAC. 
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We make three theoretical contributions to the literature on sustainability of big data application
and sustainable development theory: (1) We enrich research on the IPT by extending its application
to the context of big data and BDAC, defining information processing demands as big data and
information processing capability as BDAC. (2) We expand the empirical research on big data and
BDAC by exploring the impact of fits and misfits between big data and BDAC on sustainable
innovativeness. (3) We contribute to cross-national comparative research on sustainability of big
data and BDAC. Through empirical comparative analysis of data from the United States, China, and
Singapore, we find different impacts of fits and misfits between big data and BDAC on sustainable
innovativeness. The study results not only promote the application of the IPT to study of sustainability
of big data but also provide specific management suggestions for firms in different countries to improve
sustainable innovativeness through appropriate investment strategies for big data and BDAC.

2. Theoretical Background and Framework

2.1. Information Processing Theory (IPT)

The IPT regards a firm as an open social system that constantly exchanges information with the
external environment and utilizes that information in business activities [7,8]. Galbraith [8] described
the IPT as having three core concepts: information processing demand, information processing
capability, and the fit between this demand and capability. On the one hand, firms can reduce
information processing demand by increasing slack resources, but this strategy increases costs for firms.
On the other hand, firms can increase the availability of usable information to support decision- making
by improving information processing capability [7]. When the information processing capability
(collection, transformation, storage, and exchange of information) fit with the firm’s demand for
information processing, the firm can obtain sustainable competitive advantage. Since the IPT was first
proposed, many scholars have conducted research from the perspective of information processing to
explore the impact of fit between the demand for information and information processing capability on
firm performance. Most of the early research focused on strategy, structural design of the organization
or team, and supply chain management [21,22]. More recently, scholars have applied the IPT to
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multiple research fields, including operations management, new product development, international
management, and knowledge management, which has further expanded the applicability of the
IPT [6,23,24]. However, most studies have applied the IPT to explore the fit between the traditional
needs for information and information processing capabilities [21,24], with few studies considering
the IPT in the context of big data and BDAC.

With the pervasiveness of big data in operations and organizational development, there is also
very high demand for specialized information processing capabilities. In the face of the rapidly
changing market environment, the value of big data is fleeting, and firms need timely and effective
analysis to mine the information resources in the big data [19]. There is no inevitable relationship
between the acquisition of information and the improvement of firm performance, only effective
use of the information can lead to improved profitability. The IPT considers the effective allocation
and coordination of a firm’s resources and capabilities such as how the adaptation and promotion of
different elements within a firm can effectively advance innovation activities [25]. BDAC provides
new information processing methods and technologies that enable firms to translate big data into new
information that can be used in different ways and promote sustainable service innovation. Although
some scholars have emphasized the importance of fit between big data processing demands and
big data processing capability based on the IPT [4], there is a lack of in-depth empirical testing and
consideration of the impact of fit in the field of service innovation. Therefore, in this study, we apply
the IPT by treating big data as the information processing demand of firms and BDAC as the important
information processing capability of firms, and discuss the impact of fit between big data and BDAC
on sustainable innovativeness in the process of service innovation.

2.2. Big Data

There is still no consensus on a definition of big data because of the wide range and rich meaning
it comprises [2]. Simply, big data refers to the large-scale data sets produced by new technology
forms. A deeper characterization of big data considers the sources and composition of these data
sets [1,3,10,14,19]. McAfee and Brynjolfsson [1] proposed that big data can be characterized according
to the 3V’s of volume, variety, and velocity. Other scholars have added two additional V’s of veracity
and value [14,26]. In this study, we define big data as large, complex, and real-time data streams that
require complex management, analysis, and processing techniques to extract valuable information [10].
However, the real value of big data lies not only in its large quantity but also, more importantly, in
its differences from traditional data. Big data has created a new and unique data generation and use
environment, which is not possible with a small amount of data [3,27].

Since the rise of the Internet and the digital economy, big data has become the most important
technological change in business and academia, bringing considerable benefits to business, scientific
research, public management, and other industries [1,2]. Many scholars have proposed that big data
is one of the most important resources for firms to achieve sustainable development [26,28]. For
example, big data can use production processes and supplier information to increase productivity,
reduce cost losses, and achieve sustainable corporate development [5]. Big data pervades modern life,
transforming thinking and decision-making methods and becoming an important strategic resource for
firms to achieve sustainable development [28]. Furthermore, as technology advances, the costs of big
data storage and BDAC technologies gradually decline, allowing more firms to realize the importance
of using and quantifying big data to enhance their competitive advantage [29].

Scholars have discussed the value of big data for firms from different perspectives. First, big
data is helpful for firms to understand market and demand information. It also provides new
perspectives for problem solving and enables firms to recombine existing resources and elements to
efficiently enhance firm innovation [30]. Big data also provides a database of timely information to
guide innovation activities, helping firms accurately predict market demand changes in a rapidly
changing environment, enabling quick response to market demand, and suggesting new development
directions and goals [3,19]. Second, the information provided by big data can enable managers to



Sustainability 2020, 12, 1984 5 of 23

make scientifically supported, high-quality decisions based on big data analytics rather than intuition
and experience [11,19]. The operational management perspective and new management knowledge
provided by big data can help managers make more efficient decisions [11]. Third, big data can help
managers better understand the information related to the market environment, customer demand,
and product characteristics and thereby improve the efficiency of operation processes [20,31]. The
basic information source provided by big data for managers can improve the efficiency of internal
information sharing and the operational outcome of firms [20]. In supply chain management, big
data can also help firms respond to the changing environment more quickly, reduce management
costs, and improve the efficiency of firm operation planning [31]. Finally, big data can help firms
identify opportunities and develop new business models to determine effective actions and strategies
for successful innovation [20,32].

2.3. Big Data Analytics Capability (BDAC)

With the growth of big data, firms have access to huge and diverse databases. Scholars introduced
the term data science to refer to the endeavor of effectively analyzing and visualizing the trends
and models contained in big data [5]. BDAC describes the tools and means employed to generate
information and knowledge from big data [14,26]. At present, most scholars define BDAC from
two perspectives: the resource-based view perspective and big data utilization process perspective.
From the perspective of the resource-based view, BDAC is an information technology capability that
provides perspective to firms by using data management, infrastructure, and human resources to gain
competitive advantage in the big data environment [14,33]. From the perspective of using big data
to create business value and scientific decision-making in business processes, BDAC describes the
ability of firms to analyze big data in planning, production, and transmission, thus enabling firms to
acquire, store, process, and analyze a large amount of data in various forms and extract valuable, timely
information [17,26]. In this study, we follow the research of [10] and define BDAC as the capability of
firms to combine, integrate, and deploy specific big data resources.

With the increasing importance of big data to firms, many scholars and managers have been
exploring how to make better use of BDAC to gain sustainable competitive advantage [26]. Research
on BDAC can be divided into the following four aspects: First, BDAC can significantly improve firm
performance [10,11,14,33]. In the context of big data, effective combination of organizational structure,
infrastructure, human capital, and other resources can help firms to obtain high-level competitive
advantage [14]. Second, BDAC can significantly affect the organizational agility of firms and improve
their capability to cope with environmental changes. BDAC can help managers accurately grasp
the rapidly changing market environment and propose corresponding business plans and solutions
to gain sustainable competitive advantage [14,15,34]. Third, BDAC promotes the improvement of
innovativeness of firms [16]. Rialti et al. [35] pointed out that BDAC can help firms to reintegrate
existing resources and routines to discover and take advantage of new opportunities and develop
innovative solutions to positively influence the innovation of firms. Fourth, BDAC can change business
processes and management modes, promote effective allocation and control of resources, and realize
business model innovation [17,30].

2.4. Sustainable Innovativeness

Innovativeness is an important measure of successful new product development, which is usually
described from the perspective of firms or customers [36]. As new service products are the main
achievements of NSD of firms, we draw from the results of previous research on product innovativeness
to define sustainable innovativeness as the degree of novelty of new service products compared with
existing service products and markets of firms [37,38].

NSD has become a key activity for firms to obtain sustainable development in a competitive
market environment. Sustainable innovativeness is the key factor of service innovation and one of
the important sources of sustainable competitive advantage. Therefore, the influencing factors of
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sustainable innovativeness are of great interest to scholars and managers [39]. From the resource-based
view, relevant resources and information will significantly improve product innovativeness. The
market information owned by firms can help them effectively evaluate customer demand and market
trends and integrate them into the production of new service products, so as to develop new and
distinctive products [40]. Cillo et al. [41] pointed out that different analysis methods of market
information will have different effects on product innovativeness while Song et al. [38] found that
the marketing resources and research and development (R&D) resources of new ventures have
no significant impact on product innovativeness. Retrospective analysis of market information will
negatively affect product innovativeness, and prospective analysis of market information will positively
affect product innovativeness [41].

Previous research has considered the influencing factors of sustainable innovativeness from the
perspective of the firm’s capability to process resources and information, proposing that the firm’s
capability will affect sustainable innovativeness [18,39]. However, the relationship between a firm’s
knowledge integration mechanism and product innovativeness may not be a simple linear one; instead
some scholars have found that there is an inverted U-shaped relationship between them. Overemphasis
on knowledge synthesis, configuration, and applicable formal processes and structures among team
members can hinder the improvement of product innovativeness [42].

Many studies have found that information and resources are the key influencing factors of product
innovativeness. Extending these findings to the context of big data, the key to extracting value from
big data lies in the mining and analysis of big data by BDAC [10,19] and the key to the effective
implementation of BDAC lies in having sufficient big data resources [13]. Nevertheless, there has been
little in-depth examination of the fit between big data and BDAC, in particular with regard to the
impact mechanism of such fit on sustainable innovativeness. As a result, firms lack research-based
guidance on how to effectively maximize the value of their existing big data resources and BDAC in
service innovation. Therefore, pursuing research on the impact of fit between big data and BDAC on
sustainable innovativeness has important theoretical and practical significance.

3. Research Hypotheses

When there is fit between big data and BDAC, firms can fully mine their big data resources
for valuable information to build their knowledge base, improve the scientific basis and quality of
decision-making, and promote sustainable innovativeness. Based on the IPT, the fit between the
demand for information and information processing capability will result in more effective output [7].
Therefore, attaining fit between big data and BDAC can help NSD projects achieve successful innovation
activities more effectively and produce totally new service products that are novel and accepted by
customers, thus building sustainable development.

In the case of high-high fit, NSD project teams have access to a large amount of big data and
the high level of BDAC allows them to effectively analyze these data resources to obtain market and
customer demand information, clarify the development trend of service innovation [1,14,33], and
ultimately design novel service products [1].

In the case of low-low fit, the low level of big data leaves project teams unable to fully grasp the
changes in market demand [3] but also reduces the cost of information storage and the pressure of
information overload. At the same time, project teams can use the same level of BDAC to deeply mine
the data they have to acquire information that helps them identify service innovation market segments,
find the invention approaches to service innovation, and develop service products that can have an
important impact on the existing industry [16].

When there are misfits between big data and BDAC, project teams cannot effectively balance big
data resources and BDAC, which places project developers in the dilemma of a data storm that affects
their cognitive ability and decision-making quality [13]. Big data/BDAC misfit also increases the cost of
data storage, resulting in resource waste [7,12]. In the case of high-low misfit, although project teams
have a large amount of data, they lack BDAC and thus can merely interpret the data. In this situation,
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the task of converting so much data into timely, usable information is difficult and overwhelming [14],
which can affect the accuracy of analysis of market trends and easily lead to blind development and,
ultimately, failure of service innovation [16].

In the case of low-high misfit, project managers have enough data mining technology to process,
analyze, and visualize big data [34], but they have access to few data resources and thus lower
requirements for BDAC. Such an imbalance will not only suppress sustainable innovativeness of
service products but also cause redundancy and waste of resources [7], hindering the innovation
activities of project teams. Thus, it is apparent that the roles of big data and BDAC are restricted by
each other. We therefore hypothesize:

Hypothesis 1 (H1). Fits (the fit between high big data and high BDAC and the fit between low big data and
low BDAC) improve sustainable innovativeness more than misfits (the misfit between high big data and low
BDAC and the misfit between low big data and high BDAC) do.

Although fit between big data and BDAC may be more beneficial than misfit, there are differences
in the impact on sustainable innovativeness between high-high fit and low-low fit. High levels of
both big data and BDAC enable project managers to use advanced analysis technologies to accurately
discover and classify important information from a massive variety of big data to identify new needs
of users or determine new market opportunities [33]. With such high-quality, timely information [10],
project managers can refine their goals for service innovation and achieve the leading position of
service product innovation in their industries.

In the case of low-low fit, because the project managers have a low stock of big data, they lack
timely and relevant information sources. Due to the low capability of data mining and analysis,
project teams are unable to fully grasp insights into market developments and service innovation and
thus suffer from a lack of service innovation inspiration and sustainable innovativeness [1,12]. We
therefore hypothesize:

Hypothesis 2 (H2). High-high fit (the fit between high big data and high BDAC) improves sustainable
innovativeness more than low-low fit (the fit between low big data and low BDAC) does.

When there are misfits between big data and BDAC, low-high misfit can improve sustainable
innovativeness more than high-low misfit can. In the case of low-high misfit, although project managers
do not have enough big data, the high level of BDAC can help them accurately find and sort out relevant
information from existing data, design service innovation process and operation measures, recombine
existing resources according to market demand, update product technology and functions [10,30],
and otherwise maximize the value of their limited big data resources. Even with a lower level of big
data, firms with advanced BDAC can carry out prospective analysis on existing market information,
predict market environment and development directions, clarify the direction of service innovation,
and effectively improve sustainable innovativeness [41].

In contrast, in the case of high-low misfit, although project managers have a large amount of
big data, they lack the capability to extract information on market demand trends and predictions
about consumption behavior, so they cannot effectively integrate and analyze the big data they have,
resulting in the lack of innovation spirit and the inability to accurately assess the direction of service
innovation [16]. Compared with low-high misfit, high-low misfit not only causes waste of resources
and increases the cost burden of project managers [12] but creates the dilemma of dealing with too
much information [16]. At the same time, big data itself will not be the source of differentiation
advantage for project teams [10] because compared with the big data resources owned by project
teams, BDAC is the key advantage to effectively utilizing market and customer information [14]. We
therefore hypothesize:
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Hypothesis 3 (H3). Low-high misfit (the misfit between low big data and high BDAC) improves sustainable
innovativeness more than high-low misfit (the misfit between high big data and low BDAC) does.

4. Methodology and Data Sources

The data for the U.S. and China come from the research project conducted by Hao et al. [2]. The
details of the research methodology and data are described in Hao et al. [2]. For completeness, we
rephrase their descriptions here. The research design includes three empirical studies. We empirically
test the theoretical model of the impact of fit between big data and BDAC on sustainable innovativeness
using data from 477 U.S. NSD projects. We then test the generalizability of the model and compare
the similarities and differences between the United States and two other countries by conducting two
empirical studies to collect data from 632 NSD projects in China and 294 NSD projects in Singapore,
respectively [2]. We report these three empirical studies separately below.

As reported in Hao et al. [2], to develop and refine the study measures, the research team followed
the cross-national research methodology recommended by [43] to conduct in-depth interviews with
NSD teams in the United States, China, and Singapore. The final study measures and sources of the
measures are reported in the Appendix A.

4.1. Empirical Study 1: The United States

4.1.1. Measurement

Different from the measures used by Hao et al. [2], the measurement scale for big data in this
article includes five items that are adopted from Gupta and George [10]: (1) “We have access to very
large, unstructured, or fast-moving data for analysis”; (2) “We integrate data from multiple internal
sources into a data warehouse or mart for easy access”; (3) “We integrate external data with internal
data to facilitate high-value analysis of our business environment”; (4) “Our big data analytics projects
are adequately funded”; and (5) “Our big data analytics projects are given enough time to achieve
their objectives”. Project team leaders rated their agreement or disagreement with these descriptions
on a scale ranging from 0 (strongly disagree) to 10 (strongly agree). Based on factor analyses, item 5
was deleted.

The measurement items for BDAC are adopted from Hao et al. [2]. The specific measures
are reproduced in the Appendix A. A sample measure is “We have advanced tools (analytics and
algorithms) to extract values of the big data”. Project team leaders rated their team’s capabilities on a
scale ranging from 0 (no capability) to 10 (very high level of capability).

We adapted the five measurement items for sustainable innovativeness from Song and Parry [37].
As presented in Appendix A, minor modifications were made to the measures based on the in-depth
interviews and pretests. The final measures are: (1) “The products and services incorporate innovative
technologies that have never been used in the industry before”; (2) “The products and services caused
significant changes in the whole industry”; (3) “The products and services are among the first of their
kind to be introduced into the market”; (4) “The products and services are highly innovative—totally
new to the market”; (5) “The products and services are perceived as being the most innovative in the
industry”. Project team leaders rated their team’s sustainable innovativeness in these areas on a scale
ranging from 0 (strongly disagree) to 10 (strongly agree).

4.1.2. Data

As reported in Hao et al. [2], we chose 1000 U.S. firms from the Dun and Bradstreet database.
We used the same data collection procedure as reported in Hao et al. [2]. We sent, via express mail
and e-mail, a package/e-mail that included a personalized letter, the study survey, a pre-signed
non-disclosure agreement (NDA), and (for the mail package) a prepaid return envelope. We asked
each participating firm to select four different NSD projects for providing data: a “successful” NSD
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project, a “failure” NSD project, a typical NSD project, and a recent NSD project. We sent a follow-up
letter/e-mail a week later. In addition, we sent second and third follow-up letters/e-mails and made
phone calls to nonresponding firms to improve the response rate.

For this study, we selected all 477 NSD projects collected using the above procedure. The final
data included 46 projects in hotel, traveling, and tourism services; 146 projects in banking, insurances,
securities, financial investments, and related activities; 99 projects in information and semiconductor;
95 projects in Internet-related services; and 91 projects in health care services [2].

4.1.3. Analysis and Results

Table 1 shows the mean, standard deviation, correlations, and construct reliability for the U.S.
sample. The values on the diagonal are Cronbach’s alpha coefficients for each variable, which are all
above the threshold value of 0.7, indicating that the study measures we employed have high reliability.

Table 1. The U.S. sample: descriptive statistics and correlation coefficient matrix (N = 477).

Innovativeness Big Data BDAC

Innovativeness 0.855
Big Data 0.587 *** 0.918
BDAC 0.433 *** 0.419 *** 0.803
Mean 5.717 5.315 6.044
S.D. 2.138 2.749 2.056

Note: *** p < 0.01 (two-tailed test). BDAC = Big data analytics capability. The Cronbach’s alpha for each variable is
on the diagonal; the intercorrelations among the variables are on the off diagonal.

We also conducted exploratory factor analysis of the scale items. Table 2 shows the factor loadings
for the U.S. sample. For each measure to be included in the final analyses, it must load to the correct
factor with loading greater than 0.5 and must have no cross-loadings with loading greater than 0.4
in all three empirical studies. Item 5 of big data and item 3 of BDAC did not meet the requirements
and were deleted from the final analyses. The factor loadings of the remaining measures for the U.S.
sample are presented in Table 2. All final measures loaded correctly into the corresponding factor.

Table 2. The U.S. sample: factor loadings from exploratory factor analysis (N = 477).

Measure Items Innovativeness Big Data BDAC

INNO 1 0.833 0.187 0.190
INNO 4 0.772 0.229 0.086
INNO 2 0.723 0.260 0.125
INNO 3 0.722 0.178 0.238
INNO 5 0.671 0.272 0.181

Big Data 2 0.225 0.870 0.146
Big Data 4 0.268 0.868 0.149
Big Data 1 0.329 0.813 0.121
Big Data 3 0.262 0.784 0.313
BDAC 2 0.114 0.115 0.821
BDAC 1 0.135 0.162 0.759
BDAC 4 0.172 0.149 0.752
BDAC 5 0.204 0.137 0.720

Note: BDAC = Big data analytics capability. Bold numbers indicate items that load highly for the corresponding factor.

Before regression analysis, we used the sample mean value of big data (5.315) and the sample
mean value of BDAC (6.044) to divide the 477 NSD projects into four scenarios: two fits (high-high fit
and low-low fit) and two misfits (high-low misfit and low-high misfit), as shown in Figure 2.
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Figure 2. The U.S. sample: fits and misfits between big data and BDAC (N = 477).

We used ordinary least squares (OLS) dummy regression to test the effect of two fits and two
misfits on sustainable innovativeness. Proc Reg of SAS 9.4 was used to provide estimates. As four
independent variables (two fits and two misfits) represent four dummy variables, option “noint” was
included in the model statement of the “Proc Reg” to exclude the intercept term in the “Proc Reg”
estimations. The estimated coefficients were the effects of fits and misfits on sustainable innovativeness
under four scenarios. To test the three hypotheses, we used the “TEST” statement of the “Proc Reg
Model” to examine whether or not the coefficients estimated in the model were significantly different
from each other as hypothesized. We tested for possible differences of all six possible pairs and the
results were all significant (p < 0.01).

Table 3 displays the final estimates. The results in Table 3 indicate that both fits and misfits have
significant positive impact on the sustainable innovativeness of NSD projects in the United States. The
results from six paired-wise tests indicate that these effects differ from each other (p < 0.01). To examine
whether or not each hypothesis is supported, we use the standardized estimates and the results of the
paired-wise tests.

Table 3. The U.S. sample: results of dummy regression analysis (N = 477).

Dependent Variable: Sustainable Innovativeness

Parameter Estimate (β) Standard Error (S.E.) Standardized Estimate (b)

High-Low Misfit 6.118 *** 0.206 0.400
High-High Fit 6.963 *** 0.134 0.701
Low-Low Fit 4.179 *** 0.146 0.384

Low-High Misfit 5.380 *** 0.213 0.340
Model F-value 1263.050 ***

R-square 0.914
Adjusted R-square 0.914

Note: *** p < 0.01 (two-tailed test). High-Low Misfit = the misfit between high big data and low BDAC; High-High
Fit = the fit between high big data and high BDAC; Low-Low Fit = the fit between low big data and low BDAC;
Low-High Misfit = the misfit between low big data and high BDAC. The six paired-wise tests indicate that all pairs
are significantly different from each other at p < 0.01 (one-tailed test).
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As predicted by H1, the effect of high-high fit on sustainable innovativeness (b = 0.701; p < 0.01) is
the greatest. However, counter to H1, the positive effect of high-low misfit on sustainable innovativeness
(b = 0.400; p < 0.01) is greater than that of low-low fit (b = 0.384; p < 0.01). Thus, H1 is only partially
supported by the data.

The results suggest that the effect of high-high fit on sustainable innovativeness (b = 0.701; p < 0.01)
is significantly higher than that of low-low fit (b = 0.384; p < 0.01). Thus, as predicted by H2, high-high
fit increases sustainable innovativeness more than low-low fit does (p < 0.01). The data provide
supports for H2.

H3 predicts that low-high misfit improves sustainable innovativeness more than high-low misfit
does. Counter to H3, the results in Table 3 indicate that the effect of low-high misfit on sustainable
innovativeness (b = 0.340; p < 0.01) is significantly lower, not higher (as hypothesized by H3), than that
of high-low misfit (b = 0.400; p < 0.01). Thus, H3 is not supported by the U.S. data.

4.2. Empirical Study 2: China

4.2.1. Measurement Validation in Empirical Study 2

As reported in Hao et al. [2], all measures were translated into Chinese using the double-translation
method [2] using four translators. Minor differences were discussed and resolved. Two pretests were
performed to evaluate the appropriateness of formats and accuracies using the participants of the
earlier interviewees. After pretests, minor modifications were made to formatting and wordings to
create the final survey [2].

4.2.2. Data

As reported in Hao et al. [2], to ensure comparability with the sample of the United States,
524 companies listed in the Small and Medium Enterprise and Growth Enterprise Market Boards of
the Shenzhen Stock Exchange in China were chosen as initial sampling frame. These companies were
further reduced to 482 companies to match with the sample from the United States after deleting all
companies with missing data. The details of the data collection were reported in [2]. This study used
all 632 NSD projects from the dataset. The final data included 40 from hotel, traveling, and tourism
services; 217 from banking, insurances, securities, financial investments, and related activities; 120 from
information and semiconductor; 91 from Internet-related services; and 164 from health care services [2].

4.2.3. Analysis and Results

Table 4 shows the descriptive statistics and correlation coefficient matrix of each variable for the
Chinese sample. The values on the diagonal are the Cronbach’s alpha coefficients of each variable,
all of which are greater than 0.7, indicating high reliability of our study measures. To ensure the
cross-national comparability of the data between China and the United States, we retained the same
measurement items for factor analysis as in the U.S. analysis. Table 5 shows the factor loadings of each
variable, which are all greater than 0.6, indicating high structural validity of the measurement items.

Table 4. The Chinese sample: descriptive statistics and correlation coefficient matrix (N = 632).

Innovativeness Big Data BDAC

Innovativeness 0.869
Big Data 0.588 *** 0.894
BDAC 0.389 *** 0.506 *** 0.767
Mean 5.297 4.571 6.254
S.D. 2.192 2.585 2.085

Note: *** p < 0.01 (two-tailed test). BDAC = Big data analytics capability. The Cronbach’s alpha for each scale is on
the diagonal in italics; the intercorrelations among the variables are on the off diagonal.
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Table 5. The Chinese sample: factor loadings from exploratory factor analysis (N = 632).

Measure Items Innovativeness Big Data BDAC

INNO 1 0.819 0.242 0.070
INNO 3 0.811 0.238 0.049
INNO 5 0.743 0.224 0.194
INNO 4 0.735 0.180 0.191
INNO 2 0.728 0.211 0.149

Big Data 1 0.243 0.865 0.159
Big Data 2 0.241 0.797 0.275
Big Data 3 0.252 0.767 0.210
Big Data 4 0.377 0.752 0.200
BDAC 1 0.035 0.237 0.800
BDAC 2 0.175 0.023 0.762
BDAC 5 0.066 0.241 0.730
BDAC 4 0.285 0.237 0.622

Note: BDAC = Big data analytics capability. Bold numbers indicate items that load highly for the corresponding factor.

Following analysis of the U.S. sample, we used the mean values of big data and BDAC to divide
the sample of Chinese NSD projects into four scenarios: two fits (high-high fit and low-low fit) and
two misfits (high-low misfit and low-high misfit), as shown in Figure 3.

 

12 

Note: *** p < 0.01 (two-tailed test). BDAC = Big data analytics capability. The Cronbach’s alpha for each 

scale is on the diagonal in italics; the intercorrelations among the variables are on the off diagonal. 

Table 5. The Chinese sample: factor loadings from exploratory factor analysis (N = 632). 

Measure Items Innovativeness Big Data BDAC 

INNO 1 0.819 0.242 0.070 

INNO 3 0.811 0.238 0.049 

INNO 5 0.743 0.224 0.194 

INNO 4 0.735 0.180 0.191 

INNO 2 0.728 0.211 0.149 

Big Data 1 0.243 0.865 0.159 

Big Data 2 0.241 0.797 0.275 

Big Data 3 0.252 0.767 0.210 

Big Data 4 0.377 0.752 0.200 

BDAC 1 0.035 0.237 0.800 

BDAC 2 0.175 0.023 0.762 

BDAC 5 0.066 0.241 0.730 

BDAC 4 0.285 0.237 0.622 

Note: BDAC = Big data analytics capability. Bold numbers indicate items that load highly for the 

corresponding factor. 

Following analysis of the U.S. sample, we used the mean values of big data and BDAC to divide 

the sample of Chinese NSD projects into four scenarios: two fits (high-high fit and low-low fit) and 

two misfits (high-low misfit and low-high misfit), as shown in Figure 3. 

 

Figure 3. The Chinese sample: fits and misfits between big data and BDAC (N = 632). 

We used OLS dummy regression analysis to test the impacts of the two fits and the two misfits 

on sustainable innovativeness. Table 6 shows the results of dummy regression analysis. To test the 

three hypotheses, we used the “TEST” statement of the “Proc Reg Model” to examine whether or not 

the coefficients estimated in the model were significantly different from each other as hypothesized. 

We tested for possible differences of all six possible pairs and the results were all significant (p<0.01).  
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We used OLS dummy regression analysis to test the impacts of the two fits and the two misfits on
sustainable innovativeness. Table 6 shows the results of dummy regression analysis. To test the three
hypotheses, we used the “TEST” statement of the “Proc Reg Model” to examine whether or not the
coefficients estimated in the model were significantly different from each other as hypothesized. We
tested for possible differences of all six possible pairs and the results were all significant (p<0.01).
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Table 6. The Chinese sample: results of dummy regression analysis (N = 632).

Dependent Variable: Sustainable Innovativeness

Parameter Estimate (β) Standard Error (S.E.) Standardized Estimate (b)

High-Low Misfit 5.660 *** 0.224 0.329
High-High Fit 6.748 *** 0.128 0.688
Low-Low Fit 4.130 *** 0.126 0.427

Low-High Misfit 4.653 *** 0.169 0.360
Model F-value 1315.420 ***

R-square 0.893
Adjusted R-square 0.893

Note: *** p < 0.01 (two-tailed test). High-Low Misfit = the misfit between high big data and low BDAC; High-High
Fit = the fit between high big data and high BDAC; Low-Low Fit = the fit between low big data and low BDAC;
Low-High Misfit = the misfit between low big data and high BDAC. The six paired-wise tests indicate that all pairs
are significantly different from each other at p < 0.01 (one-tailed test).

Our results show that both fits and misfits between big data and BDAC have significant positive
impacts on sustainable innovativeness in China. The results from six paired-wise tests indicate that
these effects differ from each other (p < 0.01). To examine whether or not each hypothesis is supported,
we use the standardized estimates and the results of the paired-wise tests.

Results in Table 6 indicate that the positive effects of high-high fit (b = 0.688; p < 0.01) and low-low
fit (b = 0.427; p < 0.01) on sustainable innovativeness are greater than for high-low misfit (b = 0.329; p
< 0.01) and low-high misfit (b = 0.360; p < 0.01). Therefore, when there is a fit between big data and
BDAC, NSD projects can achieve higher sustainable innovativeness. Thus, H1 is supported by the
Chinese data.

Consistent with H2, the effect of high-high fit (b = 0.688; p < 0.01) on sustainable innovativeness is
higher than that of low-low fit (b = 0.427; p < 0.01), indicating that NSD projects with high levels of
both big data and BDAC can achieve higher sustainable innovativeness. Thus, H2 is also supported by
the data.

As predicted by H3, the positive effect of low-high misfit (b = 0.360; p < 0.01) on sustainable
innovativeness is greater than that of high-low misfit (b = 0.329; p < 0.01). Therefore, H3 is also
supported by the Chinese data.

4.3. Empirical Study 3: Singapore

4.3.1. Measurement Validation

To collect data in Singapore, we used the same measurement items as for the U.S. sample. As in
the Chinese sample, we distributed the study survey to 42 executives to conduct a pretest to ensure
that the expression of each item would be accurately understood by the participants in Singapore. We
made minor modifications on the formatting of the survey based on their feedback.

4.3.2. Data

To ensure comparability with the U.S. and China sample, companies were selected from the
Singapore Stock Exchange and supplemented with a list of members of four business associations in
Singapore. The data collection procedures described in the U.S. sample were adopted in Singapore.
We ultimately collected complete data for 294 NSD projects: 14 NSD in hotel, traveling, and tourism
services; 102 NSD in banking, insurances, securities, financial investments, and related activities; 62
NSD in information and semiconductor; 46 NSD in Internet-related services; and 70 NSD in health
care services.
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4.3.3. Analysis and Results

The same data analyses are used to analyze the Singapore data. Table 7 shows the descriptive
statistics and correlation coefficient matrix of each variable for the Singapore sample. The values on the
diagonal are the Cronbach’s alpha coefficient for each variable, all of which are above 0.7, confirming
the high validity of our study measures. We also conducted factor analysis of the scale items. As shown
in Table 8, all factor loadings are between 0.641 and 0.884, indicating high structural validity of our
measurement scale.

Table 7. The Singaporean sample: descriptive statistics and correlation coefficient matrix (N = 294).

Innovativeness Big Data BDAC

Innovativeness 0.881
Big Data 0.566 *** 0.915
BDAC 0.393 *** 0.521 *** 0.775
Mean 4.298 3.430 6.353
S.D. 2.184 2.507 2.167

Note: *** p < 0.01 (two-tailed test). BDAC = Big data analytics capability. The Cronbach’s alpha for each scale is on
the diagonal in italics; the intercorrelations among the variables are on the off diagonal.

Table 8. The Singaporean sample: factor loading of variables (N = 294).

Measure Items Innovativeness Big Data BDAC

Innovativeness INNO 1 0.854 0.249 0.117
INNO 3 0.850 0.123 0.002
INNO 2 0.778 0.116 0.222
INNO 4 0.700 0.335 0.105
INNO 5 0.679 0.397 0.199

Big Data Big Data 1 0.214 0.884 0.168
Big Data 2 0.273 0.842 0.205
Big Data 4 0.280 0.831 0.197
Big Data 3 0.243 0.744 0.225

BDAC BDAC 1 0.058 0.240 0.817
BDAC 2 0.096 0.002 0.743
BDAC 4 0.302 0.242 0.703
BDAC 5 0.062 0.413 0.641

Note: BDAC = Big data analytics capability. Bold numbers indicate items that load highly for the corresponding factor.

Following Study 1 and 2, we used the mean values of big data and BDAC to divide the Singapore
sample into fits (high-high fit and low-low fit) and misfits (high-low misfit and low-high misfit)
categories as shown in Figure 4.

We then used OLS dummy regression analysis to test the impacts of the fits and misfits between
big data and BDAC on sustainable innovativeness. To test the three hypotheses, we used the “TEST”
statement of the “Proc Reg Model” to examine whether or not the coefficients estimated in the model
were significantly different from each other as hypothesized. The results shown in Table 9 reveal
that the fits and misfits between big data and BDAC have significant positive impacts on sustainable
innovativeness. The results from six paired-wise tests indicate that these effects differ from each other
(p < 0.10).
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Table 9. The Singaporean sample: results of dummy regression analysis (N = 294).

Dependent Variable: Sustainable Innovativeness

Parameter Estimate (β) Standard Error (S.E.) Standardized Estimate (b)

High-Low Misfit 5.144 *** 0.426 0.264
High-High Fit 6.091 *** 0.195 0.684
Low-Low Fit 3.215 *** 0.177 0.399

Low-High Misfit 3.642 *** 0.196 0.406
Model F-value 449.170 ***

R-square 0.861
Adjusted R-square 0.859

Note: *** p < 0.01 (two-tailed test). High-Low Misfit = the misfit between high big data and low BDAC; High-High
Fit = the fit between high big data and high BDAC; Low-Low Fit = the fit between low big data and low BDAC;
Low-High Misfit = the misfit between low big data and high BDAC. The six paired-wise tests indicate that all pairs
are significantly different from each other at p < 0.10 (one-tailed test).

To examine whether or not each hypothesis is supported, we used the standardized estimates
and the results of the paired-wise tests. The results in Table 9 indicate that high-high fit (b = 0.684;
p < 0.01) has the greatest impact on sustainable innovativeness. However, counter to H1, the positive
effect of low-low fit (b = 0.399; p < 0.01) on sustainable innovativeness is lower, not higher, than that of
low-high misfit (b = 0.406; p < 0.01). Thus, H1 is only partially supported by the Singapore data.

We further find that the effect of high-high fit (b = 0.684; p < 0.01) on sustainable innovativeness
is greater than that of low-low fit (b = 0.399; p < 0.01), indicating that H2 is supported by the
Singapore data.

The date also shows that as predicted by H3, the effect of low-high misfit (b = 0.406; p < 0.01) on
sustainable innovativeness is greater than that of high-low misfit (b = 0.264; p < 0.01). Thus, H3 is
supported by the Singaporean data.

4.4. Summary of Hypothesis Testing for All Three Empirical Studies

Table 10 summarizes the results of the six paired-wise tests for three empirical studies. The results
suggest the following results of the effects of fits and misfits on innovativeness:
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1. In the United States, high-high fit > high-low misfit > low-low fit > low-high misfit (p < 0.01).
Therefore, H1 is partially supported because low-low fit < high-low misfit (not > as predicted by
H1); and H2 is supported. However, counter to H3, the effect of low-high misfit fit on sustainable
innovativeness is less, not higher (as predicted by H3), than High-Low Misfit is.

2. In China, high-high fit > low-low fit > low-high misfit > high-low misfit (p < 0.01). Therefore,
all three hypotheses are supported as predicted.

3. In Singapore, high-high fit > low-high misfit > low-low fit > high-low misfit (p < 0.10). Therefore,
H1 is partially supported because low-low fit < low-high misfit (not > as predicted by H1); and
both H2 and H3 are supported.

Table 10. Summary results of three hypotheses in three countries.

Hypothesis Pair Comparison
The United

States
(N = 477)

China
(N = 632)

Singapore
(N = 294)

H1 (fits > misfits) High-High Fit > Low-High Misfit 39.680 *** 98.070 *** 78.300 ***
High-High Fit > High-Low Misfit 11.860 *** 17.760 *** 4.070 **
Low-Low Fit > Low-High Misfit 21.640 *** 6.180 *** 2.620 * (<)
Low-Low Fit > High-Low Misfit 59.020 *** (<) 35.350 *** 17.480 ***

H2 (HH > LL) High-High Fit > Low-Low Fit 197.290 *** 212.910 *** 119.450 ***
H3 (LH > HL) Low-High Misfit > High-Low Misfit 6.220 *** (<) 12.860 *** 10.240 ***

Note: Numbers in Table 10 are F-statistics. (<) indicates that the effect is “less, not higher as predicted by the
hypothesis”. * p < 0.10; ** p < 0.05; *** p < 0.01 (because all hypotheses are directional, one-tailed test is used).
High-Low Misfit = the misfit between high big data and low BDAC; High-High Fit = the fit between high big data
and high BDAC; Low-Low Fit = the fit between low big data and low BDAC; Low-High Misfit = the misfit between
low big data and high BDAC.

5. Cross-National Comparative Analyses

To explore the similarities and differences among our samples in the United States, China, and
Singapore, we summarize the standardized estimates of fits and misfits on sustainable innovativeness
in Table 11. The results suggest that a high level of big data matched with a high level of BDAC has
the greatest positive effect on sustainable innovativeness. The importance of the other three scenarios
differs across countries.

Table 11. Ranking of the standardized estimates of the effects of fits and misfits on
sustainable innovativeness.

Dependent Variable: Sustainable Innovativeness

Rank The United States
(Standardized Estimate b)

China
(Standardized Estimate b)

Singapore
(Standardized Estimate b)

1 High-High Fit (0.701) High-High Fit (0.688) High-High Fit (0.684)
2 High-Low Misfit (0.400) Low-Low Fit (0.427) Low-High Misfit (0.406)
3 Low-Low Fit (0.384) Low-High Misfit (0.360) Low-Low Fit (0.399)
4 Low-High Misfit (0.340) High-Low Misfit (0.329) High-Low Misfit (0.264)

Note: High-Low Misfit = the misfit between high big data and low BDAC; High-High Fit = the fit between high big
data and high BDAC; Low-Low Fit = the fit between low big data and low BDAC; Low-High Misfit = the misfit
between low big data and high BDAC.

In the United States, high-low misfit has a larger effect on sustainable innovativeness than
low-low fit and low-high misfit do. Low-high misfit has the least effect on sustainable innovativeness.
The significant differences are validated by the paired-wise tests (p < 0.01). Access to high big data
resources provides project leaders with rich information about markets, customers, and competitors
to inform innovation activities [19]. A low level of big data resources reduces project team’s ability
to accurately evaluate the market development and demand directions, resulting in misdirected
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innovation activities and missed market opportunities. In addition, when big data is lacking, too
much BDAC can cause capacity redundancy and blur the focus of existing big data analysis, leading to
ineffective innovation activities.

In China, low-low fit has a larger impact on sustainable innovativeness than low-high misfit and
high-low misfit. Fits are better than misfits. Results of paired-wise tests in Table 10 suggest that the
differences are significant (p < 0.01). Thus, for NSD projects in China, it is important that the levels of
big data and BDAC be in alignment to support the improvement of sustainable innovativeness. When
there is high big data and low BDAC, projects are unable to meet the needs for data analysis, and
experience data overload and blind innovation.

In Singapore, a high level of BDAC can improve sustainable innovativeness: after high-high
fit, low-high misfit has the largest impact, followed by low-low fit and high-low misfit. Results of
paired-wise tests in Table 10 suggest that the differences are significant (p < 0.10). The effect of low-high
misfit on sustainable innovativeness is 1.538 times higher (0.406/0.264) than that of high-low misfit,
indicating that big data on its own is unlikely to be a source of competitive advantage for NSD projects
in Singapore [33], but a high level of BDAC can lead to effective mining and analysis of the available
big data to create benefits for NSD projects.

To further evaluate cross-national differences on how fits and misfits affect sustainable
innovativeness, we performed dummy regression analyses using pooled data of three countries.
The United States is the base case. Two country dummy variables (China and Singapore) and eight
interaction terms (country dummy variables multiply by four fits and misfits) were introduced into
the equation. Table 12 presents the results of the analyses. The four coefficient estimates for the four
interaction terms with China (or Singapore) as dummy variable show the differences between the
United States and China (or Singapore). The differences between China and Singapore can be evaluated
by using the sum of the coefficients (U.S. + China vs. U.S. + Singapore). We used “TEST” option in the
model statement of the “Proc Reg” to compare the estimates. We present the results in Table 13.

Table 12. Results of regression analysis using pooled data (N = 1403).

Dependent Variable: Sustainable Innovativeness

Independent Variables Parameter Estimate
(β)

Standard Error
(S.E.)

Standardized Estimate
(b)

High-Low Misfit 6.118 *** 0.211 0.368
High-High Fit 6.963 *** 0.137 0.718
Low-Low Fit 4.179 *** 0.150 0.429

Low-High Misfit 5.380 *** 0.218 0.423
China × High-Low Misfit −0.458 0.304 −0.018

China × High-High Fit −0.215 0.185 −0.015
China × Low-Low Fit −0.049 0.194 −0.003

China × Low-High Misfit −0.727 *** 0.273 −0.038
Singapore × High-Low Misfit −0.974 ** 0.481 −0.019

Singapore × High-High Fit −0.873 *** 0.241 −0.038
Singapore × Low-Low Fit −0.963 *** 0.234 −0.046

Singapore × Low-High Misfit −1.738 *** 0.295 −0.075

Model F-value 1006.620 ***
R-square 0.897

Adjusted R-square 0.896

Note: ** p < 0.05; *** p < 0.01 (two-tailed test). High-Low Misfit = the misfit between high big data and low BDAC;
High-High Fit = the fit between high big data and high BDAC; Low-Low Fit = the fit between low big data and low
BDAC; Low-High Misfit = the misfit between low big data and high BDAC. China = 1 if the sample is Chinese; 0
otherwise. Singapore = 1 if the sample is Singaporean; 0 otherwise. The base case is the United States.
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Table 13. Testing results of the cross-national differences between China and Singapore.

China Singapore Does the Effect Differ?
(F-Statistics and Significant Level)

The Effect of High-Low Misfit The Effect of High-Low Misfit 1.130
The Effect of High-High Fit The Effect of High-High Fit 7.900 ***
The Effect of Low-Low Fit The Effect of Low-Low Fit 17.700 ***

The Effect of Low-High Misfit The Effect of Low-High Misfit 15.300 ***

Note: *** p < 0.01 (two-tailed test). High-Low Misfit = the misfit between high big data and low BDAC; High-High
Fit = the fit between high big data and high BDAC; Low-Low Fit = the fit between low big data and low BDAC;
Low-High Misfit = the misfit between low big data and high BDAC. Dummy variables: China = 1 if the sample is
Chinese, 0 if not; Singapore = 1 if the sample is Singaporean, 0 if not.

The results in Tables 12 and 13 suggest that the coefficients for interaction terms (for both China
and Singapore) are all negative and that the numbers are more negative in Singapore than in China.
Therefore, the effects of fits and misfits on innovativeness is highest in the U.S. than in China and in
Singapore. The results suggest following additional cross-national differences for each of the scenarios:

(1) For effect of high-low misfit on sustainable innovativeness, the effect is less (β = −0.974; p < 0.05),
in Singapore than in the U.S. There are no significant differences in the effect between U.S. and
China (p > 0.10) and between China and Singapore (p > 0.10).

(2) For effect of high-high fit on sustainable innovativeness, the effect is the largest in the U.S.
(β = 6.963), the same in China (−0.215) but it is not significantly different from the U.S. with
p > 0.10), and the smallest in Singapore (β = 6.963–0.873= 6.090; p < 0.01). The results in Table 12
suggest that the difference between U.S. and Singapore is significant (p < 0.01). The results in
Table 13 indicate that the difference between China and Singapore is significant (p < 0.01).

(3) For effect of low-low fit on sustainable innovativeness, the effect is also the highest in the U.S.
(β = 4.179), the same in China (−0.049 but it is not significantly different from the U.S. with
p > 0.10), and the lowest in Singapore (β = 4.179–0.963= 3.216; p < 0.01). The results in Table 12
suggest that the difference between U.S. and Singapore is significant (p < 0.01). The results in
Table 13 indicate that the difference between China and Singapore is significant (p < 0.01).

(4) For low-high misfit on sustainable innovativeness, the effect is the highest in the U.S. (β = 5.380),
second in China (β = 5.380–0.727 = 4.653) and lowest in Singapore (β = 5.380–1.738 = 3.642).
The differences are all significant (p < 0.01).

6. Conclusions, Implications, and Future Research

6.1. Conclusions

Based on the IPT, we developed a theoretical model for studying the differential effects of fits and
misfits between big data and BDAC on sustainable innovativeness. We investigated four scenarios
and their impacts on sustainable innovativeness in a three-country comparative study. We tested
for significant differences between six pairs of the combinations and between the three pairs of the
countries. The empirical results provided at least partial supports for all three hypotheses.

First, as predicted by Hypothesis 1, we found that in China the effect of fits between big data
and BDAC on sustainable innovativeness is always stronger than that of misfits. However, in the
United States and Singapore, we found that the effect of low-low fit on sustainable innovativeness is
lower than that of misfits, indicating that the effect of fits between big data and BDAC on sustainable
innovativeness is not always stronger than that of misfits in these countries. This finding challenges
the assertions of previous research that fit between information, and information processing capability
is necessary to obtain value for the firm [4,7].

Second, as hypothesized in H3, across all three countries, we found that the positive impact of
high-high fit on sustainable innovativeness is greater than that of low-low fit. This finding supports the
conclusions of previous research that a high level of big data is a high-quality resource that can be fully
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interpreted with a high level of BDAC to provide NSD project managers with insights into markets
and customers and thereby ensure the development of successful service products [10,19,30,33]. Our
finding that high levels of big data and BDAC can maximize sustainable innovativeness thus adds to
the results of Hao et al. [2], who suggested that when big data is high, improving BDAC will inhibit
innovation performance.

Third, we found significant differences in the impact of low-high misfit and high-low misfit
on sustainable innovativeness across the three countries. In the United States, the positive impact
of high-low misfit on sustainable innovativeness is higher than that of low-high misfit. This result,
consistent with Tan and Zhan [3], shows that rich big data resources can provide more sufficient,
reliable, and relevant information to guarantee the success of NSD projects even if BDAC is insufficient
to fully exploit these resources. Contrary to Song et al. [38], who found that the level of marketing
and R&D resources has an insignificant relationship with product innovativeness, we found that if
U.S. firms pursuing NSD projects lack big data resources, they cannot accurately obtain the valuable
information needed to ensure the sustainable innovativeness of service products. In contrast, in China
and Singapore, the impact of high-low misfit on sustainable innovativeness is less, not greater, than
that of low-high misfit. This result suggests that firms in China and in Singapore should operate
differently from firms in the U.S. They need to focus on increasing big data rather than BDAC to
successfully develop innovative service products. As Rialti et al. [35], Gupta and George [10], and
Ferraris et al. [11] have also found, even if there are limited big data resources, increasing BDAC
can enable project leaders to integrate and internalize existing big data information to improve the
sustainable innovativeness of projects.

Finally, the results from cross-national comparative analyses reveal four major conclusions. First,
the fits have greater effect on sustainable innovativeness in the U.S. and in China than that in Singapore.
Second, the impact of high-low misfit on sustainable innovativeness is higher in the U.S. than in
Singapore. Third, the positive effect of low-high misfit on sustainable innovativeness is the largest
in the U.S., followed by China, and then by Singapore. The possible reasons may be that there are
differences in the development speed of big data and analytics capability among the three countries.
Firms in the U.S. are better with applying big data and BDAC to develop innovative services and
products than firms in China and in Singapore are.

6.2. Theoretical Implications

This research enriches the literature on big data and innovation in several ways. First, this study
expands the application of the IPT with regard to big data. Previous studies on the IPT have focused on
firms’ need for traditional information sources and information processing capability [21,24]. However,
in the current marketplace, the need for information is largely affected by big data, which necessitates
higher information processing capability [19]. This study specifically considers big data and BDAC,
explores the application of the IPT in the context of big data and service innovation, and complements
existing research on the IPT [23,24].

Although other scholars such as Isik [4] have discussed the need for big data and information
processing capability and stressed the importance of their alignment to generate value from big data,
they have neither specified measurement items for these constructs nor conducted in-depth empirical
tests. Thus, this study fills these gaps in the empirical analysis of big data and BDAC by using fieldwork
and case studies to refine the definitions and connotations of big data and BDAC, improving existing
measurement scales, and proposing systematic measurement scales [14]. This study is also the first to
consider both fits and misfits between big data and BDAC and assess their impacts on sustainable
innovativeness. This not only enhances the previous research focusing only on the impact of big data or
BDAC [3,14,16,19] but also contributes to research on sustainable innovativeness [18] by demonstrating
the important impact of different configurations of fit between big data and BDAC in the context of
service innovation.
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Finally, this study enriches the theory of cross-national big data management. Previous research
on big data and BDAC has mostly focused on the data of a single country [3,17,35]. In this study we
conducted a comparative analysis across three countries. By analyzing the data from NSD projects
in the United States, China, and Singapore, we explored the similarities and differences of fits and
misfits between big data and BDAC in the process of service innovation in these countries, building
the literature in this area.

6.3. Managerial Implications

The results of our analysis of the impact of fits and misfits between big data and BDAC on
sustainable innovativeness offer targeted recommendations for project managers in the different
countries to achieve successful service innovation.

First, when there are sufficient resources available, NSD project managers in the United States,
China, and Singapore should all invest in both big data and BDAC to improve sustainable innovativeness.
It is important that managers ensure the synchronous improvement of both big data and BDAC and
not emphasize the development of one aspect over the other.

Second, if resources are limited, then the recommended development strategies for project
managers differ among the three countries.

NSD project managers in the United States should invest in large amounts of high-quality big
data to ensure that the project always has a high level of big data resources to serve as the foundation
of the project. Project managers can improve their big data resources in four ways: (1) increase the
quantity and stock of big data as much as possible and constantly update the existing data to ensure its
timeliness so team members can understand changing market conditions and make timely adjustments
to the project; (2) build a data warehouse or mart to integrate various internal and external sources
of big data (e.g., customer demand, market development trends, business processing, competitor
information, etc.) and create a comprehensive knowledge base; (3) invest sufficient funds in NSD
projects so they can be fully developed; and (4) allocate time for effective analysis of big data to ensure
retention of reliable and relevant information, avoid decision-making mistakes, and achieve successful
project outcomes.

In China, managers can improve sustainable innovativeness by ensuring that big data and BDAC
maintain a balanced level. For example, if an NSD project has less big data, it should not invest in
further improving analysis tools and technologies but instead should focus on in-depth analysis of
existing data.

In Singapore, NSD project managers should focus on improvement of BDAC by investing in
pertinent analysis technologies and tools to enhance the ability of the project team to transform big data
into useful information. Managers can improve BDAC in three ways: (1) introduce advanced analysis
and algorithm tools, effectively analyze big data of different structure forms, extract all information
related to development activities, and find the connection between different processes and activities;
(2) focus on predicting potential market opportunities and development trends from existing data
resources; and (3) recruit high-quality team members with strong analytical skills and provide regular
training to assist team members in adapting to the development of technology and analysis tools.
Overall, project managers need to build a data-driven culture in their firm that supports big data
thinking and improves the sensitivity and cognitive ability of employees with regard to data.

6.4. Limitations and Future Research

There are several shortcomings of this study that can be improved upon in future work. We
focused here only on sustainable innovativeness as an important indicator of service innovation
output. Future studies should also consider how fits and misfits affect the quality of new service
products, the adoption of new service products, and innovation speed. These are all important
sustainable competitive advantages for sustainable service development. Furthermore, our study
sample included only five industries. Future studies should collect more data in other industries to
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assess the generalizability of the research conclusions. Although we gained valuable insight from
our analysis of data from the United States, China, and Singapore, future endeavors can be enhanced
with data from other countries, particularly those that represent a variety of economic and cultural
systems, to further enrich cross-national comparative research and contribute to the understanding of
the sustainability of new service development.
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Appendix A. Study Measures and Sources

Big Data (adopted from Gupta and George [10]). (0 = strongly disagree; 5 = neutral; 10 =

strongly agree)

(1) We have access to very large, unstructured, or fast-moving data for analysis.
(2) We integrate data from multiple internal sources into a data warehouse or mart for easy access.
(3) We integrate external data with internal to facilitate high-value analysis of our

business environment.
(4) Our big data analytics projects are adequately funded.
(5) * Our big data analytics projects are given enough time to achieve their objectives.

Big Data Analytics Capability (BDAC) (adopted from Hao et al. [2]).

(1) We have advanced tools (analytics and algorithms) to extract values of the big data. (0 = no
capability; 5 = median level; 10 = very high level of capability; adopted from Hao et al. [2], which
was derived from Dubey et al. [34]; Gupta and George [10]).

(2) Our capability to discover relationships and dependencies from the big data is: (0 = no capability;
5 = neutral; 10 = very high level of capability; adopted from Hao et al. [2], which was developed
based on field research).

(3) * Our capability to perform predictions of outcomes and behaviors from the big data is: (0 = no
capability; 5 = median level; 10 = very high level of capability; adopted from Hao et al. [2], which
was derived from Gupta and George [10]).

(4) Our capability to discover new correlations from the big data to spot market demand trends and
predict user behavior is: (0 = no capability; 5 = median level; 10 = very high level of capability;
adopted from Hao et al. [2]; which was derived from Akter et al. [14]; Wamba et al. [33]).

(5) Our big data analytics staff has the right skills to accomplish their jobs successfully. (0 = none; 5 =

median level; 10 = very high level of capability; adopted from Hao et al. [2], which was derived
from Gupta and George [10]).

Sustainable Innovativeness (adapted from Song and Parry [37]). (Minor modifications were made based
on the pretests as reported in the text. The changes are shown below using the notations: deletion is
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marked using

22 

Sustainable Innovativeness (adapted from Song and Parry [37]). (Minor modifications were made 
based on the pretests as reported in the text. The changes are shown below using the notations:
deletion is marked using deletion. Added text is marked with underline.) (0=strongly disagree; 
5=neutral; 10=strongly agree). 

(1) Our The products and services often incorporate innovative technologies which have never been
used in the industry before.
(2) Our The products and services caused significant changes in the whole industry.
(3) Our The products and services are one of the first of its kind introduced into the market.
(4) Our The products and services are highly innovative—totally new to the market.
(5) Our The products and services are perceived as most innovative in the industry.

Note: * indicates that the item was deleted based on factor analyses as described in the text. 
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