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Abstract: The expanding use of photovoltaic (PV) systems as an alternative green source for electricity
presents many challenges, one of which is the timely diagnosis of faults to maintain the quality and
high productivity of such systems. In recent years, various studies have been conducted on the
fault diagnosis of PV systems. However, very few instances of fault diagnostic techniques could
be implemented on integrated circuits, and these techniques require costly and complex hardware.
This work presents a novel and effective, yet small and implementable, fault diagnosis algorithm
based on an artificial intelligent nonlinear autoregressive exogenous (NARX) neural network and
Sugeno fuzzy inference. The algorithm uses Sugeno fuzzy inference to isolate and classify faults
that may occur in a PV system. The fuzzy inference requires the actual sensed PV system output
power, the predicted PV system output power, and the sensed surrounding conditions. An artificial
intelligent NARX-based neural network is used to obtain the predicted PV system output power. The
actual output power of the PV system and the surrounding conditions are obtained in real-time using
sensors. The algorithm is proven to be implementable on a low-cost microcontroller. The obtained
results indicate that the fault diagnosis algorithm can detect multiple faults such as open and short
circuit degradation, faulty maximum power point tracking (MPPT), and conditions of partial shading
(PS) that may affect the PV system. Moreover, radiation and temperature, among other non-linear
associations of patterns between predictors, can be captured by the proposed algorithm to determine
the accurate point of the maximum power for the PV system.

Keywords: renewable energy; modelling; photovoltaic system; fault detection; artificial neural
network; time series prediction; fuzzy logic systems; low-cost microcontroller

1. Introduction

During the previous decade, there has been an expanding enthusiasm for photovoltaic (PV)
systems because of the numerous favorable circumstances resulting from these systems. Among such
favorable circumstances are the unpolluted operation, the unlimited power resources, the overall
simplicity of establishment, and the noiseless operation. Therefore, the size and number of PV systems
has expanded quickly around the word [1]. PV panels produce electrical power that is proportional to
the total amount of solar radiation received on their surface from the sun. This is normally denoted
by the Global Horizontal Irradiance (GHI). Other factors, such as temperature, also affect the power
produced from the photovoltaic panel. Nevertheless, during the operation of photovoltaic systems
under evolving and complex climate conditions, faults have always been among the critical factors
affecting the performance of a PV system’s power generation. Faults due to shading, open-circuits,
and short-circuits are often hard to avoid. Such faults can lead to a reduced PV system lifespan, loss in
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system-generated energy, or even serious safety-related issues. Therefore, it is particularly important
to develop fault detection methods for a PV system. Such fault detection and diagnosis methods
would provide benefits in terms of a longer PV system lifespan, improvement in the energy conversion
efficiency, and reduction in maintenance cost.

Some methods for detecting faults in PV systems have been built previously. These methods can
be classified into time domain-based methods, mathematical model analysis-based methods, thermal
infrared detection-based methods, and artificial-intelligence-based methods.

The time-domain-based methods need to send a signal pulse into the PV array circuit, which is
then used to identify the PV system’s fault status by comparing the feedback output signal to the pulse
input signal. The authors in [2,3] apply the time-domain method to detect PV array degradation faults
by changing the response waveform. If we use the time-domain approach to detect faults, however,
the PV system needs to be turned off, and this will have a crucial effect on the efficiency of the system.

Further, the mathematical model approach contrasts computing performance analytically with
measuring output to detect a PV array’s fault status. For instance, the authors in [4,5] use a one-diode
model method to detect PV array faults. Silvestre et al. [6] present an automated fault detection
technique in photovoltaic systems based on voltage assessment and current indicators. However,
this method cannot distinguish between partial shading (PS) abnormalities and degradation failures.
Kang et al. [7] propose a method based on the Kalman filter algorithm to diagnose the reduction of
output power in a PV array. Nevertheless, the usefulness of these mathematical modeling approaches
depends greatly on the accuracy of the models.

On the other hand, the thermal infrared detection method uses an infrared scanner to identify
and detects faults by measuring the body temperature of the PV panel for irregular heat. Peizhen
and Shicheng [8] used infrared image analysis to recognize and analyze the working status of PV
arrays. While their approach can recognize the shading and deterioration status of the PV panel, it
focuses mainly on the identification of hot spot defects within the PV array. Nian et al. [9] designed a
tool to obtain infrared images of PV panels; their approach can sense faults such as fragmentation,
black pieces, and cracks in PV panels.

Artificial intelligence techniques have demonstrated over the last decade their usefulness to
control, model, predict and forecast many aspects related to the PV system [10–15]. The authors
in [16–20] used the artificial neural network to forecast different parameters such as power consumption
solar radiation and PV power generation. On the other hand, in [21], the author used the artificial neural
network to manage the power flow within standalone hybrid power systems. However, recently, a few
papers have been published in Fuzzy Logic (FL) and Artificial Neural Network (ANN) applications
for the identification and diagnosis of PV faults [22–27]. For example, in [28,29], the authors used a
multi-layer perceptron neural network to identify faults related to PS and short circuits in a PV array.
Dhimish et al. [30] proposed FL control to differentiate PS faults in PV array from short-circuit faults.
Boukenoui et al. [31] utilized an FL controller with scanning and storing algorithms to implement an
intelligent tracker to determine the maximum power point in a standalone PV system.

Furthermore, the authors in [32,33] used the Mamdani FL classification to detect a number of
PV system faults, such as PS and short-circuit PV panels. China et al. [34] implemented an ANN for
detecting PV array faults on the DC side of a PV system, which included diodes to bypass faulty PV
panels. Yagi et al. [35] build a learning strategy using expert systems to distinguish two kinds of fault.
Polo et al. [36] proposed an energy harvesting and failure mode prediction of a PV system to support
dynamic task maintenance using ANN.

From the previous research, we can find that various studies have been conducted on the fault
diagnosis of PV systems; however, there are very few instances of fault diagnostic techniques that could
be implemented on integrated circuits, and these techniques require costly and complex hardware [37].
Nevertheless, hardware implementation for fault diagnosis techniques is necessary for real-life and
Internet of Things (IoT) applications. An IoT-enabled application is an application that can be managed
and monitored over the Internet. Thus, the key contribution of this paper is to introduce a novel and
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effective, yet small and implementable, algorithm based on a nonlinear autoregressive exogenous
(NARX) neural network as well as Sugeno fuzzy inference. The proposed algorithm aims to isolate
and classify faults occurring in PV systems. Under a set of real-time sensed output and surrounding
conditions of a PV system, the NARX network is used to predict the PV system’s maximum output
power, which is subsequently used by the fuzzy inference algorithm to diagnose and categorize
faults that may occur in the PV system. The algorithm is proven to be implementable on a low-cost
microcontroller. The proposed algorithm will be able to detect multiple faults such as open and
short-circuit deterioration, flawed MPPT, and PS problems which may impact the PV system. Moreover,
radiation and temperature, among other non-linear associations of patterns between predictors, can
be captured by the proposed algorithm to determine the accurate point of maximum power for the
PV system.

2. PV System Fault Types

Most of the faults that occur in the PV system are mostly associated with the PV array, inverters,
MPPT, storage units, and the electrical grid. In this work, as shown in Table 1, sixteen different PV
faults are investigated. It will be discussed in more detail in subsequent sections, as they will be
categorized into minor, moderate, and major PV faults.

Table 1. Type of faults that may appear in the photovoltaic (PV) system under examination. PS: partial
shading; G: Solar radiation.

Fault Type Fault Type

One faulty panel Two faulty panels + low PS in PV
Two faulty panels Two faulty panels + high PS in PV
Three faulty panels One faulty panel in G and low PS in other G
Low PS in PV One faulty panel in G and high PS in other G
High PS in PV One faulty panel + low PS in G and high PS in other G
One faulty panel + low PS in G One faulty panel + low PS in G and one faulty panel + high PS in other G
One faulty panel + low PS in PV Three faulty panels and low PS
One faulty panel + high PS in PV Two faulty panels in G and high PS + one faulty panel in other G

3. Methodology

This section describes the proposed structure, the hypothetical PV model, the algorithm for fault
detection, and the full design of the proposed NARX network with the Sugeno fuzzy inference system.

3.1. System Structure and Dataset Collection

The PV system architecture introduced in this work comprises one string of PV panels logically
divided into two groups. Each group comprises two polycrystalline PV panels with a nominal power
of 225 W for each PV panel. The PV panel nominal power is denoted as the maximum power that can
be obtained from the PV panel within a group of standard test conditions (STCs). The STC normally
mean a temperature of 25◦C, an air mass (AM) of 1.5, and 1000 W/m2 solar radiation. The string PV
panels are connected in series. A NARX MPPT with an output effectiveness of not less than 98.2% [38]
is connected to the PV string. The overall PV system architecture is illustrated in Figure 1.
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The fuzzy diagnostic algorithm is implemented using a low-cost embedded system that employs
the ATmega2560 microcontroller. The embedded system uses a current sensor (denoted by Isens. in
Figure 1) and voltage sensor (denoted by Vsens. in Figure 1) to provide the PV string voltage and
power needed for the fuzzy diagnostic algorithm.

The embedded system uses the ESP8266 to facilitate WiFi connectivity. This allows the embedded
system to send the PV string’s diagnosis status, notifications, and related data over the Internet to a
monitoring system. The embedded system also collects the meteorological data needed for the fuzzy
diagnostic algorithm.

Meteorological data consisting of temperature and solar radiation were assembled in real-time by
the Energy Research Centre [39] at An-Najah National University. The apparatus used to assemble the
dataset consists of a PV panel body temperature sensor (namely the WE710 sensor with a precision of
±0.25 ◦C), and a solar radiation sensor with high accuracy (namely the WE300 sensor with a precision
of ±1%). Regardless of the accuracy of the used sensors, the captured data are occasionally noisy,
incomplete, or unreliable. This is mainly due to the noise ratio in the connections or the sensor error.
Thus, a moving average filter [38] was used to resolve the noise in the obtained data. By averaging 60
samples, the measurements are collected at a rate of 1 Hz over a 1 min period. The tests for voltage
and current obtained are thus measured at intervals of 1 min. The manufacturer specifications of the
PV panel are shown in Table 2.

Table 2. Electrical characteristics of the Astronergy CHSM6610P-225 PV panel.

PV Panels Specification Value PV Panels Specification Value

Power at maximum (Pm) 225W How many cells are in series 60
Current at Pm (Iamp) 7.55A How many cells are in parallel 1
Voltage at Pm (Vamp) 29.76V Isc Temp. coefficient 0.052 %/◦C

Short-circuit current (Isc) 8.27A Voc Temp. coefficient −0.129 V/◦C
Open-circuit voltage (Voc) 36.88V

The case study used in this work consists of one string of 4 PV panels. However, more PV strings
can be added in parallel. In general, the PV string may consist of more than four panels, but the used
FS will analyze them into two groups.
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3.2. PV Theoretical Modeling and Characteristics Analysis

To assess the PV panel’s performance under different operating conditions, a precise model is
used to forecast the power-voltage (P-V) characteristic curve. The dynamic PV model utilized in this
study is based on a model introduced in our previous work [34–43]. Figure 2 shows the single diode
equivalent circuit, consisting of a diode, a photocurrent, one parallel, and one series resistor.
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The equivalent single diode circuit is inferred from the physical principles and defines a cell’s
entire I-V curve as a continuous function for a particular set of operating conditions [44].

In Equation (1) [40], the mathematical relation between the current of a PV panel and the other
related parameters is shown:

Ipv = Iph− Io
[
exp

(
(Vpv + Ipv Rs)q

a KBTc Ns

)
− 1

]
−

Vpv + Ipv Rs
Rp

(1)

where Rs is the series resistance (U), Io is the diode saturation currents (A), Iph is the photocurrent
(A), Rp is the shunt resistance (U), Tc is the cell temperature (K), KB is Boltzmann’s constant
(1.38065 × 10−23 J/K), q is the electron charge (1.60217 × 10−19 C), a is ideality factor of the diode
that represents the diffusion current of the components, and Ns is the number of the PV panel cells that
are in series.

To reduce the hot spot effect successfully, a bypass diode is connected in parallel with respect to
the solar cells, which are connected in series in a PV panel under the PS condition [45]. The proposed
model [40] is implemented as shown in Figure 3.
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In this work, the enhanced PV panels are linked in series to create two PV string groups,
as illustrated in Figure 4. Also, a bypass diode is connected in parallel with respect to each PV panel
to model the actual bypass diode in the actual PV panel. When a PV panel experiences shading,
its resistivity becomes very high, causing its temperature to rise, and this causes a hot spot effect.
The bypass diode helps to overcome this effect.Sustainability 2020, 12, 2011 6 of 20 
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Figure 4. The structural configuration of the PV system under common fault conditions.

There are three well-known faults that may occur in the PV system’s DC side [46], which are
open-circuit, short-circuit, and PS. The main cause of a short-circuit fault is the vibration and the
abrasion of PV panels. In addition, the bad wiring of the PV string is a significant source for short-circuit
faults. Faults of the short-circuit type are indicated by the label F1 in Figure 4. On the other hand, wire
breaks between the solar cells in series may cause an open-circuit fault. Faults of the open-circuit type
are indicated by the label F2 in Figure 4. PS may occur when the PV string receives uneven temperature
and irradiation due to adjacent buildings, passing clouds, trees and so on [47]; F3 stands for the PS
fault in the string of PV panels in Figure 4.

The output characteristics of the PV string are entirely different when faults occur. Figure 5
represents the output characteristic curves of the PV string under the faults set in Figure 4. As shown
in Figure 5, the voltage of the PV string is reduced when a fault of the short-circuit type happens; when
an open-circuit fault appears, there will be no current. Further, under PS faults, there are multi-peak
characteristics of the PV string. Consequently, in order to implement an algorithm to detect faults, the
current and voltage at the MPP, and the PV string open-circuit voltage are chosen as fault characteristic
quantities in this work.
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It is worth mentioning here that, in this paper, various scenarios will be covered regarding
short-circuit and PS faults. Moreover, in the PS condition, the radiation level is assumed to equally
affect all PV panels belonging to the same group. However, the used algorithm takes into account the
fact that different groups in the string may have different radiation levels.

3.3. Algorithm for Fault Detection in PV Panels

Two ratios have been established to decide which type of fault occurred in our PV system. These
are the voltage ratio (VR) and the power ratio (PR). The two ratios change in a manner that makes
them suitable for classifying the region of the fault during faulty conditions.

The VR and PR are given as in Equations (2) and (3):

VR =
Vt

Vr
(2)

PR =
Pt

Pr
(3)

where Vt and Pt are the maximum theoretical (predicted) output voltage and power the PV
system should have produced, respectively. Vt and Pt are calculated in real-time using the NARX
neural network algorithm. Vr and Pr are the measured output voltage and power from the PV
system, respectively.

The MPPT used in this paper has a conversion accuracy rate of 98.2%, which has been validated
in the author’s previous work [38]. Therefore, the calculated power ratios are calculated within ±2%
error tolerance. Hence, we can define the maximum and the minimum voltage and power ratios,
respectively, as shown in Equations (4)–(7):

VRmin =
Vt

Vr
(4)

VRmax =
Vt

Vr ×MPPT Tolerance Rate
(5)

PRmin =
Pt

Pr
(6)

PRmax =
Pt

Pr ×MPPT Tolerance Rate
(7)

Under the normal operation mode (standard test condition), the maximum and minimum value
of PR can be calculated using Equations (8) and (9) as follows:

PRminSTC =
Pt

Pr
=

900
900

= 1 (8)

PRmaxSTC =
Pt

Pr ×MPPT Tolerance Rate
=

900
900× 98.2%

= 1.02 (9)

In this work, the detected maximum PS condition by the radiation sensor is 95% of the total
shading; hence, the maximum PR is measured as

PRmaxPS =
Pt

Pr ×MPPT Tolerance Rate
=

900
18.17× 98.2%

= 50.4 (10)

Figure 6 shows the developed fault detection algorithm. If the value of PR is not higher than the
maximum PR and not within the scope of the normal operation mode, then the algorithm based on the
fuzzy system will determine the type of fault and whether it is a minor or moderate fault. Furthermore,
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the algorithm can classify, based on a PR value larger than 50, whether there is a major fault in a PV
string, or if the fault is in the MPPT unit.
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3.4. NARX MPPT Reference Model

An essential part of a PV system is monitoring the MPP of a PV string. As such, several MPPT
techniques have been developed and put into practice [48]. In this model, the MPPT controller is
implemented using a NARX network to increase tracking efficiency by increasing the tracking response.
NARX is a recurrent neural network that has been successfully used, especially for applications of
the time-series type [49]. The key variance between multi-layer perceptron and NARX is that NARX
permits a feedback connection among layers, and that makes it suitable for time-series analysis because
it enables the network to operate with past period values of variables.

There are two architectures of the NARX neural network [50]: the open-loop and the closed-loop.
In this work, the open-loop architecture is used because of the accessibility of former accurate values
of the time series and the pure feed-forward network architecture. The NARX network behavior can
be mathematically modeled by Equation (11):

y(t) = f
(
y(t− 1), y(t− 2), . . . , y

(
t− ny

)
, x(t− 1), x(t− 2), . . . , x(t− nx)

)
(11)

where f (.) is the mapping function of the network, y(t) is the output of the NARX at time t, (y(t−1),
y(t−2), . . . , y(t−ny)) are the NARX past output values, (x(t−1), x(t−2), . . . , x(t−nx)) are the NARX
exterior data, ny is the number of output delay, and nx is the number of input delays.

In the proposed work, NARX uses its former measured values and some external data to estimate
the current and voltage at their optimum values for the PV system. As an input, NARX uses four
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inputs with exterior data and two previous outputs, which represent time-series inputs at time t-1.
Figure 7 shows the structure of the presented MPPT controller.
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As illustrated in Figure 7, the six input nodes in the first layer are the solar radiation, the
temperature of the panel, the open-circuit voltage of the panel, the short-circuit current of the panel,
and the two output values of the time series previously achieved. There are five nodes in the hidden
layer with an activation function for hyperbolic tangent sigmoid transfer. The last layer is composed of
two nodes; each has an activation function of a linear type. These two nodes produce the optimum
operating current and the optimum operating voltage of the PV system.

After constructing the NARX network model and feeding the collected data, the targeted output
current and voltage are gathered by executing a code in MATLAB that analyzes the characteristics of
the output to the validated PV model. The module validation and the results for different PV panel
types (under a diversity of temperature and solar radiation conditions) can be found in the published
previous work of the author [38]. Using the Levenberg–Marquardt (LM) training algorithm, the
network is trained to understand the relevance between the parameters of input and output. Figure 8
illustrates the state diagram for the training algorithm.

A training set of 5880 cases was obtained from three different PV panels before performing the
network training using the LM algorithm, namely Astronergy-CHSM6610P, Sharp’s-NUS0E3E, and
Lorentz mono-crystalline. The open circuit voltage (OCV) and short circuit current (SCC) are chosen
from the three PV panels as the reference variables. This dataset covers the various temperatures and
solar radiation conditions that would normally take place. More detail regarding the NARX network
validation can be found in the author’s previous work [38].
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3.5. Sugeno Fuzzy Reference Model

A single spike (singleton) of the consequent rule is used as a membership function to shorten the
time of the fuzzy inference single spike (singleton). Sugeno inference is very similar to the Mamdani
method, but a mathematical function of the input variable is used as a result of the rule instead of a
fuzzy set. The Sugeno method has different features, such as the following:

• It is computationally efficient;
• It works well with adaptive techniques and optimization methods;
• It has certain output interface surface continuity;
• It is best suited for linear techniques.

In the present work, the Sugeno fuzzy model with zero-order is used as shown by the fuzzy rule:

IF x is A AND y is B THEN z is K

where K is a constant; A and B are fuzzy sets on the universe of discourses x and y, respectively; and x,
y, and z are linguistic variables.

For the proposed fault diagnosis system, three zero-order Sugeno fuzzy models have been
developed for the minor, moderate, and major faults of the PV system, as illustrated in Figure 6. Table 3
classifies the 16 faults, shown in Table 1, into minor, moderate, and major faults.
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Table 3. PV system fault classification.

Mode Symbol Fault Scenario

Minor

F1L One faulty panel
F2L Low PS in PV
F3L One faulty panel + low PS in G
F4L One faulty panel in G and low PS in other G
F5L Two faulty panels
F6L One faulty panel + low PS in PV
F7L Two faulty panels + low PS in PV

Moderate

F1M Three faulty panels
F2M One faulty panel in G and high PS in other G
F3M Three faulty panels and low PS
F4M One faulty panel + low PS in G and one faulty panel + high PS in other G
F5M One faulty panel + low PS in G and high PS in other G

Major

F1H High PS in PV
F2H One faulty panel + high PS in PV
F3H Two faulty panels + high PS in PV
F4H Two faulty panels in G and high PS + one faulty panel in other G

For the three models, PR and VR are utilized as input linguistic variables for classification in the
fuzzy system. The PR and VR regions are shown in Table 4, where PR and VR are calculated using
Equations (4)–(7).

Table 4. Fuzzy logic input regions.

Fault
Symbol

Fuzzy Classification
Region

Partial Shading
% Max VR (V) Min VR (V) Max PR (W) Min PR (W)

F1L 1 - 1.359 1.335 1.359 1.335
F2L 2 up to 35% 1.014 0.996 1.587 1.559
F3L 3 up to 35% 1.27 1.24 1.91 1.88
F4L 4 up to 35% 1.315 1.29 2.0216 1.98
F5L 5 - 2.039 2.003 2.039 2.003
F6L 6 up to 35% 1.352 1.328 2.117 2.079
F7L 7 up to 35% 2.048 1.99 3.208 3.118

F1M 8 - 4.078 4.005 4.079 4.005
F2M 9 up to 95% 4.23 4.159 4.254 4.17
F3M 10 up to 35% 4.055 3.98 6.35 6.237
F4M 11 Low up to 35% 4.138 4.064 6.48 6.36
F5M 12 High up to 95% 4.226 4.15 6.618 6.49

F1H 13

up to 95%

1.4 1.37 50.44 49.5
F2H 14 1.868 1.834 67.29 66.07
F3H 15 2.801 2.75 100.93 99.11
F4H 16 5.604 5.503 201.87 198.23

Noting the preceding table, a selection of the 16 different regions has been used. Regions from
13–16 are used for a major fault in the PV system with high PS conditions (up to 95%). The maximum
and minimum voltage and power ratios for each region are also shown in Table 4.

The fuzzy subsets and the shape of the membership functions for the three fuzzy models are
shown in Figures 9–11.
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After regions of the input variables are identified, the fuzzy system sets the rules which are required
to be set. The primary rule sets for the three fuzzy models are illustrated in Table 5. The system’s
Sugeno-based architecture takes the product as an intersection method with a weighted average
defuzzification method.
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Table 5. Fuzzy logic rules.

Mode # Rules

Minor

1 If PR is 1 and VR is 4 then fault is 1
2 If PR is 2 and VR is 1 then fault is 2
3 If PR is 3 and VR is 2 then fault is 3
4 If PR is 4 and VR is 3 then fault is 4
5 If PR is 4 and VR is 5 then fault is 5
6 If PR is 5 and VR is 4 then fault is 6
7 If PR is 6 and VR is 5 then fault is 7

Moderate

1 If PR is 1 and VR is 1 then fault is 8
2 If PR is 2 and VR is 3 then fault is 9
3 If PR is 3 and VR is 1 then fault is 10
4 If PR is 4 and VR is 2 then fault is 11
5 If PR is 5 and VR is 3 then fault is 12

Major

1 If PR is 1 and VR is 1 then fault is 13
2 If PR is 2 and VR is 2 then fault is 14
3 If PR is 3 and VR is 3 then fault is 15
4 If PR is 4 and VR is 4 then fault is 16

It is worth pointing out that a large number of fuzzy rules can cause an over-parameterized
system, which reduces the ability to generalize and the accuracy of detecting the type of fault in the PV
system being examined. Thus, as shown in Table 5, the three core rule sets have been chosen with
regard to a sensitivity examination as follows:

• Reviewing the model input and output variables;
• Reviewing the fuzzy groups;
• Reviewing the standing rules;
• Revising the shapes of the fuzzy groups.

Using the three-dimensional output surface from the MATLAB Fuzzy Logic Toolbox, a satisfactory
level of performance was reached following the tuning process; i.e., starting from a faulty PV panel
only and progressively modifying the fuzzy system to detect all possible faults that may occur in the
PV according to the fault types listed in Table 3.

4. Results and Discussion

4.1. Evaluation of the Proposed MPPT

To determine the NARX network configuration, several trials have been performed, as explained
previously by the authors in [38]. The mean square error for training with this structure was 0.006415.

Once the training of the neural network was done, as shown in [38], the subsequent step was to
test the proposed MPPT algorithm to determine whether the actual results agreed with the prediction
results and to test its performance. Hence, to test the proposed MPPT algorithm, seven different P-V
characteristic curves were used. Table 6 presents a performance evaluation between the developed
method and the P-V characteristic curve. Figure 12 illustrates graphically the results of power
tracking through the developed algorithm compared to the maximum power from the P-V curve. The
results have been taken from the Astronergy CHSM6610P-225 PV panel. The panel STC electrical
characteristics can be found in Table 2.



Sustainability 2020, 12, 2011 14 of 20

Table 6. Performance evaluation between the developed method and the P-V characteristic carve.

# Input MATLAB Simulation Hardware
Implementation

#
Solar

Radiation
(W/m2)

Temperature
(◦C)

Open-
Circuit
Voltage

(V)

Short-
Circuit
Current

(A)

MPPT
Output
Power

(W)

Maximum
Power

from the P-V
Curve (W)

MPPT
Output

Power (W)

Tracking
Time
(ms)

1 125 5 36.88 8.27 24.754623 24.89109345 24.3828 30.912
2 235 10 36.88 8.27 52.164364 51.85359312 51.843 31.36
3 325 15 36.88 8.27 72.581871 72.41724493 72.3528 31.168
4 420 20 36.88 8.27 92.913429 92.66318971 92.8236 30.912
5 530 25 36.88 8.27 114.95480 114.7404373 114.6934 32.192
6 650 30 36.88 8.27 137.14440 137.0608187 136.9548 31.936
7 745 35 36.88 8.27 151.63885 151.7050295 151.51 31.872
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4.2. Implementation of NARX and the Fuzzy Diagnostic Algorithm on a Low-Cost Microcontroller

The NARX neural network MPPT algorithm and the fuzzy diagnostic algorithm were implemented
on a low-cost embedded system employing the Atmega2560 microcontroller. The running frequency
of the used embedded system was 16 MHz. The embedded system was connected to the PV system
through sensors, as shown in Figure 1.

As shown by the rightmost two columns of Table 6, the embedded system (hardware
implementation) finds the Pt (MPP output power) of the PV system in a fairly fast time using
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the implemented NARX neural network algorithm. The used NARX algorithm predicts what should
be the maximum output power of a PV system with regard to the surrounding conditions with an
accuracy of 98.2%. The predicted output power is found by the algorithm in about 31 ms. The predicted
output power is used by the fuzzy diagnostic algorithm to diagnose the PV system.

Table 7 shows the running time and the output of the fuzzy algorithm using some test cases.
It is important to note that the running time here denotes the running time for the fuzzy algorithm
providing that the value of Pt is already available. The fuzzy algorithm has an average running time of
1.6 ms.

Table 7. Fuzzy diagnosis test cases outputs and running time.

Test
Case # PR VR Fault

Type
Diagnosis

Time in ms
Test

Case # PR VR Fault
Type

Diagnosis
Time in ms

1 1.41 1.35 1 1.472 7 6.06 4.06 10 1.248
2 1.84 1.24 3 1.504 8 6.58 4.17 12 1.36
3 1.98 1.31 4 1.52 9 82.3 2.25 14 1.152
4 2.56 1.63 6 1.696 10 116 3.79 15 1.232
5 2.83 1.83 7 1.664 11 193 5.49 16 1.44
6 4.5 4.17 9 1.28

The meaning of each fault type is discussed in the previous sections. From the previous results, we
see that the used embedded system requires about 33 ms to diagnosis a PV system for possible faults.

4.3. Evaluation of the Developed Fault Detection Algorithm

Several experiments were conducted to test the performance of the developed fault detection
algorithm. Figure 13 shows the circuit diagram of how the developed fault algorithm is examined. As
illustrated, the proposed algorithm was applied on a PV array with two PV strings in parallel. Each
string had its own fuzzy fault system. Table 8 shows the test cases which were applied to the PV array
shown in Figure 13. Each scenario contained different conditions and lasted for half an hour. Readings
were taken after 5 min of installation.
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Table 8. Fault test cases.

Test Case Start Time End Time Fault Condition Applied

1 7:00 7:29 Normal operation mode -
2 7:30 7:59 One faulty panel PV string 1
3 8:00 8:29 Two faulty panels PV string 1+ PV string 2
4 8:30 8:59 Three faulty panels PV string 1
5 9:00 9:29 30% PS in PV PV string 1
6 9:30 9:59 95% PS in PV PV string 2
7 10:00 10:29 One faulty panel + 35% PS in G PV string 1+ PV string 2
8 10:30 10:59 Normal operation mode -
9 11:00 11:29 One faulty panel + 35% PS in G and 95% PS in other G PV string 1 + PV string 2

10 11:30 11:59 35% PS in PV PV string 1
11 12:00 12:29 One faulty panel + 95% PS in PV PV string 2
12 12:30 12:59 Two faulty panels + 95% PS in PV PV string 1
13 13:00 13:29 One faulty panel in G and 35% PS in other G PV string 1+ PV string 2
14 13:30 13:59 One faulty panel + 30% PS in PV PV string 2

15 14:00 14:29 One faulty panel + 35% PS in G and one faulty panel +
95% PS in other G PV string 2

16 14:30 14:59 Three faulty panels and 34% PS PV string 1
17 15:00 15:29 Normal operation mode -

The set of samples for the operational normal mode is not involved in the assessment process of
the fuzzy logic because it is detectable using the mathematical regions described in Figure 6.

Figures 14 and 15 show the faulty samples versus the output membership function for the Sugeno
fuzzy system. For instance, case 11 is an example of a fault in one PV panel and high PS condition
influencing the second PV string; for this case, the fuzzy system output is equal to 14 (F2H), which is
the same region shown in Figures 15 and 16. Similarly, cases 5 and 10 present a low PS in PV with 30%
and 35% PS, respectively. These two cases lie in the same fuzzy region because of the low PS condition
influencing the first PV string; this situation is labeled as region 2 (FL2) in both Figures 14 and 16. In
conclusion, all examined faulty conditions were accurately detected.
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