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Abstract: In recent years, both sustainability and optimization concepts have become inseparable
developing topics with diverse concepts, elements, and aspects. The principal goal of optimization is
to improve the overall sustainability including the environmental sustainability, social sustainability,
economic sustainability, and energy resources sustainability through satisfying the objective functions.
Therefore, applying optimization algorithms and methods to achieve the sustainable development
have significant importance. This paper represents a considerable review on the employed
optimization methodologies to sustainability and the sustainable development including sustainable
energy, sustainable buildings, and sustainable environment. Since energy optimization is one of
the major necessities of sustainability, sustainable development is investigated from the energy
perspective. In addition, the concept, definitions, and elements of the sustainability and optimization
have been presented, and the review of the optimization metaheuristic algorithms used in recent
published articles related to sustainability and sustainable development was carried out. Thus,
it is believed that this paper can be appropriate, beneficial, and practical for students, academic
researchers, engineers, and other professionals.

Keywords: metaheuristics; optimization algorithms; sustainable development; sustainable energy
resources; sustainable buildings

1. Introduction

With the publication of the Brundtland Report “Our Common Future,” the concept of sustainable
development has spread since 1987 [1]. The definition of the United Nations Brundtland Commission
on sustainability has become more dynamic than others. We call sustainability the technology that
meets today’s needs without jeopardizing the future generations’ ability to meet their own needs.
Therefore, sustainability is a multidisciplinary concept, based on this understanding that covers
different aspects of life. Clearly, sustainability is a concept in the core of the planet that focuses on the
condition and depletion of the biophysical environment of Earth [2,3]. In 2015, the General Assembly
adopted the 2030 Agenda for sustainable development. They adopted the Agenda for its action to
combat poverty, protect the planet, and enhance everybody’s lives and opportunities. This paper
focuses on reviewing trends and recent research papers in sustainability and energy efficiency (i.e.,
Goals 7 and 12) and sustainable building design (i.e., Goals 11 and 15) problems out of 17 sustainable
development goals.

Optimization is one of the most important tools for achieving sustainability. Optimization is
a search process for a specific problem according to special conditions of that problem. In fact,
optimization refers to finding processes of optimal values for a given network parameter, using all
feasible values for the minimization or maximization of network output. The goal of optimization is to
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discover the best feasible response with the consideration of the problem constraints. The presence
of complex scientific and engineering problems calls for using optimization methods to solve the
desired problem. Due to the time consuming and complexity of exact methods, utilizing intelligent
optimization algorithms has crucial importance.

Optimization of many complex scientific problems which require solutions with accurate
computations and appropriate time cannot use classical methodologies. In this regard, nature
can be considered as a rich source which, like a powerful mechanism, provides principles and concepts
in order to design artificial computational methods for solving complex optimization problems.

Metaheuristic optimization algorithms, which are also called smart and modern optimization
algorithms, are categorized as stochastic optimization algorithms employed for finding optimal
solutions. The word “metaheuristic” was first adopted by Glover [4] when introducing TS as a novel
heuristic method. Heuristic optimization methods are a set of algorithms for optimization of problems
which search solution space to find optimal response randomly but purposeful and simple [4]. The
metaheuristic optimization algorithms have outsourced approaches from local optimum and are
capable of finding optimum solutions in wide ranges of optimization problems [5,6].

Metaheuristic optimizers are methods which are inspired by studying the natural phenomena.
Due to their potential and strength, the optimization algorithms have been used in many and various
subjects related to sustainability and sustainable development including environmental sustainability,
social sustainability, economic sustainability, sustainable energy resources, sustainable buildings,
sustainable environment, and more. A variety of articles based on optimization techniques have
been published in different international journals. Excellent exploitation and exploration strategies
of metaheuristic optimization algorithms have made these algorithms a good alternative for solving
optimization problems.

In recent decades, researchers have developed various types of metaheuristic optimization
algorithms [7]. These methods have been expanded by mimicry of some well-known processes,
primarily in biology, physics, chemistry, math, society, and nature [8]. There are different categorizations
of metaheuristic optimization algorithms proposed in the literature [9,10]. Generally, algorithms
inspired by nature can be divided into four main categories including EA, SI, PCMB algorithms, and
finally the HB algorithm.

GSO [11,12], GAs [13], PSO [14], TLBO [15], HS [16], TS [4] and WCA [17] are the some of the
well-known algorithms that are used in order to optimize different problems. A large number of
writers in literature have addressed sustainability optimization. In [18], for energy systems, a new and
comprehensive model for the evaluation of durability was introduced. This model follows a holistic
approach which impacts sustainability. It addresses various disciplines, including energy, exergy,
environment, society, technology education, and the energy system’s dimension.

A multi-objective model of optimization, which offers a comprehensive method of maximizing
sustainability through all three pillars, was introduced in [19]. This article provides a strategy for
optimizing the supply chain networks that includes economic, environmental, and social sustainability
as three pillars of sustainability. This provides a comprehensive overview of measures and indicators for
evaluating the three pillars and links each indicator to a supply chain network portion. A multi-target
optimizing model was modified to cover three cost goals as a part of the supply chain network:
economic, environmental, and social sustainability.

In [20], a petrochemical network was planned for Kuwait by developing an optimization model
where some sustainability indicators were used as objectives. In [21], in order to determine the
configuration of industrial metal-fabrication systems, with the greatest sustainable efficiency in three
sectors and six facilities, a methodology combined with Monte Carlo simulation was suggested. In [22],
multi-objective optimizing the repair choice for infrastructures exposed to natural hazards with the
greatest sustainable contribution was suggested.

In [23], in order to identify the most sustainable electricity generation planning scenario in
Indonesia for 2050, a multi-target optimization model was presented. In [24], a method was designed
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to optimize sustainability of a combined heat and power generation system integrated wastewater
treatment plant. In [25], sustainability optimization was also pointed out in the nuclear industry.

In [26], optimization models for the optimum implementation of selected sustainability activities
called sustainability programs were designed to maximize the efficiency of the manufacturing industry
in line with established budgetary and minimum threshold constraints on technological, social, and
socio-economic parameters. In addition to modeling shown in this paper [26], a random process is
proposed for searching the ANNSs for the optimal durability system, the importance of the sample
problem is described. Sensitivity analysis is performed to understand the model’s behavior. It is
noted that the performance of sustainability depends on constraints such as budget restrictions and
performance criterion threshold values.

In [27], as a new optimization technique for the sustainable growth of supply chains, the TTS
optimization concept was implemented. The TTS approach seeks to replace existing methods of
optimization. Its main focus is on the timeframe to achieve a sustainable and stable condition of the
system under consideration.

A decision-making issue with the quality-based product recovery was explored in [28] with
multiple optimization goals, including economic, environmental, and societal performance of
sustainability. In this article, MOEA was utilized for solving the MOOP problem and finding
an optimal solution.

A principal contribution of this paper is its summary of a significant research review of all
applicable optimization methods to sustainable building design and energy efficiency problems. A
description of the popular heuristic optimization algorithms covering direct search, processes, and
other bio-inspired algorithms is available. Because green energy resources, systems, and technologies
are the major elements of sustainable development, optimization approaches used for sustainable
energy resources, sustainable buildings in the literature are investigated and evaluated in details in the
current paper.

The remainder of this paper is organized as follows. Section 2 presents sustainability. Section 3
identifies optimization, its concept, definition, objectives, and methodologies related to metaheuristic
optimizers as well. Section 4 addresses optimization and sustainable development in the literature,
given with concise explanations of its applications and contributions. Section 5 further addresses
studies in this paper. Section 6 concludes the findings and purpose of this review paper.

2. Sustainability

2.1. Concept of Sustainability

It is obvious that sustainability is at the heart of this concept, focusing on the condition of the
biophysical environment of the earth, particularly with regard to the use and depletion of natural
resources. It is more a matter of finding a sort of permanent state to support the people of the earth or
a part of it, without endangering the health of human beings, animals, and plants.

In this regard, other attempts have also been made for providing foundations, ideas, and concepts
related to sustainability. The general concept of sustainability compared and contrasted by Brown
et al. in [29] with different definitions and roots in order to move toward a common understanding
(see Table 1). Brown et al. [29] concentrated on definitions including “sustainable biological resources
use,” “sustainable agriculture,” “carrying capacity,
sustainable economy,” and “sustainable development”. Each one of them emphasized different
subjects. In this context, roots of sustainability in accordance with the sustainability definitions consist
of “ecological/carrying capacity,” “resource/environment,” “biosphere,” and “critique of technology,”
“no growth—slow growth,” and “ecodevelopment”. In their view, these six meanings converge around
two major aspects of results with focus on ecology and the economy [29].

” o ” o e

sustainable energy,” “sustainable society and
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Table 1. A summary of the sustainability definitions and concepts.

Roots of
Sustainability

Points of Emphasis

Definitions of
Sustainability

Points of Emphasis

Ecological/carrying
capacity

Maintenance of natural systems so
that they can support human life
and well-being

Carrying capacity

Optimum and maximum ability
of Earth’s systems to support
human life and well-being

Resource/environment

Promoting economic growth only

to the extent and in ways that do

not cause deterioration of natural
systems

Sustainable use of
biological resources

Maximum sustainable yield
from natural systems, such as
forests and fisheries

Biosphere

Concern with the impacts of
humans on the health of the Earth
and its ability to support human
populations

Sustainable agriculture

Maintaining productivity of
farming during and after
disturbances such as floods and
droughts

Critique of technology

Rejection of the notion that science
and technology, by themselves,
will protect and save the Earth

Sustainable energy

Renewable alternatives to fossil
fuel reliance to produce heat
energy

No growth-slow growth

Limits to the ability of the Earth to
support the health and well-being
of ever growing populations

Sustainable society and
economy

Maintaining human systems to
support economic and human
well-being

Ecodevelopment

Adapting business and economic
development activities to realities
of natural resource and
environmental limits

Sustainable development

Promoting economic growth
only to the extent and in ways
that do not cause deterioration

of natural systems

Sustainability is a concept widely understood and discussed. In fact, it is subject to vast partiality
and subjectivity. Therefore, sustainability is a multi-disciplinary concept, based on an understanding
covering various aspects of life. The principle areas that impact sustainability are highlighted in
Figure 1. In addition, the areas are in various ways intertwined. The social sphere affects the cultural
realm, for example, while the economic sphere influences public policy.

Energy

~

SUSTAINABILITY

Economy

-

N

Figure 1. The backbone of sustainable development and the key areas for understanding the concept of

sustainable development [18].

Overall, a sound and thorough analysis of every factor and element contributing directly
or indirectly to this concept leads to an objective understanding and evaluation of sustainability.
Nonetheless, an internationally accepted standard for sustainable assessment is not available. This is
largely because models are often blamed for their subjectivity, their sense of sustainability, or their lack
of clarity [18].
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2.2. Elements of Sustainability

Optimization methods for environmental sustainability—social and economic—are developed
separately. [19]. Since, energy can be seen as a key factor in poverty reduction and the improvement of
living standards, energy resources and the sustainability dimensions must integrate together. Thus,
technical dimension relating to functional and technological advantages is considered by some authors
as energy resources sustainability. In this case, the sustainability measures for optimization consist of
environmental, social, economic, and energy resources sustainability.

3. Optimization

Optimization is a search process for a specific problem according to special conditions of that
problem. Optimization refers to finding a process of optimal values for a given network parameter
using all feasible values for the minimization or maximization of network output. The goal of
optimization is to discover the best feasible response with the consideration of the problem constraints.
The presence of complex scientific and engineering problems leads to using optimization methods
to solve the desired problem. Due to time consuming and complexity of exact methods, utilizing
intelligent optimization algorithms has crucial importance.

Optimization of many complex scientific problems which require solutions with accurate
computations and appropriate time cannot use classical methodologies. In this situation, nature
can be considered as a rich source which, like a powerful mechanism, provides principles and concepts
in order to design artificial computational methods for solving such complex optimization problems.
Heuristic optimization methods are a set of algorithms for optimization problems which search in
problem search space to find optimal response randomly, but purposeful and simple [30,31].

After developing a heuristic optimization algorithm, for instance TS, researchers found that some
natural phenomena, despite being random, are interestingly moving toward near-optimal states. These
optimization algorithms are usually inspired by nature. The metaheuristic optimization algorithms
have outsourced approaches from local optimum and are capable of finding optimum solutions in a
wide range of optimization problems [32,33]. General algorithms inspired by nature can be divided
into four main categories: EAs, SI algorithms, PCMB algorithms, and finally HB algorithms.

The EAs are a subset of evolutionary computations and are categorized in the Al group. The
evolutionary algorithms are inspired by the evolutionary and genetic behaviors of creatures. These
algorithms consist of GAs [13], DE [34], BBO [35], and ES [36]. Other well-known algorithms of EAs
include PBIL [37], GP [38], VCS [39], and NNA [40].

The second group of metaheuristic optimization algorithms are the SI algorithms which are
usually inspired by intelligent behaviors of creatures in nature. A majority of algorithms belongs to the
SI category, unlike the EAs class that only utilizes genetic laws. They always take full advantages of
each solution in the search space to provide better solutions for optimal solving of a given problem [39].

4. Optimization and Sustainable Development

The definition of the concept of sustainable development is a good starting point for this section.
Sustainable development is a term that has been widely used and for which many meanings have
been suggested in the past three decades. Several papers have recently discussed the meaning
of sustainability [41] and sustainable development [42,43] and how it can be operationalized and
identified [44].

Even if they are sometimes considered interchangeably, the concept of sustainable development is
slightly separate from sustainable. It should be known that the concept of sustainable development
includes a reference to development that is not necessary in order to sustain a system.

Sustainability is defined as "capacity for long-term development", while sustainable development
is the mechanism through which sustainable development is achieved or considered [45]. "A dynamic
process that allows everyone to realize their own potential and improve their quality of life so as
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to protect and improve the life-support systems of the world at the same time, as a way to achieve
sustainable development as a process" [45] recalls the results of the Forum for the Future. A sustainable
development can be the only solution to these problems.

Sustainable development is the synthesis of preservation of energy resources, environmental
sustainability, economic sustainability, and social sustainability, as illustrated in Figure 2. Clean energy
and technologies are a key component of sustainable development for three main purposes.

¥ N

Environmental
sustainability

Social
sustainability

Sustainable
development

Energy and
resources
sustainability

Economic
sustainability

A
A

Figure 2. Factors affecting sustainable development interdependence [46].

Firstly, they generally produce less EI than other sources of energy. There are a wide range
of green energy options. Secondly, they were not able to be depleted. When used in appropriate
applications carefully, green energy resources can provide reliable and sustainable energy almost
indefinitely. Thirdly, it promotes decentralization of systems and locally independent solutions, thus
increasing the flexibility of the system and offering economic gains to small, fragmented communities.
However, the small scale of the equipment also decreases the amount of time required from design to
operation to make it more suitable to meet unpredictable production [46].

Indeed, the biggest problem with renewable energy such as wind and solar energies is that they
are intermittent. Also, they would require warehouses full of massive batteries, and at this size, a
major problem becomes apparent.

However, the life-cycle perspective is of paramount importance when evaluating EI. Moreover,
when following this perspective, even in energy systems assimilated as renewable, there is high
demand for fossil resources cumulated along the life-cycle stages, even higher than a conventional
(fossil) "competitor".

Figure 3 illustrates the major considerations involved in developing green energy technologies
including social, EIs, marketing, technological and economic factors. In addition to these considerations,
a series of parameters (factors) can be identified which are important for developing green energy
policies and strategies. These include information to the general public, environmental education,
innovation stimulation, technology promotion, financing, and very important tools and techniques of
elaborate evaluations.

For future sustainable energy environments, green energy technologies are expected to play a key
role. Energy demand is likely to be the main factor deciding the role of green energy and technologies.
Therefore, green electricity from renewable sources, such as hydraulic energy, solar, wind, geothermal
energy, wave, biomass, etc., can be produced to address the energy demand. Green energy innovations
are largely influenced by strong and influential patterns that are grounded in fundamental human
needs. Wastes (e.g., waste-to-energy incineration plants converted into usable forms of energy) and
biomass sources are considered to provide renewable energy/green energies.

To achieve a comprehensive sustainable development, using optimization methods and
subsequently optimizing the objective functions of the problems in relation to energy resources



Sustainability 2020, 12, 2027 7 of 34

sustainability, environmental sustainability, economic sustainability, and social sustainability is very
essential. Green energy resources, systems, and technologies are the key components of accomplishing
sustainable development, in the following optimization methods. They are applied to the sustainable
energy and buildings in the literature, and are discussed and analyzed in detail.

Increase of green energy
and technology utilization

Social and Commercialization
environmental impact Research and
development,
information technology,
incentives, training,
education,
communication, etc.

Social benefits, global
peace, environmental
impact, higher living
standard, clean air and
environment, etc

Technical aspects Economic factors
Availability, grid Investments, generation
connection, technology costs, lower operation
level and use, cost, lower cost energy
technological recovery, lower cost
innovations, advanced transportation,
technologies, etc. externalities, etc.

Figure 3. Considerations involved in development of green energy technologies [46].

4.1. Optimization and Sustainable Energy

The main focus of sustainable energy is to move towards electricity production and powering
equipment by means other than fossil fuel consumption. Recently, there has been a shift in focus
because the quantities of fossil fuel used to produce energy are too big. This means that dependence on
fossil fuels was once considered untenable because these resources would be eradicated in the world.
Today, however, because of the environmental impact of burning them, that dependency has been
considered unsustainable. Now that the issue of global climate change has emerged, it is clear that
the burning of fossil fuels is the primary cause for the release of carbon dioxide into the atmosphere.
Therefore, because the fossil fuels have many carbon dioxide emissions, finding sustainable alternatives
has become an imperative.

As a result, those interested in climate protection advocate sustainable energy as a means for
reducing carbon emissions. This will inevitably lead to an increasing reliance on energy sources such
as solar, wind, geothermal, hydro-electric, and sometimes nuclear. This focus on renewables is a
somewhat narrower version of the concept of sustainable energy.

Another more comprehensive concept is to reduce the energy demand generated by consumer
goods production. For example, by increasing the efficiency of energy resource usage, and/or by
replacing toxic energy resources with less environmentally friendly energy sources, energy consumption
typically decreases environmental effects. Such behavior will promote sustainable development and
raise living standards through a cleaner climate. A sustainable supply of sources of energy, to be
accomplished through the following, is provided by sustainable development:

e Sustainable energy resources available at a reasonable cost which can be used for all necessary
tasks without detrimental societal effects. The generally accepted endpoints are energy resources
like fossil fuels (coal, oil, and natural gas), and uranium. Others, such as sunshine, wind, and falls
in water are generally regarded as renewable and relatively long-term sustainable [47]. Wastes
and biomass fuel are sometimes seen as sustainable energy sources (convertible to useful energies
through waste-to-energy incineration and other processes).
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e  Efficient utilization of energy resources for improving their benefits while preventing their use.
That recognizes that all energy resources are to a certain extent limitable, enabling them to
contribute to the long-term growth and thus to a more sustainable development. In addition
to energy sources which can eventually make cost-performing changes, the need for resources
(energetic, material, etc.) will be reduced to create and sustain energy systems and devices and
the related environmental impacts will also be reduced. [47].

Figure 4 shows that approximately 1/4 of global final energy consumption in 2017 was made by
the residential sector (a total of 8918 Mtoe). Over the last few decades, this share has not changed
significantly and it is projected to continue to be similar. The data source given in Figure 4 is the
International Energy Agency. It describes the residential sector as the combined pool of all households
in the region, also known as the household market [47].

2000

1800 +
1600 +
1400 +
1200 +
1000
800
600
400
200
0

1971 1975 1980 1985

= Industry

Commercial and public services

Other’
1973

Other!
Transport 1_5.8%

2.4%

Commercial _—
and public
services
15.2%

1995 2000 2005 2010 2017
m Residential
= Transport

2017

Other'

1.7%
Transport e :
1.7%

Commercial

and public A\
services
21.7%

Figure 4. 1973 and 2017 shares of world electricity final consumption (Source: IEA, World Energy

Balances, 2019).

In the transportation sector, roughly half the supply of renewable primary energy is used to
produce electricity and heat in countries of the OECD. However, the majority of renewables in the
residential, commercial, and public services sectors are being consumed globally. This is a result of the
extensive use of organic solid fuels in developing countries’ residential sectors. The global electricity
and heat production are based on 38.6 percent of renewable energy; while 41.7 percent is spent on the
residential, commercial, and government sector (see Figure 5).
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In the following, the review was made on recent published papers in this topic. Table 2 shows the
reviewed papers in the literature.

Table 2. Main characteristics of some the reviewed papers in the literature.

Optimization

Ref. Problem Optimization Objective Function Year
Method Single-objective Multi-objective
e  Fuel cost
[48] Optimal power flow MJAYA e Emission cost x v 2019
e Power loss
[49] Optimization of Renewable AFSA Cost of generation v x 2016
Energy Sources in a Microgrid
Optimal integration of
renewable energy sources for
[50] autonomous tri-generation PSO e Total cost v X 2018
combined cooling, heating,
and power system
Optimal design of Microgrid’s ¢
network topology and ° ost
Bl location of the distributed HS e Powerloss X 4 2019
renewable energy resources
Sustair}able rene\fvable energy e Cost of Energy
[52] planning and wind farming GAs (LCOE) v X 2018
optimization
. . o Cost of generation
53] Sustlama!:)lve Indonesian 1\{Iull'n-ojb]ec'c1vs§1 ' Lowest % v 2015
electricity system optimization mode! CO2 emissions
. o ) . . e  Investment costs
[54] Design of distributed energy Mlxed-mt?ger linear o  Tota] < v 2017
supply systems programming (MILP) annualized costs
e Slip
f ~ . . Rotor current
155] Sustal'nable energy-generating Random restart l9cal P ¢ % v 2019
induction machine search optimization ~ ® ower factor
e  Starting toque
[56] Sustainable energy systems P-graph model »  System cost v X 2017
Sustainable NOx emission Online neural L
[57] reduction at a coal-fired power  network modeling ~ ®  NOxemission rate v X 2019
station and PSO
e  Power shortage cost
Monte Carlo e  Energy storage cost
[58] Optimal design of HRES simulation and e  Power X v 2015
(STRONG) generation cost
e  Carbon emission
[59] CHPED SRPSO *  Generation cost v x 2019
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In [48], Jaya’s new version called MJAYA was presented with four different targets, reflecting
the minimization of fuel cost, emission minimization, transmission power loss reduction, and the
improvement of the tension profile, to solve the problem of the OPF. Comparing other reported
approaches suggests that the MJAYA algorithm is preferable to other methods. The MJAYA proposal
is a population-based optimization algorithm consisting of simple steps only using common control
parameters (i.e., maximum number of iteration and population sizes). For further explanation, Figure 6
displays the suggested flowchart for the MJAYA algorithm for OPF resolution.

( Initialize the MJAY A parameters )

( Input the data of power system )

Run initial power flow to obtain the
base case solution

ariables and generate initial populatior

Randomly initialize all decision
% n
randomly

Run power flow for each member in the population

and calculate the value of objective function of each

member. Then save the value of objective function
for each member.

¥
Identify the best solution (value of objective
function) in the current population
(]
Modify all members in the population based
on the best solution using Equation (22)

in the population and calculate the new value

Run power flow for each modified member
of objective function of each member.

Is the
termination
criterion
satisfied?,

For each member,
is the new value of objective
function better than that of

previous value? .
Accept and replace Keep the previous
the previous value value
Update the population }—

Y
Print the best
solution

Figure 6. Diagram of MJAYA's proposed solution for the OPF [48].

In [60], a comparison was performed among four optimization algorithms in order to reduce
power loss in the power distribution network equipped with renewable energy resources. These
algorithms are GSA, BA, ICA and FPA. Placing RDGs such as wind energy and photovoltaic energy can
lead to a reduction of power loss in an electrical power network. The suggested heuristic algorithms
are used in this research to find the best site and size for RDGs in the distribution network to reduce
energy loss. The results of ICA show its efficiency and superiority over the other algorithms that have
been suggested.

In [49], an optimization algorithm is used for the optimal energy scheduling problem and the
optimization of renewable energy sources in the micro-grid, called the Artificial Fish Swarm Algorithm.
The efficiency of the algorithm is checked through a microgrid scenario to schedule generation.
The findings are checked by comparison to the established multiplicative reduction algorithm for
additive increase.
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In [50], a simulation model was developed for optimization of different configuration alternatives
of autonomous renewable energy sources and CCHP systems for meeting cooling, heating, and
electrical loads, based on the photovoltaic-thermal panel, wind turbine, thermal energy storage,
electrical energy storage, absorption chiller, electric chiller, and electric heater. To optimize the process,
a newly developed E-PSO algorithm is examined and validated. Figure 7 displays the simulation

phase flowchart.

Initialize input data

1

Randomly initialize
Apv. Ny, Csyes and Csps, i ) ) )
within their limits 3 RE-CCHP implementation
> ir=it+1 : [Rcad Apy, Ny Csys and csm_]

| |

for t=1:8760

forj = 1:nPop

I

Apply mutation operator using Eq.
(33)

Apply crossover operator using Eq.
(34)

Forecast electrical and thermal
Loads

|

Forecast meteorological data

Target vector is selected
for the next iteration

Apply EMS (Fig.
(FEL or FTL)

solution than target vector ; and, 50(’ Es
Trial vector is selected i
for the next iteration i

Update personal and global best
values and positions

€ alculate
Thegrres Thepaps  Thiy -and LPS'

s i Dctcrmmc
he trial vector provide better & 3 PoyrsOpyr» By SOCr

¥
Update . C; and C;using Egs.
(35).(36) and (37)

Calculate
Theygree s Thepaps, > and Thig

i el cite Calculate
[ Update pOSl(IO(I‘I31211)1d velocity Eq. J [ 7AC and LPSP ]

forj = l:nPop

values and positions

[ Update personal and global best ]

Figure 7. Diagram of the E-PSO algorithm simulation phase [50].
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In [51], the combined topology of the network and the optimum placement of distributed
renewables in a micro grid were addressed. To solve this problem of mutual optimization, the efficacy
of the HS metaheuristic solver inspired by the jazz band music was analyzed. In this paper, two
different approaches were considered. The first is a single objective problem formulation in which the
classic HS is applied with certain adjustments. The second approach is to take into consideration a
multi-target HS algorithm, which will develop a whole family of solutions at Pareto.

In [61], a hybrid ANP-BOCR-TOPSIS evaluation method was suggested to build a comprehensive
assessment index system for selecting sustainable energy storage node optimization. At the same time,
it was demonstrated that this technique can efficiently resolve such problems and be used in other
areas. The system combination is seen in Figure 8.

Sustainable Energy Storing Partner Selection = . 2
Evaluate alternatives with TOPSIS method
Y . [~ Step 1 2
Candidates’ Determine networks of BOCR and establish a . o u " " "
2y N 2 PR 5 Determine the positive ideal solution and the negative ideal solution. Step 8
opinions hierarchy to determine criteria weights

1

N2

Build a relationship of dependency and feedback Step 2 Rank the order for the most appropriate alternative

Evaluation criteria to determine the relationship of

F . e — Step3
interaction among criteria
‘ Determine the direct Influence
among criteria
Construct the ANP structure 1 L %
b J Step6 — 3!
Z ! P . V4 5
p._ . S BT ;
Construct judgment matrices and I Stpe .\\II Iha.mi Construct the mm.gl direct-relation
calculate the weights calcwiation watrix
N ! 1
AV i | ‘ b:
Check consistency of matrices i ‘ Normalize direct-relation matrix
3t i i iigh
A = >
B> o N [ Construct total-relation matrix
<CR=0.10 > Validation Step7 — TT
M Calculate the center degree and
Construct the supermatrix obtained from DEMATEL-based ' cause degree of each criteria to
DEMATEL and ANP calculation ! obtain inner dependence matrix

= 2 : 0 §
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Figure 8. The ANP-BOCR-DEMATEL-TOPSE integrated system framework [61].

In order to determine the weights of all parameters, the approach BOCR was applied and the
standards used by ANP were defined. Then the TOPSIS-based approach to classifying alternate firms
was suggested. In order to assess the overall accuracy, the DEMATEL method was adopted. Eventually,
the findings of ANP-BOCR-TOPSIS, DEMATEL-TOPSIS, and AHP-TOPSIS were related. The findings
were also contrasted. The results show that the approach introduced had the potential to evaluate the
parameters and was very effective for solving similar problems.

The effects of climate change, driven largely by fossil fuel consumption and unhealthy lifestyle
use, promote a strong and far-reaching use of renewable energy sources. Reference [52] suggests the
approach of computational GAs to optimize wind farms for the detection of both the sitting of the
wind turbines and the levelized cost of energy to guarantee the optimal production of electricity and
sustain fragile ecosystems. The model was used to determine suitable locations for the position of
wind turbines on a complex field around a flight and evaluated the electricity offset in terms of demand
and supply to facilitate localized, more stable energy networks.

Two steps are taken to improve the preparation and development of a wind farm: 2) Using GAs to
determine suitable wind turbine designs provided the circumstances in which winds are viewed, and;
(b) Economic analyses focused on the expected wind turbine energy generation, calculating marginal
costs of increasing energy production in the wind farm region. A flowchart in Figure 9 revealed the
optimization pattern.
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Figure 9. A flow chart that shows the pattern for optimization [52].

The results show the model’s reliability and its future applicability to other locations pursuing
sustainable energy preparation while at the same time maintaining economic stability and protecting
the fragile ecosystems they have inherited.

Reference [62] used two models to analyze the consequences of these objectives, based on a number
of mid and long-term scenarios, on the sustainable European energy system as well as the rest of the
world. Firstly, the optimal configuration of the European electricity system is accomplished between
2030 and 2050 using the linear programming optimization approach for capability extension and unit
contribution. The results for Germany are then used as inputs in the Multi-Regional Input-Output
Analysis with the aim of analyzing the environmental and socio-economic effects of the new energy
system. The results show this method’s capacity for emissions of GHGs, cumulative energy demand
and added value, and the creation of jobs.

In [53], a multi-target optimization model for a long-term power generation network in Indonesia
was introduced. Between 2011 and 2050, the optimization model is performed. This paper seeks to
assess local energy sources’ cultural and environmental adequacy. The model includes two competing
goal functions to obtain the lowest generation cost and lowest CO, emissions while taking technology
diffusion into consideration. The results show that all renewable energy should be developed in
Indonesia and that imported coal and gas is needed.

Reference [63] provides an overview of sustainable energy system design and development
focused on the context for superstructure optimization and the guidelines on LCO. There were a
series of research challenges, such as (1) systematic generation of comprehensive super-structures for
processes, (2) super structured optimization models that integrate technology-economic assessment
and LCO, (3) effective computational algorithms to resolve non-linear optimization issues.

For the design of sustainable energy supply systems, the concept of min-max robust multi-objective
optimization was applied in [54]. This article introduces a mixed-integer linear problem formula,
incorporating uncertainties in sustainable energy system design. A Pareto front can therefore still be
derived. The problem formulation represented transfers the important theoretical concept of min-max
robust multipurpose optimization to engineering for the design of energy systems that are sustainable.

A random restart of the local search optimization process for efficient induction production of
energy was examined in [55]. Several experiments have recently been designed to improve induction
machines operating efficiency with optimization technology. However, current techniques failed to
improve the induction machines efficiencies. An HC-LSO technology was designed to resolve this
efficiency problem. Figure 10 shows the HC-LSO technique structure diagram.
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Figure 10. Hill climbing-optimization of HC-LSO (Hill-LSO) system configuration diagram [55].

A P-graph model is developed in [56] to optimize sustainable energy systems over a multi-period
period. The model is capable of synthesizing scalable structures that are capable of addressing
differences in the supply and demand of raw materials. In addition, the P-graph model is also
capable of generating near-optimal solutions that provide information that may be important to
decision-makers, such as structural features that are specific to a range of good solutions. The method
built in this study is outlined in two case studies.

In [57], using ANNs model and PSO over two years of operation a 490 gross megawatt subcritical
tangential coal fired boiler is built and implemented. There is also a hybrid optimization and control
strategy using multiple methods of optimization and control, including machine learning [57].

In [64], the recent model of energy planning, energy projection models, and renewable energy
integration models were studied and reviewed in numerous ways for minimum cost of energy,
minimum CO,, and sustainable development. Various techniques and tools for modeling are also
investigated and discussed.

In [65], a summary of trends in science (1999-2009) was provided regarding the utilization of
the optimization methods for design, planning, and control problems related to renewable resources
and sustainable energy. A review of more than 200 papers in the fields of renewable energy and
computer optimization from leading publications provides interesting conclusions which can be of use
for researchers in fields of green energy.

In [66], the power and supply sector developments were reviewed. The role of modeling and
optimization as a tool for sustainable energy systems was analyzed as well as the future prospect
of optimization modeling. Additionally, in [67], the different methodologies of optimal sizing of
renewable hybrids energy systems were reviewed.

In [58], the use of simulation from Monte Carlo and simulation optimization techniques for
optimal HRES design in uncertain environments were investigated. The proposed model takes into



Sustainability 2020, 12, 2027 15 of 34

consideration not only the power generation, allocation, and transportation systems within the HRES
framework, but PV equipment, wind and diesel electric power generators, and energy storage systems
at each power plant.

In [68], numerous different tools for modeling a renewable energy project were examined for
simulation and optimization. The models examined in this document were divided into various
project subgroups: ‘Multi-scale RE Tools’, ‘District Level Tools’, and ‘Regional Level Tools’. Tools for
similarities and differences are contrasted among the different categories. Reference [69] provides a
timely review of state-of-the-art energy planning for multi-target energy resources.

In addition, Reference [70] presents an exhaustive review of applied optimization algorithms
for energy-efficient scheduling based on constraints and objectives related to energy. In this article,
many methods including swarm and evolutionary algorithms for solving energy-based problems
were discussed and analyzed. Figure 11 identifies swarm and evolutionary algorithms used to solve
energy-related scheduling problems.

Algorithms from 2013-2019

Others

22%
GA

38%
PSO

4%

SFLA
4%
GWO

o/
/0

NSGA-II
14%

Figure 11. Swarm and evolutionary algorithms for solving energy-related scheduling problems.

Reference [71] also discusses HS algorithm implementations in energy systems. Various improved
versions of the HS approach are implemented in the present study, and a comprehensive review in the
field of HS implementation for energy system issues is conducted.

The SRPSO algorithm was used in a comparison to solve the problem of CHPED by taking into
account fuel costs and power losses, and thereafter to obtain sustainable energy [59]. The SRPSO
algorithm is an improved form of PSO.

4.2. Optimization and Sustainable Buildings

Buildings around the world consume a substantial amount of energy, about 1/3 of the total
primary energy resources. In those conditions, effective building energy management is critical in
achieving a low carbon environment and potentially faster sustainability. The future generation of
buildings is increasingly moving through energy-efficient buildings that allow smart building control.
Furthermore, the energy source is an important element in building sustainability. Thus, in world
sustainable development strategies, the building industry is attracting increased attention. This is due
to its energy consumption and emissions of GHGs in the construction sector.

The concepts of sustainable design, which are widely considered in the sustainable assessment
frameworks, were formulated by Hill and Bowen [72]. However, there is still no common definition
of a sustainable building. While lowering the energy demand of buildings, lower Canada dealt with
climate change criteria for sustainable construction in 2007 and stressed the importance of emissions of
GHG [73].

In principle, a sustainable building, based on ecological values and resource efficiency, was in
theory often seen as a safe building environment [74]. In countering this idea, a highly efficient building
is described by improving the situation, design, construction, operation, maintenance, and removal of
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energy, which has less impact on health and the environment and fewer electricity, water, and materials
throughout the lifetime [75].

The U.S. EPA reported that sustainable construction is the realistic practice of building structures
by using environmentally responsible technologies, resource efficiencies, and the minimization of their
lives from location until deconstruction [76]. Table 3 lists impacts that the EPA states are expected
to minimize sustainable buildings (in view of their role, environmental effects are primarily taken
into consideration).

Table 3. Environmental resources and impacts reduced by EPA re-adaptation in a sustainable

e  Indoor pollution
e  Heatislands

building [77].
Resource Consumption  Environmental Impact - Ultimate Effects
e Energy o  Waste
. Water * Air pOlluthl’.l . Harm to Human Health
. e  Water pollution and . .
e  Materials N e  Environment Degradation
. storm-water run off
° Site ° Loss of Resources
[ ]

Biodiversity

Many studies have been performed regarding low-energy buildings. Figure 12 illustrates the
numbers of studies on low energy buildings obtained in the Science Direct database after 2000, by
energy," and "built-up” [78].

"o

searching for "low,

2018

2016

2014

0 5,000 10,000 15,000 20,000 25000 30,000 35,000 40,000

Figure 12. Number of Science Direct studies in the energy-efficient buildings after 2000.

The proposed literature review shows that optimization of BEO is an extremely complex process
involving a broad range of potential objective functions and design variables as shown in this Figure 13.
The main issues are mentioned. The target functions can include measures of energy, climate, economics,
and/or comfort. Building structure, envelope, and energy systems can be related to the design variables.

There are many objective functions and main design variables in literature. In this study, the
review was performed on papers concerning sustainable buildings from the energy perspective. Table 4
shows the reviewed papers in the literature.
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Figure 13. Optimization of Building Energy (BEO) including possible target functions and architecture

core variables.

Table 4. Main characteristics of the reviewed papers in the literature.

Objective Type
Ref. Problem Optimization Method Objective Function ) P Year
Single Multi
[79] Benchmark of BEO problems SA, GAs and etc. the energy consumption v X 2019
Explore the best plan to maximize Air conditioning and lighting energy
(801 energy efficiency in buildings Gas consumption x / 2019
. o An enhanced hybrid
[81] To prei::;sbutﬂdg;ienergy model based on the energy consumption v X 2019
P ARIMA, SVRs and PSO
e Total cost
- Stafld-alone ankc)i g‘fcllc'i-mme;tid ) Coordinated optimal the accumulated unmet power y 2019
[82] zero/low energy buildings and their design method e the accumulated unmet X
energy systems cooling load
e annual thermal energy demand
e annual electrical
o . energy demand
[83] Building Energy Design GAs e annual percentage of X 4 2019
discomfort hours over
occupied hours
e Temperature profile
[84] ThermagEr\:zirgy_Pegfglr;\ance ofan GAs e Electricity Consumption x v/ 2019
cademic building e Thermal Comfort
[85] Building energy optimization MACO Building annual end-use energy v X 2018
e ANN
6] Reduce energy demand for buildings ~®  NSGA-II ¢ Energy dgmand « v 2018
and maximize thermal comfort e Monte e Comfort time
Carlo method
157] HVAC setpoint scheduling aimingat ~ ®  ANN ¢ Energy demand % v 2018
reducing energy consumption ¢ GAs ¢ Energy cost
[88] The model predictive control based on ~ ®  Regression tree ¢ Thermal comfort « v 2018
the historical building data Random forest ¢ Energy use
: ﬁls\lé\IA-H e Energy demand
9] Energy performance improvementof o  MOPSO M Lifecycl? C?St « v 2017
residential buildings e MOGA e CO; emissions
.
.

MODE

Thermal comfort
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Table 4. Cont.
Objective Type
Ref. Problem Optimization Method Objective Function ) P Year
Single Multi
o . Energy consumption
[90] EheylopFlm]Zfagqud?f the thelrmal GAs e Net present value « v 2017
enavior O ullding envelope Payback period
e Energy and Exergy use
e Exergy efficiency
Exergy and exergoeconomic NSGA-II ° Exergy destruction
[91] optimization as concerns building & e  Thermal comfort X 4 2017
energy design MCDM methods e CO, emissions
e Financial indicators
Minimizing lifecycle cost and Lifecycle cost
1921 ;m;SSIOESr enslurlqgé at Fhe S?l';le_lt(lir_n& HS e Lifecycle emissions x v/ 2017
igher thermal satis| acthon of building e  Thermal comfort
occupants
Increase the energy performance for e energy consumption
[93] space heating and domestic hot water GAs . Financial indicators X v 2017
production in residential buildings
o4 Buildi trofit Multi-objective energy ~ ®  Lifecycle cost v 2017
[94] uilding energy retroft hub optimization e Lifecycle GHGs emissions x
e  Envelope construction cost
[95] The enirgylldperformalr\ce of green NSGA-II e  Thermal energy demand « v 2017
uilding envelopes e Window opening rate
o ) e Energy demand
196] OP“;mZe the th?r‘ mhal aln};i "113)"1‘81‘“ SPEA-2 e  Useful daylight illuminance x v 2017
performance of school butldings e Summer thermal discomfort
) - ) ) e Thermal energy demand
[97] Find resilient clostfoptlmal retrofit NSCA-II e energy consumption « v 2016
solutions e  Global cost
98] The improvement of the global overall =~ Multi-criterion building El_'\ergy demand % % 2016
energy performance of office buildings  envelope optimization ~ ®  Visual comfort
e GAs
The design optimization of a residential ®  Morris screening ¢ Energy demand
[991 building method for e Discomfort hours x v 2016
sensitivity analysis
[100] Building energy behavior NSCA-II ° C‘ooli%qg energy demand « v 2016
simulation-based optimization Lighting energy demand
e Thermal energy demand
) o . Electricity demand
[o1] Sustaln;blg building NSGA-II o Investment NPV « v 2016
esign e CO, emissions
e Comfort level
o ) ) Hating energy demand
[102] Finding ophmald so%utlons of envelope Mono- and MOPSO e Cooling energy demand X v 2016
esign e  Lighting energy demand
e Energy use (heating, cooling)
[103] Design of energy systems for buildings NSGA-II e  Investment cost X v 2015
e NSGAIL e Annual carbon emissions
[104] Building energy optimization e MILP e Annual running costs x v/ 2015
e Investment cost
e Energy demand
During design retrofit, multi-objective ~ ® GAs (heating, cooling)
[105] e ANNs e Retrofit cost x 4 2014

optimization

Thermal discomfort hours

In [106], for solving near-zero energy-building design problems, multi-objective optimizing
algorithms were compared. [107] provides the software to support the selection of energy efficiency
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measures both for newly constructed buildings and for existing ones. The methodology of optimization
is a MINLP problem. This study addressed issues of building optimization, both single and
multi-objective. The objective is to generate annual energy consumption.

A new systematic method for tackling this difficult task was introduced in [83]. It is called
"Harlequin," and it optimizes building energy efficiency multi-phase and multi-objectivity. Many
architecture variables related to building structure, envelope, and energy systems are designed in three
steps. Harlequin is a multi-stage and multi-target method for building energy design optimization.
This indicates three phases as shown in Figure 14.
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order to outline the economic savings/benefits
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To support this choice, Harlequin provides
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Figure 14. Scheme of the system proposed: Harlequin [83].

In [108], the latest intelligent control systems for energy and comfort control in smart energy
buildings were thoroughly and extensively reviewed. [109] represented a simulation model which
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enables the finding of optimal values for different building parameters and the associated effects which
decrease the energy demand or consumption of the building.

In [110], the optimization approaches for sustainable building problems were thoroughly examined.
The heuristic algorithms widely used to cover direct searches, evolutionary methods, and other
organically influenced algorithms are summarized. These algorithms are included GAs [111], EP [112],
GP [113], CMA-ES [114], and DE [115]. The main specifications of 74 articles related to the application
of mentioned algorithms to various domains of sustainable building design are present in this study.

In [116], the potential of the prefabricated structures for use in new buildings for sustainability,
eco-efficiency, and building optimization was discussed, concentrating on the study of a novel dry—-dry
beam-—column relation with various reliability scenarios and re-use scenarios. Additionally, in [117],
optimizing building sustainability assessment was presented using building information modeling. In
view of criteria for safer and more sustainable buildings, the BSA processes within a BIM framework
must be incorporated and streamlined. In [118], an energy optimization was conducted in the various
climatic zones of a residential building. In this analysis, the best energy used in a house due to a
heating—cooling system was explored through various options under the national code of uniform
R values.

In [119], comprehensive agent-based modeling frameworks and methodologies were developed
to optimize sustainable building operation in terms of indoor/outdoor thermal comfort and energy
consumption levels.

In [120], an optimization model was designed to optimize the efficiency of existing buildings and
to test the performance of a proposed project by using a public building in a case study. Reference [121]
presents a model of multinational optimization for retrofit planning of buildings with the objective of
maximizing energy savings and economic benefits from the given investment budget.

In [122], in order to find an optimal construction envelope design that minimizes life cycle costs
and emissions, the multi-objective optimization model based on harmony search algorithms was
developed. The pattern has been used in the south of the United States for a typical single-family
home. A number of optimal solutions from Pareto solutions were described to help designers better
understand the trade relationship between economic and environmental efficiency.

In [123], optimizing the thermal performance of building envelopes for energy consumption
saving was performed in office buildings in China for various climates. In [124], multi-objective
optimization and the analysis of parametric of a solar heating system were investigated for different
building envelopes. In addition, in [125], multi-objective optimization for energy cost management
was represented in semi-public buildings using thermal discomfort information.

In [126], evolutionary many-objective optimizations were proposed for retrofit planning in
public buildings where NSGA-III resulted in better diversity and where convergence outperforms
the conventional NSGA-II. Additionally, [127] integrated distributed generation technologies on
sustainable buildings by using multi-objective dimensional method. In their study, objective functions
consist of energy generation, total annual cost, emissions generated, and water consumption of
the system.

In [128], energy performance of a building, considering different configurations and types of
phase change materials, was evaluated by means of multi-objective optimization in five cities of Iran:
Tehran, Tabriz, Bandar Abas, Shiraz, and Yazd—each having distinctive climate. In [129], optimization
of the HVAC system energy consumption in a building was performed using ANNs and MOGA. The
results show that the proposed algorithm has good quality in finding optimum values.

In [130], the MOGA optimization algorithm based on Pareto optimization was applied to the
energy design of the building envelope and to minimize primary energy consumption, energy-related
global cost, and discomfort hours. Their proposed method was used with four diverse climatic zones
in Italy. In [131], also, the MOGA was employed for cost-optimal and low-carbon design of high-rise
reinforced concrete buildings. Furthermore, [132] used the improved MOPSO algorithm for campus
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energy plant operation based on building heating load scenarios. Operating costs, system efficiency,
and thermal comfort are considered as targets of optimization in their study.

4.3. Sustainable Environment

Energy, culture, and living standards are often difficult to describe and are linked in complex ways.
Energy choices have influenced cultural and economic development strongly throughout history, as
well as living standards. The environmental impact often has an important impact on energy sources
and it also impacts society and living standards. The long-term sustainability of the growth of a nation
is also impacted by environmental issues.

Due to increased population in the world, living standards, resource use, and industrial activities,
the environmental impact of human activities has increased substantially in recent decades. Figure 15
shows the temporal relation between the consumption of energy and the emissions of CO,, where
consumption and emissions have similar patterns, showing a strong relationship [47].
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Figure 15. The relation between world consumption of primary energy and CO, emissions from 1965
to 2013.

Energy-related environmental concerns range from pollutant and accident emissions to
environmental degradation and ecosystems. Table 5 provides descriptions of their sources and
environmental and human health impacts for several types of pollutants [47].

Table 5. Chosen contaminants and some of their origins and threats.

Pollutant Source Risks

CcO Incomplete combustion of fuels Urban air pollution

Natural processes (e.g., volcanic activity) Biological and human health

SO, threats
Sulft.lrl-contammg fuels, oil refining, Acid precipitation, respiratory
electricity generation, pulp and paper
. problems
industry
NOy Combustion of fuels at high temperatures Respiratory Problems., low—lev.el
ozone formation, creation of acids
VOCs Petroleum and solvent vapors Impede the formation of ozone

Particulates (e.g., fly ash) Natural and anthropogenic sources Acid precipitation, toxic effects
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In recent years, industry, the government, and the public have increasingly paid attention to
environmental issues, especially as those considerations become an integral part of living standards.
Environmental issues therefore also affect culture growth. Energy-related environmental problems
have impacted local and regional communities, as well as national and global governments in recent
decades (such as climate change and ozone depletion). The main environmental concerns related to
power consumption are summarized in Table 6.

Table 6. Summary of major environmental concerns related to energy use and their causes and impacts.

Environmental Concern Causes Impacts

Greenhouse gases (CO,, CHy,
CFCs, halons, N,O) emissions,
coal mining, deforestation, general

Earth surface and sea level increase; coastal

Global climate change floods; fertile displacement of the area; lack of

energy-related activities freshwater;
trat heri .. c . . .
Stratosp er}c ozone CFCs, halons, N,O emissions UV radiation increase (skin cancer, eye damage)
depletion
SO,, NOy, VOC emissions, Acidification of lakes, streams, and ground
. o electricity generation, residential ~ waters; damage to forests and agricultural crops;
Acid precipitation L . . . . 1
heating, industrial energy use, deterioration of materials (buildings, metal
sour gas treatment, transportation structures, fabrics)

The following are also additional environmental concerns, many of which have their principal
causes and sources listed below [47]:

e  Water pollution: Dangerous energy plant and refinery chemicals, mineral acid drainage,
geothermal releases of toxic chemicals, and thermal pollution associated with power plant
cooling systems releases.

e  Maritime pollution: Operations for shipping and accidental oil spills.

e Solid wastes and their disposal: Industries of chemicals, metals, etc.

e  Ambient air quality: SO,, NOy, CO, VOCs, and particulate matter emissions.

e Hazardous air pollutants: Lead-based fuel additives, emissions from the municipal waste
incinerator during oil and gas mining, treatment and combustion, and mercury, chlorinated
dioxins, and furans.

e Indoor air quality: CO, CO,, smoke from stoves and fireplaces, gaseous nitrogen and sulfur
oxidizes from furnaces, stray natural gas and oil furnaces, natural gas and soil-burning radon,
cigarette smoke and plywood and glues of formaldehyde.

e Land use and siting impact: Refining of fuel, electricity generation, solid waste disposal sites
including radioactive waste, hydroelectric reservoirs, mining sites, biomass surface needs, and
large-scale renewable energy utilization.

e Radiation and radioactivity: Power (fossil combustion, uranium mining and milling, etc.)
processing, decommissioning of nuclear waste, and related substances.

e  Major environmental accidents: Fires at refineries, factories, reservoirs and dams, and hydroelectric
dam failures causing floods and falls, nuclear accidents, and mining explosions.

There are also optimization approaches for coping with various environmental and ecological
problems [133-137].

5. Discussions

The combination of "sustainability and optimization" is one of the most important and well-known
challenging combinations in today’s world. It has attracted considerable attention and insights,
especially in recent years. In this regard, the optimal use of resources related to human needs is
considered an excellent sustainable goal: environmental, social, and economic goals.

Energy is a key factor for poverty reduction and the improvement of living standards. Energy
resources and the dimensions of sustainability need to be integrated together. Thus, some scholars [46]
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also find a strategic dimension related to technological advantages known as sustainability of energy
resources in addition to the other three dimensions.

In this review study, more than hundred papers on area of the sustainable energy resources
and sustainable buildings were reviewed. It is anticipated that green energy technology will play a
crucial role in future sustainable energy environments. Energy demand is likely to be the main factor
deciding the role of green energy and technologies. Green electricity from renewable sources including
hydraulic energy, solar, wind, geothermal energy, wave, and biomass can be produced to address
energy demand.

In the domain of the “optimization and sustainable energy”, particularly in the field of energy and
building, there are several objectives given in Sections 4.1 and 4.2. In addition, several review papers
regarding the state-of-the-art in multi-objective distributed energy resources planning was provided in
the recent years.

Buildings worldwide consume a large amount of energy, about one-third of total primary energy
supplies. Appropriate energy management in construction has abundant significance to a low carbon
world and potentially faster sustainable development under these conditions. Since energy is a principal
source and element in building sustainability, and in world sustainable development strategies as well,
methods to reduce energy consumption and greenhouse gas emissions in the building sector have been
investigated by several sources. Optimization of building energies is an extremely complex process
since it involves a broad range of objectives and design variables. Evaluating main characteristics
of the reviewed papers on this subject show a growing focus on target functions, particularly in the
last decade.

Metaheuristics such as swarm intelligence and evolutionary algorithms are effective for solving
energy efficiency problem planning, especially for large-scale and multi-objective problems. However,
the analysis demonstrates that the GAs, NSGA-II, PSO and their variants are used more frequently
than other optimization algorithms. This is due to the large scope of problems in these papers. In
high-dimensional problems, global search-based algorithms are more successful than algorithms that
utilize local search strategies such as the TS in finding an optimal solution.

The increasing number of articles published in recent years makes the use of energy efficiency
resources for sustainable development and sustainability an interesting subject. Modeling, optimization,
and simulation methods have been developed and they have opened new horizons for researchers to
use these technologies and instruments for energy resources and energy planning and management.
Research and development activities in this sector can now take place.

Using published articles, several research trends and their characteristics can be identified
according to the contribution of countries or continents. Optimization targets, single-objective and
multi-objective optimization, and optimization algorithms can also be identified.

5.1. Distribution of Papers to Different Continents

7

In Figures 16 and 17, distribution of studied papers are shown with respect to the authors
affiliation to a country or continent. In this regard, Figure 16 indicates distribution of papers based
on sustainable energy resources. With respect to the number of research papers, Asia has 54% of
publications in the current research regarding the sustainable energy resources. This development
mostly takes place in India [50,59,62] and China [53,69] for understandable reasons. Both countries are
emerging and must support their growth and development by looking for renewable and sustainable
energy sources. Moreover, China and India contribute approximately 29% and 7% of world CO,
emissions combustion in accordance with the statistics of IEA (CO, Emissions from Fuel Combustion,
2019) and are trying to decrease it.
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Figure 16. Distribution of papers based on sustainable energy resources to different continents.
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Figure 17. Distribution of papers based on sustainable buildings to different continents.

Figure 17 also depicts distribution of papers based on sustainable buildings in various continents.
Due to the number of research papers, Europe has 51% of publications in the current research
related to sustainable buildings. A majority of development in the green continent is related to
England [81,87,91,107,110] and Italy [83,88,93,97,101]. The presence of advanced building technologies
and skills in these countries and the 20% share of buildings in energy consumption as a significant
contribution based on the IEA database have led these countries to have the most research and
published articles on optimization of sustainable buildings.

5.2. Optimization Objectives

In many articles referenced in this review paper, optimization was performed only to minimize
costs. However, due to different economic, social, and other conditions, other goals must also be
considered in order to achieve sustainability and sustainable development. In this regard, the study of
the reviewed articles shows that in addition to minimizing the energy cost, other energy-related goals
have been considered.

In Figure 18, objective functions related to energy are demonstrated, including sustainable energy
sources and sustainable buildings. It can be seen from Figure 18 that the share of energy cost is 23%,
which is more than other objectives identified in literature. This means that the economic dimension in
assessing energy issues remains a top priority. The second, third, and fourth objectives are energy
demand with 21%, energy consumption with 17%, and CO, emissions with 15%.
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Figure 18. Distribution of objective functions related to energy in reviewed papers.

It appears that optimizing energy consumption and demand in the literature are made in an effort
to reduce the pollution caused by energy production. In this regard, many researchers focused on the
environmental research related to energy operations, ranging from pollutant emissions and accidents
to environmental degradation and ecosystems [89,91]. However, to improve energy efficiency, more
and more research needs to be performed on energy-related optimization goals and the relationships
between them.

5.3. Single Objective and Multi-Objective Optimization

Many traditional optimization problems related to energy sustainability in the previous years
have been solved without considering the actual dimensions, using only single-objective optimization
algorithms. Thus, many publications have considered the targets related to sustainable energy and
buildings as a single objective. However, over time and especially in the recent years, the complexity
of the issues and the need to consider the actual dimensions and elements, as well as the newness of
many optimization objectives, have led researchers and the scientific community to use multi-objective
optimization algorithms for optimization in order to optimize and solve sustainability problems
precisely. Therefore, the number of papers for the multi-objectives related to sustainable energy and
buildings from 2014 to 2019 is much larger than those for a single objective in the reviewed papers
(see Figure 19). This suggests the comprehensive evaluation of issues to achieve real and practical
optimization should be considered in the form of multi-objective optimization.
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Figure 19. Comparisons of single objective and multi-objective papers by year.
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Flexibility of multi-objective optimization rather than single objective optimization for solving
optimization problems, despite several conflicting goals, is another advantage of this approach. Therefore,
a desire for solving multi-objective problems led researchers to utilize more exact and complicated
processes and patterns based on Pareto front strategy for increasing energy efficiency [28,52,58,122].

5.4. Optimization Algorithms

Due to the characteristics and features of problems represented in this review related to sustainable
energy resources and sustainable buildings, different and diverse optimization approaches are utilized
for solving such problems. Figure 20 displays optimization algorithms used in published articles. In
Figure 20, the GAs, NSGA-II, and PSO are the most applicable algorithms for addressing sustainability
problems among use optimizers. In this regard, the GAs, NSGA-II, and PSO shares of applied
approaches are equal to 25%, 17%, and 11%, respectively. Moreover, the total share of GAs and
NSGA-II algorithms is about 42% among all used algorithms. The main reasons of the popularity and
efficiency of GAs over other optimizers can be considered as its discrete nature for optimal solving of
sustainability problems and being the state-of-the-art algorithm.

Others

22%
MODE _/.
3%

Monte Carlo
5%

Figure 20. Contribution of optimization algorithms used in the reviewed papers.
6. Conclusions

This review paper focuses on relationships between sustainability and optimization methods. The
concept and elements of the sustainability have been represented, and the review of the optimization
metaheuristic algorithms used in the recent published articles relating to sustainability and sustainable
development has been conducted. While studying and analyzing many and various research articles
related to the subject from 2014 to present, effort has been made to construct and create a strong
understanding of the topic for readers by discussing and summarizing findings found in recent scientific
papers. Since energy and energy resources play an important role in sustainable development, in
mostly sustainable energy sources, buildings, and environment, these topics are discussed. The results
obtained from studies clearly demonstrate the growth in popularity of optimization for the sustainable
development including the energy resources and buildings and of multi-objective optimizations in
particular. This is partly due to the importance of using the optimization methods to address problems
related to the sustainability. Another explanation for the growing interest in optimization is that
activists in this field recognize that such approaches have great potential for sustainable development.
Additionally, the results of optimizations indicate that energy consumption, power costs, and CO,
emissions are significantly reduced by employing optimization approaches. It is noteworthy that
the growth and trend of energy efficiency and deployment of green energies are an interesting and
challenging topic relating to sustainability. They are receiving more attention in our society. From the
different analyses, the following findings can be summarized:
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e  Asia is more focused on sustainable energy resources due to its huge population compared to
other continents, while Europe is more focused on sustainable buildings.

e Tendencies of modeling and using multi-objective optimizers compared with single objective
models are currently increasing considering more and real objectives inside the optimization model.

e The GAs and other phenomenon-mimicking algorithms are widely used for optimal solutions for
sustainable energy resources and sustainable buildings.
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Abbreviations

AFSA Artificial Fish Swarm Algorithm
AHP Analytic Hierarchy Process
ANN Artificial Neural Networks

ANP-BOCR-DEMATEL-TOPSE Analytic Network Process-Benefits Opportunities Costs Risks-
Decision-Making Trial and Evaluation Laboratory- Technique for
Order of Preference by Similarity to Ideal Solution

ANP-BOCR-TOPSIS Analytic Network Process-Benefits Opportunities Costs Risks-
Technique for Order of Preference by Similarity to Ideal Solution

ARIMA Autoregressive Integrated Moving Average

BA Bat Algorithm

BBO Biogeography-Based Optimization

BEO Building Energies Optimization

BIM Building Information Modeling

BSA Building Sustainability Assessment

CCHP Combined Cooling, Heating and Power

CHPED Combined Heat and Energy Efficiency Dispatch

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

Cco Carbon monoxide

DE Differential Evolution

DEMATEL Decision-Making Trial and Evaluation Laboratory

DER Distributed Energy Resources

EA Evolutionary Algorithm

EI Environmental Impact

EPA Environmental Protection Agency

E-PSO Evolutionary Particle Swarm Optimization

ES Evolution Strategy

FPA Flower Pollination Algorithm

GAs Genetic Algorithms

GHGs Greenhouse Gases

Gp Genetic Programming

GSA Gravitational Search Algorithm

GSO Glow-worm Swarm Optimization

HB Human Based

HC-LSO Hill Climbing based Local Search Optimization

HRES Hybrid Renewable Energy System

HS Harmony Search



Sustainability 2020, 12, 2027

28 of 34

HVAC Heating, Ventilating and Air Conditioning

ICA Imperialist Competitive Algorithm

IEA International Energy Agency

LCO Life Cycle Optimization

MACO Modified Ant colony optimization

MCDM Multi Criteria Decision Making

MILP Mixed-Integer Linear Programming

MINLP Multi-Objective Nonlinear Mixed-Integer

MJAYA Modified JAYA

MODE Multi-Objective Differential Evolution

MOEA Multi-Objective Evolutionary Algorithm

MOGA Multi-Objective Genetic Algorithm

MOQOP Multi-Objective Optimization Problem

MOPSO Mono- and multi-Objective Particle Swarm Optimization
NNA Neural Network Algorithm

NOx Nitrogen Oxides

NSGA-II Non-dominated Sorting Genetic Algorithm II
OECD Organization for Economic Co-operation and Development
OPF Optimal Power Flow

PBIL Population-Based Incremental Learning

PCMB Physics-Chemistry-Math Based

PSO Particle Swarm Optimization

PV Photovoltaic

RDGs Renewable Distributed Generators

RE Renewable Energy

SA Simulated Annealing

SI Swarm Intelligence

SO2 Sulfur Dioxide

SPEA-2 Strength Pareto Evolutionary Algorithm

SRPSO Self-Regulating Particle Swarm Optimization
STRONG Stochastic Trust-Region Response Surface Method
SVRs Support Vector Regression

TLBO Teaching-Learning Based Optimization

TS Tabu Search

TTS Time-To-Sustainability

VCs Virus Colony Search

VOCs Volatile Organic Compounds

WCA Water Cycle Algorithm
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