
sustainability

Article

Mapping Maize Fields by Using Multi-Temporal
Sentinel-1A and Sentinel-2A Images in Makarfi,
Northern Nigeria, Africa

Ghali Abdullahi Abubakar 1 , Ke Wang 1,*, AmirReza Shahtahamssebi 1, Xingyu Xue 1 ,
Marye Belete 1, Adam Juma Abdallah Gudo 1, Kamal Abdelrahim Mohamed Shuka 1 and
Muye Gan 1

Institute of Applied Remote Sensing and Information Technology, College of Environmental and Resource
Sciences, Zhejiang University, Hangzhou 310058, China; ghaliaa@zju.edu.cn (G.A.A.); amir511@zju.edu.cn (A.S.);
xyxue@zju.edu.cn (X.X.); marye_belete@zju.edu.cn (M.B.); 11714072@zju.edu.cn (A.J.A.G.);
11714073@zju.edu.cn (K.A.M.S.); ganmuye@zju.edu.cn (M.G.)
* Correspondence: kwang@zju.edu.cn; Tel.: +86-571-8898-2272

Received: 14 February 2020; Accepted: 19 March 2020; Published: 24 March 2020
����������
�������

Abstract: A timely and accurate crop type mapping is very significant, and a prerequisite for
agricultural regions and ensuring global food security. The combination of remotely sensed optical
and radar datasets presents an opportunity for acquiring crop information at relative spatial resolution
and temporal resolution adequately to capture the growth profiles of various crop species. In this
paper, we employed Sentinel-1A (S-1) and Sentinel-2A (S-2) data acquired between the end of June
and early September 2016, on a semi-arid area in northern Nigeria. A different set of (VV and VH)
SAR and optical (SI and SB) images, illustrating crop phenological development stage, were employed
as inputs to the two machines learning Random Forest (RF) and Support Vector Machine (SVM)
algorithms to automatically map maize fields. Significant increases in overall classification were
shown when the multi-temporal spectral indices (SI) and spectral band (SB) datasets were added with
the different integration of SAR datasets (i.e., VV and VH). The best overall accuracy (OA) for maize
(96.93%) was derived by using RF classification algorithms with SI-SB-SAR datasets, although the SI
datasets for RF and SB datasets for SVM also produced high overall maize classification accuracies, of
97.04% and 97.44%. The outcomes indicate the robustness of the RF or SVM methods to produce
high-resolution maps of maize for subsequent application from agronomists, policy planners, and the
government, because such information is lacking in our study area.

Keywords: Sentinel-1; Sentinel-2; smallholder; tropical; food security; maize fields; random forest;
support vector machine

1. Introduction

Recent global food insecurity has been largely observed in Latin America and Africa, mainly
associated with a range of factors, including an increase in the human population, armed conflicts,
climate change, and inequality in accessing sufficient and quality food [1]. For example, countries with
a large population in the African sub-continent have suffered food insecurity, which is largely connected
to agricultural production [2]. Nigeria is the largest and most populous country in Africa, with over
200 million people as of 2019 [3], and it has seen rapid population growth coupled with armed conflicts
and thus an increase in food insecurity. Nigeria has already witnessed famine in recent years, which
was largely associated with the agricultural sector. Agricultural sectors in countries like Nigeria and
other countries in Africa have a crucial role in the nation’s food security and sustainable development.
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Maize is one of the staple foods in Africa [4] and Nigeria [5] and the demand is skyrocketing with an
increase in population. The area cultivated with maize in a year/season provides an early indication of
the potential production and possible warning for food shortage and famine. Consequently, there is an
urgent need to develop a famine early warning framework through mapping and monitoring maize
production areas to ensure food security and sustainable development in countries like Nigeria.

Timely and accurate estimation of agricultural production area under a certain crop like maize at
regional and global scales provides a means to assist government decision-makers and planners [6].
The Earth Observation (EO) system offers an incredible direction and promotes scientists and
policymakers to move beyond conventional agricultural surveying techniques in quantifying the
area under a crop and tackle associated agrarian problems [7,8]. With the increased availability of
current and historical remotely sensed imagery archives, it is now possible to monitor farmlands in a
timely, cost-effective, and repetitive way [9,10]. For example, data from Moderate Resolution Imaging
Spectroradiometer (MODIS) and Landsat satellite images have been widely used for agricultural
mapping and monitoring [11,12].

One of the major problems with the application of remotely sensed imagery, particularly optical
imagery in tropical countries like Nigeria, is weather conditions, including clouds and rain, affecting
the quality of images [13]. This problem could largely limit the mapping and classification of a cropped
area, such as fields under maize [14]. Synthetic Aperture Radar (SAR) imagery shows potential as
it is not affected by weather and clouds [15–18]. The integrated use of optical and SAR data offers
a great opportunity for mapping the cropped area [17,19]. For example, Blaes et al. [20] reported a
5% increase in accuracy by adding ERS and RADARSAT imagery with optical SPOT and Landsat
images. Lamin R. Mansaray et al. [21] successfully used five Sentinel 1A and one Landsat-8 images
for paddy rice field mapping in urban Shanghai and reported a 5% increase in overall accuracy than
individuals. Rosenthal and Blanchard [22] and Brisco et al. [23] also reported that the combination of
optical and radar datasets in crop mapping increased the overall accuracy by 20% and 25%, respectively.
Other studies revealed an increased percentage range of 5% and 8% when the two data sources were
employed [24,25]. Zhou et al. [26] utilized Sentinel-1A and Landsat-8 in mapping winter wheat in the
urban agricultural region in China.

Recently, a growing number of studies utilizing Sentinel-1 (S-1) and Sentinel-2 (S-2 images
in agricultural research have been in focus [27–29]. This shows strong potential for both satellite
sensors to be used by the remote sensing community and to develop a method that distinguishes
various crops using remotely sensed data [27,30]. Thus, they provide unprecedented perspectives for
monitoring vegetation dynamics and land use/cover. Several studies have demonstrated that optical
multi-temporal satellite imagery allows crop type mapping over different climate and diverse cropping
systems [30–34]. For example, recently, S-1 and S-2 were applied to assess the suitability of data for
crop classification in Japan [35].

Choosing a suitable model for classification is essential for successful crop mapping. Several
classification algorithms have been employed to conduct crop mapping, however, Random Forest
(RF) and Support Vector Machine (SVM) are the two most commonly employed machine learning
algorithms in remote sensing community for mapping purposes, because RF and SVM classifiers are two
algorithms with high potential for classifying high-dimensional data [36,37]. Most of the researchers
have studied either Sentinel-1 alone or Sentinel-2 alone for crop mapping [27,38]. Sonobe et al. [35]
studied the suitability of data from Sentinel-1A and -2A for crop classification in order to improve the
recognition accuracy of dryland crops. TerraSAR-X image and RapidEye optical data have also been
used to identify the accuracy of maize using RF in Northwestern Benin, West Africa [39]. Additionally,
COSMO-SkyMed (CSK) and Radarsat-2, an integration of remote sensing data in conjunction with
optical data, were used to acquire accurate classification results for maize [40]. Unfortunately, in all
the aforementioned studies, few studies have been conducted incorporating Sentinel-1 and Sentinel-2
multi-temporal images in maize mapping. The potential of maize mapping accuracies with the RF and
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SVM classification algorithms has rarely been reported with single and different combinations of S-1
and S-2 datasets, in rain-fed, heterogeneous, and fragmented agricultural land.

However, the integration of Sentinel sensor datasets for mapping maize field is scarce. Moreover,
the success in mapping crops using the combined images to large extent depends on accurate
differentiation between crop and other land covers. The small field size creates a major issue in this
situation. For example, mapping cropped area under a smallholder farm system, such as maize fields
in Nigeria, becomes very difficult. The use of multi-temporal satellite images from the beginning,
middle, and end of cropping seasons could help tackle the problem, as crop growth stages will have
distinct features and be different from other crops.

The goal of the present paper is to examine the potential of multi-temporal S-2 (optical), S-1 (SAR)
multi-temporal satellite imagery, and their combinations for automatically mapping maize fields in
Makarfi, Kaduna State, Nigeria. To achieve this, the following objectives are addressed in this study:

• To evaluate the integration of Sentinel-1A (SAR) and Sentinel-2A (optical) images for maize crop
mapping using RF and SVM;

• To provide the optimal combination of S-1 dual-polarization channels that complement the S-2 for
maize mapping;

• To design a simple framework for integrating S-1 and S-2 images to map maize crops and use for
agricultural applications.

2. Materials and Methods

2.1. Study Area

Makarfi Local Government Area (central latitude 11◦22’N and longitude 7◦52’E) located in Kaduna
State, Nigeria (Figure 1). Makarfi is one of the major maize growing areas of Kaduna State and has
higher average productivity compared to other local government areas [41]. The main maize growing
system in this county relies on smallholder farms, where most of the farm sizes are fragmented by
various land cover types. The study area within the Northern Guinea savannah agro-ecological
zone [42], is characterized by undulating plain with Cambisols and Acrisols dominated soil types.
This region covers an area of about 541 km2 with a tropical climate, based on the Köppen–Geiger
system. The climate is suitable to support optimal conditions for growing maize. The average annual
temperature ranges from 36 ◦C in the hot months of March through May to 12 ◦C in the cold months of
July through September. The mean annual precipitation is 1016 mm. The monthly average rainfall is
about 361 mm between May and September, with the wettest month being August.

According to the local agricultural calendar, the growing season of maize is from the end of May
to the end of September. Nearly four months (June–September) of this period are considered the
precipitation season with fewer numbers of cloud-free days. This places a constraint on acquiring
optical remotely sensed data. Therefore, this region can be an ideal representative of growing maize at
a smallholder scale in a tropical climate to examine the potential of dense multi-temporal SAR imagery
in conjunction with a few optical data.
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2.2. Field Data Collection

In Makarfi region, maize is planted at the end of May to early June and harvested in mid-September.
We used official spatial data of maize planted region from the International Institute of Tropical
Agriculture (IITA), Kano, Nigeria, for the period from 2014 to 2018. The main goal of this field
campaign was to improve crop productivity and profitability for small-scale maize farmers in Africa
(Ethiopia, Tanzania, and Nigeria). The data was collected by experienced agricultural officers along
with the assistance of farmers in the regions. Noteworthy that any bias or considerations associated
with this survey were not reported for subsequent procedures. In this study, we first extracted sample
points related to the Makarfi region. We collected a substantial maize sample points (100) during the
field campaign as our region of interest (ROI), these point were randomly acquired from the maize fields
with the help of Global Positioning System (GPS) device, and recorded with a good accuracy. Besides
maize sample points, we randomly acquired additional training and validation sample in combination
with previous for the remaining five classes by visually interpreting the geo-referenced Google Earth
images based on the ground truth. These classes were collected by supervised visual inspection and
local knowledge of the region on Google Earth imagery. Based on the target crop (maize), the broad
land cover classes in Makarfi in which a classification was designed, into six dominant Land Use/Land
Covers classes, including maize fields, build-up, grassland, bare land, water bodies, and others were
recognized. The build-up, grassland and bare land classes, later were dissolved to Others class, hence,
we have three classes i.e. maize fields, water and others classes. These sample data of each class
were separated randomly into two-third for training and one-third were preserving for validation,
respectively. Regarding that the maize fields were our main target of the study, large training data
depicting the maize class was derived for the image classification as adopted in Onojeghuo et al., [43].
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2.3. Satellite Data and Pre-Processing

2.3.1. Sentinel-1 Image and Preprocessing

The European Space Agency (ESA) launched the Sentinel-1A (S-1A) satellite in April 2014.
Sentinel-1A is the first of its series programs, as part of the Copernicus programs for the monitoring
and observation of the Earth’s surface, and for the development of many operational applications
for environmental monitoring. The Synthetic Aperture Radar (SAR) is carried out by two satellites
(1A and 1B) and with a frequency of 5.4 GHz. The two satellites are indifferent to weather conditions
and allow data acquisition day and night, the main features detected by Sentinel in the study area
were single and dual-polarization images (VV and VH). In this study, we employed six C-band data
(wavelength ~ 6 cm) in the form of Interferometric Wide (IW) swath images, acquired by the Sentinel-1
(S-1) satellite between June and early September 2016. S-1A images were acquired from the web site
(https://scihub.copernicus.eu/dhus/#/home). The Ground Range Detected (GRD) products Level-1C
images were used (Table 1).

In this study, six S-1 images of the study site were imaged at an incidence angle (0) of about
30.9–46 of the maize growing season in Makarfi. We performed several processing steps on a different
image that was made up of an Orbit file, and then, we applied removal of thermal noise, followed by
radiometric calibration, geometric correction, and finally speckle filtering [44], and then converted to
sigma for the subsequent analysis.

Table 1. A detailed description of S-1 and S-2 data acquisitions in 2016.

Sentinel-1 (SAR) Sentinel-2 (Optical)

Azimuth Resolution 10 Band ID Spatial Resolution—10/20/60 m

Polarization Dual (VV-VH) Band 1 (Coastal)—0.443 µm
Band 2 (Blue)—0.490 µm
Band 3 (Green)—0.560 µm
Band 4 (Red)—0.665 µm
Band 5 (Red Edge)—0.705 µm

Mode IW Band 6 (Red Edge)—0.740 µm
Band 7 (Red Edge)—0.783 µm
Band 8 (NIR)—0.842 µm

Incidence angle Ascending 30.9–46 Band 8A (NIR)—0.865 µm
Band 9 (Water)—0.940 µm

Band 10 (SWIR)—1.375 µm
Band 11 (SWIR)—1.610 µm
Band 12 (SWIR)—2.190 µm

Dates Dates

29-Jun-16 22-Jun-16
11-Jul-16 23-Aug-16
23-Jul-16 11-Sep-16
4-Aug-16
16-Aug-16
9-Sep-16

2.3.2. Sentinel-2 Image and Preprocessing

Sentinel-2A (S-2A) is the second satellite launched by the (ESA) in June 2015. The S-2A has
13 spectral bands at different spatial resolutions (10, 20, 60 m). The S-2 characteristics are presented
in Table 1. We retrieved three S-2 data from their open access hub, and the images were corrected
atmospherically, using the Sentinel Applications Platform (SNAP) version 7.0 with the help of Sen2Cor
4, an atmospheric correction toolbox. We resampled bands with different spatial resolutions to 10 m
using the nearest neighbor interpolation method [45]. This was employed to ensure that the pixel size
of S-2 images corresponded with the identified maize field.

https://scihub.copernicus.eu/dhus/#/home
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We derived four spectral indices from S-2 images. The Normalized Difference Vegetation Index
(NDVI) was first proposed by Rouse et al. [46], and is the vegetation index most commonly employed
in the remote sensing community, because it has the capability to map land covers and crops. Many
studies have used the index and achieved great success [47]. The Enhanced Vegetation Index (EVI),
Specific Leaf Area Vegetation Index (SLAVI), and finally, Shortwave Infrared Water Stress Index (SIWSI)
are shown in Table 2.

Table 2. Formulas of spectral indices features.

Spectral Indices Formula References

Normalized Difference Vegetation index NDVI =
NIR−R∗

NIR + R
[48]

Enhanced Vegetation Index EVI = 2.5
pNIR− pR

pNIR + 6pR− 7.5pB + 1
[49,50]

Specific Leaf Area Vegetation Index SLAVI =
NIR

NIR + SWR2
[51]

Shortwave Infrared Water Stress Index SIWSI =
NIRa− SWIR1
NIR + SWR1

[52]

2.4. Classification Scheme

2.4.1. Feature Integration

We evaluated the effect of spectral bands, indices and SAR datasets used on the classification
performances. The spectral indices were computed for each image, as presented in Table 2. SAR
datasets were computed on S-1A, as shown in Table 1. These datasets were used alone or in association
with the SAR images with a different date, i.e., 13 the spectral bands for S-2A and two polarized
channels (VV and VH) for S-1A images. In essence, seven datasets were employed in this study, these
were as follows:

1. Spectral indices only (SI);
2. Spectral bands only (SB);
3. Synthetic Aperture Radar (SAR);
4. Spectral indices only and spectral bands only (SI-SB);
5. Spectral indices only and Synthetic Aperture Radar (SI-SAR);
6. Spectral bands only and Synthetic Aperture Radar (SB-SAR);
7. Spectral indices, Spectral bands, and Synthetic Aperture Radar (SI-SB-SAR).

2.4.2. Classification Algorithms

Many classification techniques have been applied in the community of remote sensing for mapping
over agricultural fields [53]. In this study, the two most known classification techniques were employed.
The RF and SVM algorithms, which are supervised classification methods, were used to classify maize
field and other classes during summer 2016.

The RF algorithm is an ensemble classifier that employs a set of classification and regression
trees in order to make a prediction [54]. It was chosen over other classification models because it
performs well on huge input datasets with several different features [55], and hence, it has been used by
previous research for mapping purposes with tremendous success [51,56,57]. The two RF parameters
are the number of trees (ntree), and the number of variables used for tree nodes splitting (mtry), which
was created by randomly selecting samples from the training dataset [57]. We tuned the parameter
randomly to determine the optimum one using the tune function. In this study, the optimal number
of trees (ntree) was set between 150, 300, 500, and 1000, while the optimal mtry was set on the mtry
vector factor with a default mtry being set as the square root of the total number of datasets. RF has the
capability to detect the information that is valuable in each of its features, which is one of its strengths.
RF classifiers possess the highest efficiency in terms of accuracy with limited processing time. We used
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the EnMAP-Box software, which is free, and an open source plug-in in QGIS capable of processing
raster images.

The SVM algorithm is a machine learning that strives to maximize the margin between classes
(the crops) through finding the optimal hyperplane in the n-dimensional classification space [36].
Several kernel functions have already been proposed, the one commonly employed is radial basis
function (RBF) kernels [58]. In this study, an SVM with (RBF) kernel was employed. SVM strives to
locate the decision boundaries which produce an optimal separation of classes [59]. The two parameters
are the C regularization parameter for the kernel functions to be tuned. One important advantage
of SVMs is their kernel function: by choosing a suitable kernel function, a complex problem could
be solved. One weakness of the SVM is that of high cost in terms of computing time. The major
parameters of SVM modeling include gamma and cost. In this study, the C parameter was set up
between 150, 300, 500, and 1000, while the other parameter was set at default. We used ENVI software
(Exelis Visual Information Solutions., Broomfield, CO, USA), version 5.3.

2.4.3. Accuracy Assessment

For all the classification schemes, the overall accuracy (OA), producer’s accuracy (PA), user’s
accuracy (UA), and Cohen’s kappa coefficient of agreement (κ) were computed using the confusion
matrices, with the aim to evaluate the accuracy of the produced crop maps [60]. Furthermore,
McNemar’s test was adopted in this study, in order to evaluate the superiority of the two classifier
methods. In other words, the test analyzed the significance of the difference between the classification
derived from the six datasets. It is a non-parametric test, quite simple to understood and execute.
Besides this, it is very precise and sensitive compared with other tests, such as the Kappa z-test.
The analysis was based on a standard normal (χ2) statistics, which was computed from two error
matrices using Equation (1):

x2 =
( f12 − f21)

f12 + f21
, (1)

where f12 indicates the number of cases which were incorrectly classified by classifier one but correctly
classified by classifier two, while f21 implies the number of cases which were correctly classified by
classifier one but incorrectly classified by classifier two.

An illustration of the methodological workflow adopted for this study is in the flow chart below
(Figure 2).

Sustainability 2020, 12, x FOR PEER REVIEW 7 of 19 

set on the mtry vector factor with a default mtry being set as the square root of the total number of 
datasets. RF has the capability to detect the information that is valuable in each of its features, which 
is one of its strengths. RF classifiers possess the highest efficiency in terms of accuracy with limited 
processing time. We used the EnMAP-Box software, which is free, and an open source plug-in in 
QGIS capable of processing raster images. 

The SVM algorithm is a machine learning that strives to maximize the margin between classes 
(the crops) through finding the optimal hyperplane in the n-dimensional classification space [36]. 
Several kernel functions have already been proposed, the one commonly employed is radial basis 
function (RBF) kernels [58]. In this study, an SVM with (RBF) kernel was employed. SVM strives to 
locate the decision boundaries which produce an optimal separation of classes [59]. The two 
parameters are the C regularization parameter for the kernel functions to be tuned. One important 
advantage of SVMs is their kernel function: by choosing a suitable kernel function, a complex 
problem could be solved. One weakness of the SVM is that of high cost in terms of computing time. 
The major parameters of SVM modeling include gamma and cost. In this study, the C parameter was 
set up between 150, 300, 500, and 1000, while the other parameter was set at default. We used ENVI 
software (Exelis Visual Information Solutions., Broomfield, CO, USA), version 5.3. 

2.4.3. Accuracy Assessment 

For all the classification schemes, the overall accuracy (OA), producer’s accuracy (PA), user’s 
accuracy (UA), and Cohen’s kappa coefficient of agreement (κ) were computed using the confusion 
matrices, with the aim to evaluate the accuracy of the produced crop maps [60]. Furthermore, 
McNemar’s test was adopted in this study, in order to evaluate the superiority of the two classifier 
methods. In other words, the test analyzed the significance of the difference between the 
classification derived from the six datasets. It is a non-parametric test, quite simple to understood 
and execute. Besides this, it is very precise and sensitive compared with other tests, such as the 
Kappa z-test. The analysis was based on a standard normal (χ2) statistics, which was computed 
from two error matrices using Equation (1): = ( 	 )	 , (1) 

where  indicates the number of cases which were incorrectly classified by classifier one but 
correctly classified by classifier two, while  implies the number of cases which were correctly 
classified by classifier one but incorrectly classified by classifier two. 

An illustration of the methodological workflow adopted for this study is in the flow chart below 
(Figure 2). 

 
Figure 2. Illustration of the methodological workflow adopted for this study.



Sustainability 2020, 12, 2539 8 of 18

3. Results—Support Vector Machines and Random Forests comparison

SVM and RF are the two most used machine learning methods, and their abilities to map crops
and land cover using multi-source high spatial-resolution satellite images were compared. In this
study, the evaluation was performed by using the seven datasets, explained in Section 2.4.1, consisting
of maize and other cover classes.

3.1. SVM and RF Results

Table 3 shows the averaged producer’s accuracy (PA) and user’s accuracy (UA) per class category,
kappa and overall accuracy (OA) of SI (i.e., the lower case), SI-SB (the medium with the average
number of features), and SI-SB-SAR (the higher with the vast amount of datasets) for SVM and RF.

In the lower case, the analysis of OA values indicated that SVM outperformed RF using the same
feature datasets, with 300 C parameters for SVM and 1000 trees for RF. In the SI-SB case, the results of
the OA percentage show that SVM underperformed RF using the same feature datasets, with 150 C
parameters for SVM and 500 trees for RF. In the last case (SI-SB-SAR), the OA values show that SVM
also underperformed RF using the same largest number of features, with 150 C parameters for SVM
and 1000 trees for RF. Moreover, RF with SI-SB obtained good results. Furthermore, the OA differences
between the RF and SVM were not always observed by looking at individual kappa values. Therefore,
there was no much difference in kappa for SI-SB between SVM and RF, which would give rise to
variation in OA.

Table 3. The maize and land cover classes overall accuracy (OA) with producer’s accuracy (PA) and
User’s accuracy (UA) obtained using RF and SVM.

RF SVM

SI SI-SB SI-SB-SAR SI SI-SB SI-SB-SAR

PA UA PA UA PA UA PA UA PA UA PA UA

Maize 95.38 92.99 94.82 95.68 94.65 94.41 95 95.4 92.43 95.7 93.19 94.78
Water 77.55 99.13 91.16 100 88.11 100 70.07 100 88.44 100 86.01 100

150 Others 97.3 97.73 98.42 97.88 97.93 97.75 98.29 97.45 98.53 97.02 98.15 97.23
OA 96.45 97.33 96.88 96.93 96.73 96.62

Kappa 0.91 0.94 0.93 0.93 0.92 0.92

PA UA PA UA PA UA PA UA PA UA PA UA

Maize 95.68 92.94 94.4 96.08 94.39 94.72 95.12 95.66 92.56 95.2 93.28 94.04
Water 79.59 99.15 91.16 100 88.81 100 70.07 100 89.12 100 88.81 100

300 Others 97.26 97.89 98.56 97.72 98.5 97.68 98.38 97.5 98.34 97.08 97.85 97.3
OA 96.54 97.32 96.92 97.04 96.63 96.47

Kappa 0.92 0.94 0.93 0.93 0.92 0.91

PA UA PA UA PA UA PA UA PA UA PA UA

Maize 95.34 93.07 94.65 95.88 94.65 94.37 95.12 95.37 92.56 95.2 93.49 93.49
Water 78.91 100 91.84 100 88.81 100 70.07 100 89.12 100 88.81 100

500 Others 97.34 97.75 98.48 97.82 97.91 97.77 98.27 97.49 98.34 97.08 97.62 97.37
OA 96.5 97.34 96.88 96.96 96.63 96.37

Kappa 0.92 0.94 0.93 0.93 0.92 0.91

PA UA PA UA PA UA PA UA PA UA PA UA

Maize 95.77 93.76 94.61 95.92 94.56 94.6 95.3 95.38 93.03 94.85 93.58 93.58
Water 77.55 99.13 91.16 100 88.81 100 70.07 100 89.12 100 88.81 100

1000 Others 97.6 97.88 98.5 97.79 98.01 97.74 98.27 97.55 98.19 97.24 97.65 97.4
OA 96.77 97.33 96.93 97 96.66 96.41

Kappa 0.92 0.94 0.93 0.93 0.92 0.91
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With concern about the input datasets, SVM and RF had greater kappa differences among SI,
SI-SB, and SI-SB-SAR. However, this was slightly higher for SI-SB. The RF classifier was more sensitive
compared to SVM in terms of input feature sets. It could be observed that for differences per maize
class and other land cover classes for “input features” the integration did not increase in any percentage.
Despite the balanced training data, this is an agreement with the literature demonstrating that the RF
classifier performs better [61], while sometimes SVM prevails [62]. Besides this, in all the classifiers,
differences may also arise for the thematic land cover: RF is better on maize, others, and water, whereas
SVM is suitable in all classes.

Several studies have employed the comparison between RF and SVM indicating their performances
with different remote sensing data using both classifiers [63–66]. Table 4 shows a slight improvement by
the RF classifier; this could possibly be because of the ability of RF to deal with the high-dimensionality
of the feature space.

Table 4. McNemar test for the significant differences in RF and SVM classification.

S/N Comparison RF Z-score SVM Z-score SL 95%

1 SI versus SB 9.631 9.588 S
2 SI versus SAR 8.723 8.619 S
3 SI versus SI-SB 9.626 9.593 S
4 SI versus SI-SAR 9.560 9.570 S
5 SI versus SB-SAR 9.603 9.601 S
6 SI versus SI-SB-SAR 9.604 9.587 S
7 SB versus SAR 8.720 8.620 S
8 SB versus SI-SB 9.624 9.595 S
9 SB versus SI-SAR 9.558 9.572 S
10 SB versus SB-SAR 9.601 9.602 S
11 SB versus SI-SB-SAR 9.602 9.589 S
12 SAR versus SI-SB 9.689 9.662 S
13 SAR versus SI-SAR 9.623 9.639 S
14 SAR versus SB-SAR 9.666 9.670 S
15 SAR versus SI-SB-SAR 9.667 9.657 S
16 SI-SB versus SI-SAR 9.558 9.571 S
17 SI-SB versus SB-SAR 9.601 9.602 S
18 SI-SB versus SI-SB-SAR 9.602 9.589 S
19 SI-SAR versus SB-SAR 9.606 9.603 S
20 SI-SAR versus SI-SB-SAR 9.607 9.590 S
21 SB-SAR versus SI-SB-SAR 9.604 9.588 S

3.2. Effect of Different Data Integration on the Maize Crop Mapping

The three datasets explained in the previous section were meant or designed to investigate the
significant role of SI, SI-SB, and SI-SB-SAR at the end season crop mapping. SI datasets only use spectral
indices, SI-SB combines the spectral indices and spectral band, and SI-SB-SAR includes SAR. These
different three datasets were all used for RF and SVM classifiers. When only applying SI, 12 spectral
indices were needed in order to get a maize map with high overall accuracy, since our main concern
was maize, while the performance of SI for identifying the “water” and “others” class categories was
relatively considered in this study. When using the combined SI-SB, (41 stacked features) from the
images. It can also be observed that the performance of SI-SB slightly improved compared with SI only.
We further integrated the SAR datasets; i.e., SI-SB-SAR: 12, 39, and 12 features were stacked. There
was no improvement in the overall accuracy. The OA of SI and SI-SB-SAR were the same. Therefore,
the inclusion of SAR datasets did not exhibit any increase as previous work reported [47].

3.3. Result of RF, SVM, and Accuracy Evaluation for SI, SI-SB, and SI-SB-SAR

With the RF classification, the integration of phenology information, that is, SI and SB, to the
dual-polarized channels, the overall classification accuracy substantially increased. In this case, for
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spectral indices, spectral bands combined with SAR datasets, the OA increased from 80.60% (k = 0.50)
to 96.2% with (k = 0.93), a difference of 16% increase was observed at 95% significant level, as indicated
by McNemar test (Table 4). The overall accuracy of SI and SB did not increase (Table 5). As shown by
the McNemar test of significant difference, the OAs of multi-temporal imagery SI-SAR, SB-SAR, and
SI-SB-SAR integration were significantly higher in the RF classification process. Figure 3 presents the
RF-generated maps by the integration S-1A (SAR) data and S-2 (optical) images.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 19 
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For the SVM classification, the SAR datasets, the overall accuracy increased from 78.9% to 96.2%,
96.87%, and 96.62% when SI, SB, and a combination of both datasets were incorporated into the
classification technique (Table 6). We set the test levels of significant difference to exist at 95% with Z
> 1.96. In this case, the results less than the Z value indicated that the classification accuracy result
was not significantly different. Based on the results of the McNemar test, variation for the datasets
SI and SB at the 95% level was significant, with a Z value of 9.588 (Table 3, SI versus SB). The SVM
classification (i.e., SAR versus SI-SB) was significant at the 95% level, with a Z value of 9.689 (Table 3).
The integration of SI and SB as reciprocal information in the classifications substantially increased
the OA. Figure 4 presents the SVM-generated maps by the integration S-1A (SAR) data and S-2A
(optical) images.
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However, it is imperative to note that for the classifiers, RF and SVM, SI and SB had higher overall
accuracy when the image was available during the maize growing season. This was evidenced in
our results (Tables 5 and 6). However, for all the classifiers, that is, RF and SVM, the highest OA
for the maize field class was derived from the datasets SB and SI (i.e., multi-temporal spectral band
and spectral indices), with an OA of 97.45% and 97.04%, respectively. Results of the McNemar test
revealed that the maize fields and other classes were significantly higher in all datasets. Thus, for the
RF and SVM classifications, the optimal dataset was identified as SB and SI with overall classification
accuracy = 97.45%, with kappa = 0.94, and 97.04% with kappa = 0.93 (Table 3). We present the RF and
SVM maps derived using optical data and in addition to multi-source SAR images. Figure 5 shows the
optimal RF and SVM in the study.
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Table 5. Error matrix of RF.

SI SB

Maize Water Others Total PA UA Maize Water Others Total PA UA

Maize 2239 0 149 2388 95.77 93.76 Maize 2215 0 88 2303 94.74 96.18
Water 0 114 1 115 77.55 99.13 Water 0 135 0 135 91.84 100
Others 99 33 6101 6233 97.6 97.88 Others 123 12 6156 6291 98.59 97.85
Total 2338 147 6251 8736 Total 2338 147 6244 8729

SAR SI-SB

Maize Water Others Total PA UA Maize Water Others Total PA UA

Maize 1326 5 516 847 56.76 71.79 Maize 2213 0 95 2308 94.65 95.88
Water 0 57 62 119 39.86 47.9 Water 0 135 0 135 91.84 100
Others 1010 81 5642 6733 90.71 83.8 Others 125 12 6156 6293 98.48 97.82
Total 2336 143 6220 8699 Total 2338 147 6251 8736

SI-SAR SB-SAR

Maize Water Others Total PA UA Maize Water Others Total PA UA

Maize 2222 3 183 2408 95.12 92.28 Maize 2204 2 122 2328 94.35 94.67
Water 0 99 0 99 69.23 100 Water 0 128 0 128 89.51 100
Others 114 41 6037 6192 97.06 97.5 Others 132 13 6098 6243 98.04 97.68
Total 2336 143 6220 8699 Total 2336 143 6220 8699

SI-SB-SAR

Maize Water Others Total PA UA

Maize 2209 2 124 2335 94.65 94.37
Water 0 127 0 127 88.81 100
Others 127 14 6096 6237 97.91 97.77
Total 2336 143 6220 8699
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Table 6. Error matrix of SVM.

SI SB

Maize Water Others Total PA UA Maize Water Others Total PA UA

Maize 2224 0 101 2325 95.12 95.66 Maize 2154 10 89 2253 92.13 95.61
Water 0 103 0 103 70.07 100 Water 0 126 0 126 85.71 100
Others 114 44 6150 6308 98.38 97.5 Others 184 11 6155 6350 98.57 96.93
Total 2338 147 6251 8736 Total 2338 147 6244 8729

SAR SI-SB

Maize Water Others Total PA UA Maize Water Others Total PA UA

Maize 1314 10 663 1987 56.25 66.13 Maize 2161 5 92 2258 92.43 95.7
Water 0 58 60 118 40.56 49.15 Water 0 130 0 130 88.44 100
Others 1022 75 5497 6594 88.38 83.36 Others 177 12 6159 6348 98.53 97.02
Total 2336 143 6220 8699 Total 2338 147 6251 8736

SI-SAR SB-SAR

Maize Water Others Total PA UA Maize Water Others Total PA UA

Maize 2216 2 168 2386 94.86 92.88 Maize 2217 7 132 2356 94.91 94.1
Water 0 108 0 108 75.52 100 Water 0 122 0 122 85.31 100
Others 120 33 6052 6205 97.3 97.53 Others 119 14 6088 6221 97.88 97.86
Total 2336 143 6220 8699 Total 2336 143 6220 8699

SI-SB-SAR

Maize Water Others Total PA UA

Maize 2177 5 115 2297 93.19 94.78
Water 0 123 0 123 86.01 100
Others 159 15 6105 6279 98.15 97.23
Total 2336 143 6220 8699
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4. Discussions

In this study, we demonstrated the contribution and usefulness of SI, SB, and SAR datasets and in
a combination of either one, for mapping crops with the S-1 and S-2 monitoring satellites that operate
at high spatial and temporal resolutions, at local and global scales [47]. Therefore, in this study, we
applied multi-temporal S-1 and S-2 images for the 2016 maize growing rainy season to map maize
fields with RF and SVM. The twin satellites, i.e., S-1 and S-2, spanned over the sowing stage up to the
senescence stages of maize, a period that alterations in both temporal and spectral of maize are most
pronounced. Even though single-season maize cultivation is obviously practiced in the area, there
is a high level of differences in the development and growth of maize crops due to the variation in
planting dates and varieties.

Besides the multi-temporal SAR satellite sensor data, the integration of optical S-2 (spectral band
and derived spectral indices) for detecting maize crop phenological information could facilitate suitable
techniques of mapping maize fields from other land-cover types. In this study, the performances
of various integrations of multi-temporal SAR and optical images were evaluated using RF and
SVM. The results of accuracy assessment for both the RF and SVM algorithms indicated a significant
increase in the OA when the SI and SB multi-temporal datasets were combined with the SAR datasets.
The overall classification accuracy for the maize field was higher with RF in all the datasets compared
with SVM. However, they were not statistically significant, as indicated by the McNemar test (Table 6);
similar results elsewhere had shown that RF usually outperforms SVM when applied in the different
land-cover mapping [67].

In this study, the results also demonstrated that when multi-temporal SI and SB optical datasets
were integrated with SAR datasets, a significant increase was observed in maize field classification
accuracy [39].

However, as for the RF, the SB datasets had the highest OA, and for SVM, SI had the highest OA
when compared with combined SAR for the maize class, which was in agreement with those results
obtained by Pelletier et al. [68].

5. Conclusions

The study evaluated the potentials and the integration of multi-temporal S-1 and S-2 images
acquired in the maize growing season, which could detect and map maize fields from neighboring
land-cover types. Single time series SI, SB, and SAR, with a variety of combinations of multi-temporal
datasets, were employed to map maize fields in parts of northern Nigeria with robust SVM and RF.
The classified maps derived from the RF and SVM showed a significant increase in the OA when SI
and SB datasets were introduced to the classification technique.
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Our outcomes indicated that the scheme with the optimal and highest OA of maize was the
spectral indices and spectral bands optical datasets combined with SAR time series (i.e., SI-SB-SAR)
using the RF algorithm. The approach achieved OA 96.93 and kappa 0.93. Our results further validated
the importance of the RF approach to monitor and map the spatio-temporal dynamics of crops such
as maize fields in Makarfi Nigeria. However, we found out that when the optical data is available
throughout the maize growing season, the SB is the best dataset for RF, while the SI dataset is the best
for SVM.

For future research, we might focus on mapping maize and other land cover using the S-1 time
series and climatic variables (temperature and rainfall), and its effects on crop production, since the
prevalence of cloud hindered the optical data during the 2016, 2017, and 2018 growing seasons.
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