

Supplemental Information

Ecological Suitability of Island Development Based on Ecosystem Service Values, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China

Weiheng Zheng ^{1,2}, Feng Cai ^{2,*}, Shenliang Chen ^{1,*}, Jun Zhu ², Hongshuai Qi ², Shaohua Zhao ² and Jianhui Liu ²

- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; zhengweiheng@tio.org.cn (W.Z.)
- ² Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; junzhu@tio.org.cn (J.Z.); janka9960@163.com (H.Q.); zsh55228@126.com (S.Z.); liujianhuiirc@126.com (J.L.)
- * Correspondence: slchen@sklec.ecnu.edu.cn (S.C.); fcai800@126.com (F.C.).

Received: 14 February 2020; Accepted: 21 March 2020; Published: date

The supplemental information includes 2 parts.

Part 1: the original government data which is used in the calculation of EF

Part 2: data sources, including remote sensing data download URLs, the data sources and some calculation methods of data in Part 1.

Part 1: Data

Table S1. Population and industrial output value of Fuzhou and Pingtan.

	Fuzhou		Pin	gtan
	2014	2016	2014	2016
Population	6749436	6870648	427938	437812
Industrial output value (billion CNY)	749.53	841.96	3.38	2.98

Table S2. Yield, import and convert coefficient

Itama	Yield (Pingtan) (unit: t)		Import (Fuz	thou) (unit: t)	Comment Coefficient	
Items	2014	2016	2014	2016	Convert Coefficient	
Rice	84	82	30337.729	950702.699	2.744	
Sweet potato	19265	20084			12.607	
Potato	1353	1541			12.607	
Coarse grain	99	109	4761.514	192128.419	2.744	
Wheat	0	0	5016.647	159480.736	2.744	
Soybean	117	138			1.856	
Beans	267	297			1.856	
Vegetable	62033	66448			18	

Oil crops (peanut)	8168	8277	9899.637	740141.546	1.856
Pork	13593	14557	31289.634	24071.755	0.74
Poultry	390	715	2998.615	54323.744	0.606
Dairy*	0	0	5854.19184		0.502
Beef	36	40	741.635	1034.481	0.074
Mutton	348	321	275.463	778.538	0.074
Rabbit meat	82	82			0.074
Eggs	5990	9292	6966.767	6744.685	0.48
Wood*	3960.6	3610.08	10233.965	59196.165	7.8
Fruits*	3659	3442	17909.2053	19889.79916	3.5

^{*}Calculation measures of wood and fruit import are different from others (please see data sources below), and the results are put in this table.

Table S3. Aquatic products yield (unit: t) and convert coefficient

Items		water- ured		Convert - Coefficient			Convert Coefficient		
	2014	2016	Coefficient	2014	2016	Coefficient	2014	2016	Coefficient
Fish	135	132	3.264	12504	16865	7.477	210400	133462	0.748
Shell	0	0	3.264	158786	181102	7.477	158866	70	0.748
Shrimps and crabs	55	57	3.264	480	1492	7.477	16453	14533	0.748
Alga	0	0	3.264	37090	46809	7.477	37090	46809	0.748

Table S4. Consumption of energy sources*

Items	2014 (unit: t)	2016 (unit: t)	Average Global Energy Footprint (unit: GJ/hm2)***	Convert Coefficient (unit: GJ/t)
Electricity**	608.39	794.27	1000	
Gasoline	4722.612836	7912.575024	93	43.12
Coal	101170.5398	53188.09181	55	20.93
Diesel	35406.08395	40393.46207	93	42.71
Gas	11268.63947	11594.60491	71	52.2
Kerosene	0.762180836	2.402319434	93	43.12
Biomass fuel	91.02232925	120.0869348	55	20.93
Fuel oil	97.72796946	18.44923605	71	50.2

^{*} Calculation measures please see data sources below, and the results are put in this table.

Part 2: Data Sources

1. Remote sensing data download URLs

The image of 2004:

 $http://bjdl.gscloud.cn/download?sid=uwfm2yomKVyjeNYPSo2BunEdGsgFhaXTo7x_cz9yzcDBKVobXkxvyw8EcRB6-\\$

 $mG79CYhKSWWF2m5o8W4FDqb5QOVbjlMBB9A3xct3W0eP1JOqDaeUD5MFXP_naQh5BrEmp8$

The image of 2014:

^{**} The unit of Electricity consumption is million kwh.

^{***} Wackernagel. M, Ree W E. (1996). Our ecological footprint: Reducing human impact on earth. Gabriea Island, B. C. Canada: New Society Publishers.

 $http://bjdl.gscloud.cn/download?sid=e1xOsDGt_teprxM1FKMTZeXCgNYlyaW9cLqBjctcMxk\\99xOTzAHhV7C1qdWRFWsq1USRmtytA-$

15cDpntPmm91RV1umUcyp1mUrIbmU1aJrG7NWY4n5KM89yBMTDTFafX4s

The image of 2017:

 $http://bjdl.gscloud.cn/download?sid=OF8MSmgmoifog5nk2YgaRFBBDhDgO72ipN80Ek1v-yZ9qpb41o3QYLOPALYvEPmT7eh0jroEJPCaO5Le8dJ4cnICBqnHJaagRcbGRmPjp2uLnxEbtudAQr4_1YkqW5HrR6Y$

2. Data sources and calculation methods of data in Part 1

Table S5. Data sources and calculation methods

Iten	ns	Data Sources		
Popula	ation	Pingtan Statistical Yearbook		
Por	·k	Pingtan Statistical Yearbook		
Poul	try	Pingtan Statistical Yearbook		
Вее	ef	Pingtan Statistical Yearbook		
Mutt	ton	Pingtan Statistical Yearbook		
Rabbit	meat	Pingtan Statistical Yearbook		
Dai	ry	Fujian Statistical Yearbook		
Aquatic p	roducts	Pingtan Statistical Yearbook		
Fruit in	nport	Fujian Statistical Yearbook		
7A7 - J -		Wood usage =Area×density		
Wood 1	ısage	Area comes from Pingtan Statistical Yearbook, and density is 920kg/m3.		
		Wood import =construction usage×area		
Wood in	mport	Construction usage=0.035m3/m2 (http://www.zlaqw.com/), area comes from		
		Pingtan Statistical Yearbook		
		Agricultural products and meat import = import of Fuzhou×(Pingtan		
Agricultural p	roducts and	population/Fuzhou Population)		
meat in	nport	Import of Fuzhou and Fuzhou population comes from Fuzhou Statistical		
r		Yearbook, and Pingtan population comes from Pingtan Statistical Yearbook.		
		Rate of industrial output value = industrial output value of Pingtan/ industrial		
Rate of industrial output value		output value of Fuzhou		
		Industrial output value of Pingtan comes from Pingtan Statistical Yearbook, and		
		industrial output value of Fuzhou comes from Fuzhou Statistical Yearbook		
Electricity consumption		Pingtan Statistical Yearbook		
ž į		Gasoline consumption =Car consumption+ industrial gasoline consumption		
		Car consumption=(Number of car+ Number of motorcycle) ×Annual		
		consumption		
G 11		Industrial gasoline consumption= industrial gasoline consumption of Fuzhou		
Gasoline cor	nsumption	×Rate of industrial output value		
		Industrial gasoline consumption of Fuzhou comes from Fuzhou Statistical		
		Yearbook. Number of car, number of motorcycle and annual consumption were		
		calculated from data of 2013 and 2018 via interpolation method.*		
		Diesel consumption= Farm machinery consumption + industrial diesel		
		consumption		
Diesel cons	sumption	Industrial diesel consumption= industrial diesel consumption of Fuzhou ×Rate		
		of industrial output value		
		Other energy consumption= energy consumption of Fuzhou ×Rate of industrial		
Other energy consumption		output value		
_	Cultivated	Global average yield (Shoufeng Qiu, 2009)**		
	land	Global average yield (Globaleng Qia, 2007)		
	Forest land	Global average yield (Shoufeng Qiu, 2009)**		
coefficient	grassland	Global average yield (Shoufeng Qiu, 2009)**		
Coefficient	Water area	Convert coefficient of Marine capture yield=10%× Convert coefficient of		
	and sea	mariculture yield		
	area	Convert coefficient of freshwater-cultured yield and mariculture yield comes		
		from Hongyu Xie and Huishan Ye (2008)***		

Constructi on land	Global average yield (Shoufeng Qiu, 2009)**

* Data of 2018: http://www.pingtan.gov.cn/jhtml/ct/ct_2971_80481

Data of 2013: http://www.pingtan.gov.cn/jhtml/ct/ct_2971_38275

** Shoufeng Qiu (2009). "Ecological footprint and ecological carrying capacity of Fujian Province in 2008" Development Research, (12): 80-83. (in Chinese)

***Hongyu Xie, Huishan Ye (2008) "Struggling with social-ecological mismatches in marine management and conservation at Easter Island." Journal of Guangzhou University (Natural Science Edition), 7(1):76-80. (in Chinese)

Some screenshots of vearbook:

					单位,随
项 目	2012 年	2013 年	2014年	2015 年	2016年
计	20781	20056	21185	21384	22251
安收获季节分	1477	1476	1440	1555	
春收粮食	422	480	480	504	1679
夏收粮食	18882	18100	19265	19325	406
秋收粮食 安品种分	10002	10100			20166
稻 谷	91	87	84	83	82
早稲	91	87	84	83	82
晚稻	_	2	-	-	-
大小麦	6	20	-	-	-
#小 麦	. 6	-	-	-	-
甘薯	18829	18100	19265	19414	20084
马铃薯	1450	1374	1353	1470	1541
杂粮	55	117	99	88	109
大 豆	119	122	117	117	138
杂豆	231	256	267	212	29

Figure S1 Grain yield in 2014 and 2016.

The red parts are grain yield in 2014 and 2016 (unit: t).

The numbers from top to bottom are yield of total, grain harvested in spring, grain harvested in summer, grain harvested in autumn, rice, early season rice, late rice, barley and wheat, wheat, sweet potato, potato, coarse grain, soybean, and beans.

Figure S2. Yield of crop and fruits in 2014 and 2016.

The red parts in Table 2-2-2 (10) are crop yield in 2014 and 2016 (unit: t).

The numbers from top to bottom are yield of oil crops, peanut, vegetable, amphisarca, watermelon, flowers, and narcissus.

The red parts in Table 2-2-2 (11) are yield of fruits in 2014 and 2016 (unit: t).

The numbers from top to bottom are yield of total, citrus reticulata, tangerine, citrus junos, longan, loquat, pineapple, waxberry, other, litchi, and grape.