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Abstract: The dynamic development of commodity derivatives markets has been observed since
the mid-2000s. It is related to the development of e-commerce, the inflow of financial investors’
capital, and the emergence of exchange-traded funds and passively managed index funds focused on
commodities. These advances are accompanied by changes in dependence structure in the markets.
The main purpose of this study is to assess the conditional dependence structure in various commodity
futures markets (energy, metals, grains and oilseeds, soft commodities, agricultural commodities)
in the period from the beginning of 2000 to the end of 2018. The specific purpose is to identify the
states of the market corresponding to typical patterns of the conditional dependency structure, and to
determine the time of transition from one state to another. The copula-based Multivariate Generalized
Autoregressive Conditional Heteroskedasticity models were used to describe the dynamics of
dependencies between the rates of return on prices of commodity futures, while the dynamic
Kendall’s tau correlation coefficients were applied to measure the strength of dependencies. The daily
changes in the conditional dependence structure in the markets (changes in states of the markets)
were identified with the fuzzy c-means clustering method. In 2000–2018, the conditional dependence
structure in commodity futures markets was not stable, as evidenced by the different states of markets
identified (two states in the grains and oilseeds market, the agricultural market, the soft commodities
market and the metals market, and three states in the energy market).

Keywords: commodity futures; copula; Generalized Autoregressive Conditional Heteroskedasticity
(GARCH); dynamic conditional correlation (DCC); Constant Conditional Correlation (CCC); dynamic
dependencies; Kendall’s tau coefficient; state of market; fuzzy clustering methods

1. Introduction

In the 1950s, Markowitz [1] introduced the modern portfolio theory, according to which portfolio
risk can be reduced to the level of systematic risk through diversification consisting in the inclusion
of different assets in the portfolio. Until the early 2000s, commodities, commodity derivatives and
commodity indices were major components of adequately diversified portfolios because of their
negative or weak positive correlation to traditional financial assets such as stocks and bonds [2–5].
Already in the early 1980s, Bodie and Rosansky [6], based on research findings, concluded that a 40%
share of commodity futures considerably reduces portfolio risk while increasing the expected rate
of return. Similar benefits of diversification of the investment portfolio by supplementing it with
commodities were also reported by Jaffe [7] investigating diversification of investments by adding gold;
Satyanarayan and Varangis [2] in the case of diversification by adding commodity futures comprising
the Goldman Sachs Commodity Index (GSCI); Froot [8] in the case of diversification by adding oil and
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production-weighted indices of commodity futures; and Jensen et al. [9] in the case of diversification
by adding commodity futures.

Commodity and financial markets are considerably affected by many factors, including the
development of e-commerce, the establishment of exchange-traded funds (ETFs) and passively
managed index funds focused on commodity, the inflow of capital from financial investors into
commodity markets, and financial and economic crises. The above contributed to a greater integration
of certain commodity markets and promoted convergence of commodity and financial markets [10–12]).
Putnam [13] identified the determinants influencing dependencies between the rates of return for the
S&P 500 index and for portfolios composed of commodity futures (relating to commodity sectors,
i.e., energy, foods and fibers, grains and oilseeds, livestock and precious metals) in the period
October 1992–October 2013. He concluded that the dynamic correlations between the stock index and
the portfolios composed of futures in energy, grains and oilseeds, precious metals and (to a lesser
extent) foods and fibers may be explained with increasing accuracy (especially after May 2003) using
macroeconomic indices and financial market indices. Also, as noted by Zaremba [14], after 2003 the
rates of return for commodity indices have become increasingly dependent upon the general economic
condition. The increasingly strong dependencies between markets resulted in greater difficulties in
managing investment portfolios. Hence, especially since the beginning of the financial crisis in the late
2007, both researchers and practitioners have focused on the dependence structure between commodity
futures [15]. Correlation and volatility are central to many applied issues in finance, ranging from
asset pricing, through asset allocation to risk management [16].

The body of source literature includes many studies addressing relationships between commodity
prices or rates of return on commodity prices in the spot, and futures markets and their stability
over time. The studies differ in terms of data selection parameters (spot prices, futures prices, data
frequency, period of analysis); additionally, they either considered or disregarded the temporal
volatility of these dependencies. Moreover, the analyses often focus on relationships only between
pairs of commodities. Many studies analyzed dependencies between commodities and macroeconomic
variables (exchange rate, interest rate and index price), crude oil and other commodities, rather than
investigating relationships between other commodities applying a multivariate method. An extensive
review of such research was presented by Attaf et al. [12].

For many years, the Pearson linear correlation coefficient has been the most widely used measure of
dependence between the rates of return on asset prices. However, it fails to account for temporal changes
in the correlations, which are particularly noticeable in periods of declining prices of many assets on
the markets, in which investors sell out their assets. In these periods, the Pearson linear correlation
coefficient underestimates the dependence between assets [17]. An increased dependence between
assets means that in periods of falling asset prices in markets, well-diversified portfolios become riskier.
Another downside of the Pearson linear correlation coefficient is that it provides a reliable dependence
measure only for elliptically distributed assets [18]. When non-elliptical distributions are analyzed, the
problem of non-subadditivity risk measures appears (risk of the investment portfolio measured by
Value-at-Risk (VaR) may be higher than the sum of the VaRs of individual components of the portfolio).
Moreover, the Pearson correlation coefficient only measures linear dependence between two assets. If
we have N-asset portfolio, then we have N(N − 1)/2 correlation coefficients (one for each pair of assets).
In this case, it is difficult to control all correlation coefficients.

The temporary volatile conditional correlations between the rates of return on assets may be
modeled using multivariate volatility models, such as, e.g., Multivariate Generalized Autoregressive
Conditional Heteroskedasticity (MGARCH) models [19]. Nevertheless, it needs to be remembered
that when considering portfolios consisting of more than six assets it is difficult to estimate a large
number of parameters within these models. The Dynamic Conditional Correlation (DCC) model [20]
is a parsimonious parametric model facilitating estimation of portfolios comprising a large number
of assets. A drawback of this model is connected with restrictions imposed on the multivariate joint
distribution describing the structure of conditional dependencies between rates of return on assets,
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and on marginal distributions of rates of return from these assets. The above downside does not
apply to copula Generalized Autoregressive Conditional Heteroskedasticity (copula-GARCH) models
with dynamic (DCC) estimation of the correlation [21]. Copula models enable the modeling of the
multivariate joint distribution defining the structure of the dependence between the rates of return
from assets, independently of the marginal distributions of rates of return on these assets [21]. Static
copula models are not flexible enough to describe the dynamics of relationships between the returns
on assets in the markets. In contrast, dynamic copula models make it possible to capture the moments
when the relationships change in strength and nature [22]. Jondeau and Rockinger [23] proposed the
copula-GARCH approach to model the dependency between stock market rates of return. This is
an approach based on copula functions, which includes two steps. In the first step the univariate
distributions are estimated and in the second the joining distribution is estimated. In such approach,
the dependency parameter may simply be rendered conditional and time-varying. In turn, Engle and
Kelly [24] introduced the Dynamic Equicorrelation (DECO) model, which eliminates the computational
and presentational difficulties of the dependence structure of high-dimensions systems. The DECO
model considers systems in which all pairs of rates of return on assets have the same correlation
at a given moment, but the correlation varies over time. Nevertheless, it needs to be remembered
that the DECO model may be a poor tool for describing raw rates of return on assets. This model
should be applied to the GARCH standardized residuals [24]. A different approach is represented
by the Implied Correlation Index (ICJ), which was introduced by Chicago Board Options Exchange
(CBOE) [25]. The ICJ measures the expected average correlation between rates of return on the S&P
500 index components. The Implied Correlation Index is based on options written on the 50 largest
companies in the S&P 500 index. Cambell et al. [26] proposed the Implied Correlation Index based
on volatility estimation instead of option-implied volatility. Echaust and Just [27] used GARCH
and GARCH-Filtered Historical Simulation (GARCH-FHS) approaches to estimate volatility and
VaR in the implied correlation formula. They examined the dynamics and properties of the implied
correlation estimates within various economic sectors of the commodity futures and stock markets
in the period of 2006–2017. Assets in commodity sectors were on average much less correlated than
assets in stock sectors. The implied correlation in the analyzed sectors showed clustering properties,
long memory, asymmetry, and co-movement with volatility. There are also works focusing on the
long-run relationship or causality between markets (financial markets, commodity markets, financial
and commodity markets) using linear and nonlinear cointegration and causality methods [28–32].

Due to the properties (heteroskedasticity, i.e., volatility clustering, asymmetry and fat tails) of
time series of rates of return on commodities (commodity futures, commodity indices) [12,33–41]),
copula-GARCH models provide a useful tool in analyzing the dependencies between the time series. The
GARCH family models (e.g., GARCH [42]; Taylor-Schwert GARCH (TS-GARCH) [43,44]; Exponential
GARCH (EGARCH) [45,46]; Glosten Jaganathan Runkle-GARCH (GJR-GARCH) [47]; Asymmetric
Power Autoregressive Conditional Heteroskedasticity (APARCH) [48]; Threshold Autoregressive
Conditional Heteroskedasticity (TARCH) [49]; and Fractionally Integrated GARCH (FIGARCH) [50])
capture and describe properties of univariate time series of rates of return. In turn, copulas allow the
combination of any distributions of univariate series of rates of return into a multivariate distribution.
The advantage of copula models stems from the fact that they separate the structure of dependencies
from marginal distributions [22]. The source literature includes studies which rely on dynamic copula
models to analyze temporary volatility of dependencies of commodity futures portfolios or commodity
futures and traditional financial instruments [40,51]. The application of clustering methods in grouping
the conditional correlation coefficients derived from copula-GARCH models indicates moments or
periods of changes in the structure of conditional dependencies in the market for the assets under
consideration. The approach which relies on the copula-GARCH model and disjoint clustering methods
to identify changes in the structure of conditional dependencies in the spot market for precious metals
was used by Wanat et al. [39]. They assumed that a specific conditional dependence structure pattern
may be assigned to a given state of market, while changes in the state of the market are related to
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drastic changes in the structure of conditional dependencies. However, their assumptions and the
disjoint clustering method adopted in their studies, made it possible to identify only the moments
when changes occurred in the structure of dependencies. Just et al. [52] expanded that approach by
proposing the use of the fuzzy clustering method to identify changes in the structure of conditional
dependencies in the precious metals futures market. However, the empirical study focused only on
momentous changes in the structure of conditional dependencies.

This paper is a continuation of the authors’ previous research [52]. The authors propose the
application of fuzzy clustering methods to identify changes in the structure of conditional dependencies,
market states in different commodity futures markets in the period 2000–2018, and to determine the
time of transition from one state to another. This is a long-term study as the authors intend to identify
the patterns of the conditional dependence structure and their changes in selected large and liquid
markets in different sub-periods (stability and crises).

The main aim of this paper is to assess the conditional dependence structure in different commodity
futures markets (energy, metals, grains and oilseeds, soft commodities, agricultural commodities) in the
years 2000–2018. The specific purpose is to identify the moments or periods of change in the structure
of conditional dependencies. The analyzed period is connected with the dynamic development of
commodity derivatives trading markets and it was marked by economic and financial crises. In the
years 2005–2018 the volume of exchange traded futures and options for agricultural commodities and
precious metals quadrupled; in the case of futures and options in energy and non-precious metals the
volume of trade increased 8- and 15-fold, respectively [53,54]. In the late 1990s, financial markets were
severely affected by crises coming from the emerging economies, which culminated in the Argentinean
crisis in early 2002 [22]. In subsequent years this was followed by the food crisis (2006–2007), the
global financial and economic crisis (late 2007–early 2013), including the subprime crisis (2007–2009),
and the European debt crisis (2008–early 2013). These phenomena may have had affected a change in
the structure of dependencies in the markets considered. The analysis focused on the dependencies
between rates of return on prices of commodity futures applying the copula-GARCH models and
fuzzy clustering methods.

The authors’ contribution to the literature on the subject includes, firstly, the assessment of the
conditional dependency structure in different commodity futures markets based on copula-GARCH
models and fuzzy clustering methods. This approach applies various GARCH family models and
copula models in order to determine dynamic conditional correlations (Kendall’s tau coefficients).
Secondly, by employing the fuzzy c-means method, the authors extend knowledge of the dependence
structure in markets by identifying the states of markets corresponding to specific patterns of conditional
dependency structures assuming that the markets’ transition from one state to another may vary in
intensity and may occur in different time frames. Therefore, this paper considerably supplements and
broadens previous research on the structure of dependencies between commodity futures. The obtained
results indicate that the structures of conditional dependencies in the commodity futures markets
(agricultural commodities, soft commodities, grains and oilseeds, metals, energy) were changing in
the period from 2000 to 2018. Two states were identified in the markets for agricultural commodities,
soft commodities, grains and oilseeds and metals, while three states were found in the energy market.
The strongest and relatively stable conditional dependencies existed between the rates of return on
futures for commodities which are related, either being substitutes or raw materials in the production
of other commodities. Findings from this study provide information on the structure of conditional
dependencies in commodity futures markets. This data is required to gain insight into prevailing
market mechanisms and to ensure valid risk aggregation, valuation and effective management of the
investment portfolio.

The remaining part of this paper is structured as follows: Section 2 presents the data and
methods used in the empirical study, Section 3 comprises the findings and conclusions along with their
discussion, while Section 4 sums up the study.
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2. Materials and Methods

The study used continuous series of daily closing prices for commodity futures from the period
2000–2018. Commodity futures are included in the analysis if they are covered by the Thomson Reuters
Equal Weight Commodity Index (except for live cattle and lean hogs). Five classes of commodities
(energy, metals, grains and oilseeds, soft commodities, agricultural commodities) were considered.
The dataset was retrieved from a financial stock news website, stooq.pl [55]. The total number
of observations are: 4819 for energy, 4820 for metals, 4782 for grains and oilseeds, 4768 for soft
commodities and 4783 for agricultural commodities. The components of different commodity classes
(markets) include as follows: energy – crude oil (CL.F), heating gas (HG.F), natural gas (NG.F); metals –
gold (GC.F), silver (SI.F), platinum (PL.F), copper (HG.F); grains and oilseeds – corn (ZC.F), wheat
(ZW.F) and soybeans (ZS.F); soft commodities – cotton (CT.F), sugar (SB.F), cocoa (CC.F) and coffee
(KC.F); agricultural commodities – corn (ZC.F), wheat (ZW.F), soybeans (ZS.F), soybean oil (ZL.F),
cotton (CT.F), sugar (SB.F), cocoa (CC.F) and coffee (KC.F).

The calculations were based on daily percentage log-returns. The rates of return were calculated
as rt = 100 log(Pt/Pt−1), with Pt denoting the closing price for contract at day t. The distributions
of rates of return on futures under consideration were leptokurtic and demonstrated very weak or
moderate (negative or positive) asymmetry.

The relationships between the rates of return on quoted prices of commodity futures were assessed
using the copula-GARCH models estimated in two stages. In the first stage the ARMA-GARCH
models were adapted to one-dimensional series of returns, while in the second stage two-dimensional
conditional copula models were fitted.

A copula is a function that allows the component describing only the dependence structure to
be extracted from a joint distribution of a random vector. The application of the conditional copula
enables modeling of joint distributions of an N-dimensional vector (rt = r1,t, . . . , rN,t), (t = 1, . . . , T),
conditional on a set of information It−1 available until and including t − 1. The general conditional
copula model has the following form [21]:

r1,t
∣∣∣ It−1 ∼ F1,t (·|It−1 ), . . . , rN,t

∣∣∣ It−1 ∼ FN,t (·|It−1 ) (1)

rt| It−1 ∼ Ft (·|It−1 ) (2)

Ft(rt|It−1 ) = Ct(F1,t(r1,t|It−1 ), . . . , FN,t(rN,t|It−1 )|It−1 ) (3)

where: Ct is the copula; Ft is joint distribution rt at moment t; and Fi,t are the marginal distributions ri,t
at moment t.

This study assumes that the rates of return ri,t (i = 1, . . . , N, t = 1, . . . , T) on prices of commodity
futures are described with the Autoregressive Moving Average (ARMA) - Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) models. The following designations were used for the rates
of return modeled [42,56]:

ri,t = µi,t + ei,t (4)

µi,t = E(ri,t|It−1 ) (5)

ei,t =
√

hi,tεi,t, hi,t = Var(ri,t|It−1 ) , εi,t ∼ i.i.d.(0, 1) (6)

In view of autocorrelation in some series of rates of return on commodity futures, respective
ARMA(Pi, Qi) models were used to model the conditional mean of returns:

µi,t = µ0i +

Pi∑
j=1

φi jri,t− j +

Qi∑
j=1

ϑi jei,t− j (7)
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Because a strong ARCH (Autoregressive Conditional Heteroskedasticity) effect was observed
even with a one-day lag for the series of returns on commodity futures, a GARCH (1,1) model [42]
with various distributions of innovations was used in order to model the conditional volatility of rates
of return:

hi,t = ωi + αie2
i,t−1 + βihi,t−1 (8)

where: ωi,αi, βi > 0, αi + βi < 1. This model takes into account the volatility clustering phenomenon.
Although simple, the GARCH (1,1) model delivers relatively good estimates of conditional volatility
compared to more complex models. However, for some series of rates of return the models that
take account of the leverage effect (i.e., a property such that negative shocks at t − 1 has a stronger
impact on the volatility of the return at t than a positive) are better fitted than the GARCH (1,1)
model [57]. The EGARCH (1,1) [45], GJR-GARCH (1,1) [47], APARCH (1,1) [48] models with various
distributions of innovations were also estimated in order to capture the asymmetric impact of positive
and negative returns on conditional volatility. The EGARCH (1,1) model of Nelson takes into account
the asymmetry effect:

log hi,t = ωi + αiεi,t−1 + γi
(∣∣∣εi,t−1

∣∣∣− E
(∣∣∣εi,t−1

∣∣∣))+ βi log hi,t−1 (9)

where: αi captures the sign effect and γi—the size effect. The GJR-GARCH (1,1) model of Glosten
Jaganathan and Runkle is another model which also allows the measuring of the asymmetry effect:

hi,t = ωi + αie2
i,t−1 + γiI(ei,t−1)e2

i,t−1 + βihi,t−1 (10)

where: γi now represents the leverage term, I takes value 1 for ei,t−1 < 0 and 0 otherwise. The APARCH
(1,1) model of Ding, Granger and Engle models both the leverage effect and the Taylor effect (i.e., the
sample autocorrelation of absolute returns is usually larger than that of squared returns):(√

hi,t

)δi
= ωi + αi

(∣∣∣ei,t−1
∣∣∣− γiei,t−1

)δi
+ βi

(√
hi,t−1

)δi
(11)

where: δi (δi > 0) plays the role of a Box-Cox transformation of the conditional standard deviation(√
hi,t

)
and γi (−1 < γi < 1) reflects leverage effect. The choice of the best ARMA-GARCH model from

the group of models considered was based on information criteria and properties of the residuals.
This study assumes that Fi,t is the distribution of standardized residuals ε̃i,t from the model

fitted to ri,t. The copula-GARCH model assumes that the joint conditional distribution of the
N-dimensional vector ut = (F1,t(ε̃1,t), . . . , FN,t(ε̃N,t)) is modeled using a conditional copula with
conditional correlations Rt. The copula correlation matrix is obtained from the DCC model [20]:

Ht = DtRtDt (12)

Dt = diag
(√

h1,t, . . . ,
√

hN,t

)
(13)

Rt = (diag(Qt))
−1/2Qt(diag(Qt))

−1/2,

Qt =

(
1−

K∑
k=1

ak −
L∑

l=1
bl

)
Q +

K∑
k=1

akũt−kũ,
t−k +

L∑
l=1

blQt−1
(14)

where: conditional variance hi,t is modeled using a GARCH model; Q is the unconditional covariance
matrix of ũt, where ũi,t = t−1

ν (ui,t) for Student’s t copula (ũi,t = Φ−1(ui,t) for Gaussian copula); ak, bl are

parameters such that ak ≥ 0, bl ≥ 0,
K∑

k=1
ak +

L∑
l=1

bl < 1. If ak and bl are equal to zero, the DCC model is

reduced to the Constant Conditional Correlation (CCC) model [58]. In this study two-dimensional
copula-ARMA-GARCH models were estimated using the maximum likelihood method, while the
semi-parametric transformation method was applied for marginal innovations of the ARMA-GARCH
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fitted models. This study considered models with a Gaussian copula or a Student’s t copula. The best
copula model was selected based on information criteria. The calculations were performed in the R
programming environment with the rmgarch [59] and rugarch [60] packages.

The best-known dependence measures, which are invariants of the copula, include Kendall’s tau
coefficient and Spearman’s rho coefficient. In this study Kendall’s tau coefficient was used to assess
the strength of the relationship between returns on prices of commodity futures. If (R1, R2) is a vector
of a pair of random variables and

(
R̃1, R̃2

)
is an independent copy of (R1, R2), Kendall’s tau coefficient

is expressed as follows [22]:

τ(R1, R2) = P
((

R1 − R̃1
)(

R2 − R̃2
)
> 0

)
− P

((
R1 − R̃1

)(
R2 − R̃2

)
< 0

)
(15)

If variables R1 and R2 are correlated with an elliptical copula (e.g., a Gaussian or a Student’s t
copula) and the correlation coefficient is ρ, then Kendall’s tau coefficient is expressed as follows:

τ(R1, R2) =
2
π

arcsinρ (16)

Changes in the conditional dependence structure in the commodity futures markets were identified
using the fuzzy c-means clustering method.

In a general sense, clustering is a process of making groups of similar objects [61]. The purpose of
clustering is to separate object clusters (groups) which are relatively homogeneous in terms of their
characteristic properties. Each cluster includes objects similar to one another in terms of the criterion
considered, while they differ from objects in other clusters. The disjoint clustering methods are the
most widely used. They typically make it possible to assign properties of only one structure type to an
object. Such a definite identification does not reflect true structure, because in practice most objects
have properties of many types. The application of classical clustering methods is burdened with some
restrictions, which often result in an oversimplification of the actual course of investigated phenomena.
It is often very difficult to discover the actual structure of clusters due to data imperfections, such as
uncertainty, incompleteness, etc. Since ancient times the terms “uncertainty” and “incompleteness”
have had pejorative connotations and have been considered to reflect a lack of knowledge. This changed
greatly following the publication of a paper titled “Fuzzy Sets” by Zadeh [62] in the journal ‘Information
and Control’, also presenting the foundations of a new infinite-valued logic which uses values from
the [0, 1] interval. That theory emerged because of the need to describe highly complex phenomena or
poorly defined terms, which could not be precisely described with classical mathematical methods.

For these reasons it is more appropriate to define the degree to which particular objects belong to
each of the states identified. Such a clustering method is made possible by the application of clustering
methods based on fuzzy sets. In the fuzzy approach an object may belong to more than one cluster.
Intuitively, a fuzzy cluster consists of objects which belong to it fully or partially. Transition from
membership to non-membership is a gradual process, in contrast to a traditional clustering procedure
where an object either is or is not a cluster member.

Clustering is a complex process which includes the following stages:
Stage 1. Defining the main clustering criterion.
Stage 2. Selecting objects.
Stage 3. Selecting variables and normalizing their values.
Stage 4. Setting a system of weights for the variables.
Stage 5. Selecting a measure of proximity (similarity, distance).
Stage 6. Selecting a clustering method.
Stage 7. Determining the number of clusters.
Stage 8. Performing the appropriate clustering procedure.
Stage 9. Identifying and describing structure types (states).
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Prior to the clustering procedure the main clustering criterion (e.g., the states of the markets
corresponding to typical patterns of the conditional dependency structure) (Stage 1) and the objects
(e.g., moments in time) to be clustered (Stage 2) need to be defined. The correct selection of variables
is a key stage in the clustering procedure (Stage 3). This is done based on substantive and statistical
analyses. Once determined, the values of K variables for T moments are set together into a (T ×K)
data matrix:

T =


τ11 τ12 . . . τ1K
τ21 τ22 . . . τ2K

. . . . . . . . . . . .
τT1 τT2 . . . τTK

 =

τ1

τ2

. . .
τT

 (17)

where: τtk (t = 1, 2, . . . , T, k = 1, 2, . . . , K) is the value of variable k at time t, and τt is a row vector
composed of values of K variables at time t.

The variables describing the objects in the study may be expressed in different units. Furthermore,
they also differ in the ranges of variation between their maximum and minimum values. To eliminate
differences between the values of variables they need to be normalized, e.g., through standardization.
If all variables are expressed in the same units, their values do not need to be normalized. This is the
case in this study.

Sometimes the variables differ in how valid they are for the clustering process. Their validity may
be determined using respective weight coefficients (Stage 4). Weights may be established using three
methods: statistical, substantive and integrated. There is no universally accepted approach concerning
the weight coefficient system for the variables. As a result, empirical studies frequently use identical
weights for all variables and such a system was also adopted in this paper.

The clustering procedure is based on distances between pairs of multi-variable objects τt and
τs [63–65] (Stage 5). The Minkowski distance is one of the most widely used metrics of distance [63]:

dts =

 K∑
k=1

|τtk − τsk|
p


1/p

(t, s = 1, . . . , T) (18)

if p = 1, it is referred to as the Manhattan distance; at p = 2, it becomes the Euclidean distance; at
p→∞ , it is the Chebyshev distance. The Minkowski distance is a general distance formula and is
used to calculate the similarity of objects described by K variables. The application of the Manhattan
distance results in a cubic clustering; in turn, the Euclidean distance is used for spherical clustering. In
cubic clustering the clusters take the form of hypercubes, and in spherical clustering, hyperspheres [63].
Another type of distance used for clustering purposes is the Mahalanobis distance, adopted in the
case of spherical clustering when objects are assessed for similarity in terms of linear relationships
between variables [63]. It should be noted that no universal method exists. Moreover, all methods are
subject to restrictions related to their “legibility”, which deteriorates with an increase in the number of
objects. In this paper, the study was conducted applying the algorithm, which requires determining
the number of clusters and preliminarily clustering of the data set. In the next steps of the clustering
process, the objects are moved from their clusters to others so that within a given cluster they differ as
little as possible from certain cluster variables (prototypes). The iterative process is repeated until the
clustering attains a certain predefined stability level [65,66]. The most popular methods used for that
purpose include the k-means method and its fuzzy version, the fuzzy c-means method (Stage 6).

The application of fuzzy clustering methods often requires predetermination of the initial clustering
of objects. The simplest way of doing so is to randomly assign the objects to clusters. However, the
outcomes of the clustering procedure are not always satisfactory. In the statistical literature, most
authors are in favor of evaluating clustering using the outcomes of another clustering method [65,67–71].

Clustering of objects requires determination of the number of clusters (Stage 7). This can be
done in various ways [72,73]. In this paper, the number of clusters was specified in two steps. In
the first step disjoint clusters were generated using the k-means method and they were evaluated
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using clustering quality indices. The most commonly used are indices or functions enabling the
selection of the best partition of a population into clusters, i.e., the Caliński-Harabasz index [74], the
concordance index [75], the Hubert-Levin index [76], the Krzanowski-Lai index [77], the Hartigan
index [61], the silhouette index [78], and the gap index [79]. It was decided in this study to apply the
Caliński-Harabasz index [74] and the Krzanowski-Lai index [77].

The Caliński-Harabasz clustering quality index can be written as:

CH(G) =
trB(G)/(G− 1)
trW(G)/(T −G)

, CH(G) ∈ R+ (19)

where: trB(G)—trace of the matrix of inter-class variance B(G); trW(G)—trace of the matrix of
intra-class variance W(G); T—number of objects; G—number of clusters. When CH(G) reaches the
(global or local) maximum for the number of clusters G∗, the best partition of the data is the partition
into G∗ clusters.

The Krzanowski-Lai clustering quality index is defined as:

KL(G) =

∣∣∣∣∣∣ DIFF(G)

DIFF(G + 1)

∣∣∣∣∣∣, KL(G) ∈ R (20)

where DIFF(G) = (G− 1)2/KtrW(G− 1) −G2/KtrW(G). When KL(G) reaches the first local maximum
for the number of clusters G∗, the best partition of the population is the partition into G∗ clusters.

In the second step of clustering, the number of clusters was identical to that determined using the
disjoint clustering procedure for the same data matrix and the clustering was performed applying the
fuzzy c-means method [80–83] (Stage 8).

The fuzzy clustering problem was presented as a nonlinear mathematical programming
problem [80,82,83]:

min Jm(U, C, T) =
T∑

t=1

G∑
g=1

um
tg

K∑
k=1

(τtk − cgk)
2 (21)

with the following conditions:
G∑

g=1

utg = 1 (t = 1, . . . , T) (22)

T∑
t=1

utg > 0 (g = 1, . . . , G) (23)

utg ≥ 0 (t = 1, . . . , T; g = 1, . . . , G) (24)

where: T—number of moments in time (days); G (1 < G < T)—number of fuzzy clusters; K—number
of variables; m—parameter used to adjust the degree of fuzziness for the clustering process; U =

[
utg

]
− a (T ×G) matrix of membership degrees of the objects in fuzzy clusters; C =

[
cgk

]
− a (G×K) matrix

of cluster centroids; T = [τtk] − a (T ×K) data matrix, with τtk representing the normalized value of
variable k in object t.

The mathematical programming problem shown above (21)–(24) was presented for the first time
by Dunn [84] with m = 2, and its generalized form was provided by Bezdek [80], for m > 1. That
parameter can be referred to as a parameter of fuzziness, because if m→∞ , the resulting clusters are
completely fuzzy (utg = 1/G), whereas if m→ 1+ , the clustering process becomes quasi-deterministic
and utg values are close to 0 and 1. To date no theoretical foundations have been presented for the
selection of an optimal value of parameter m. This parameter is selected based on empirical research,
which indicates that the interval should assume values from the [1.3, 1.4] interval [64,85].
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As a result of the fuzzy clustering process, each object is assigned to each cluster with a certain
degree of membership, being a number from the [0, 1] interval, while for each object the sum of
all degrees of membership is 1. The degree of membership specifies the degree to which an object
belongs to a specific cluster. The higher the degree of membership, the more specifically the object is
characterized by variables of that cluster. The solution to the fuzzy clustering problem takes the form
of a table composed of the degrees of membership to individual clusters. The resulting partition may
easily be converted into disjoint clusters applying the principle, according to which a given object is
assigned to the cluster for which its degree of membership is the highest. The clustering methods based
on fuzzy sets provide a much greater amount of information on clustering of objects than classical
methods, which only allow the unambiguous assignment each element to one of clusters.

The next stage of the procedure consists in the identification of the types (the states of
markets) (Stage 9). This identification may be divided into formal and substantive, of which formal
identification specifies the name of the state, whereas substantive identification determines values of
descriptive statistics.

An assumption was made that the typical conditional dependence structure pattern may be
assigned to a given state of the market and that considerable changes in the conditional dependence
structure correspond to the time of transition from one state of the market to another. Kendall’s tau
coefficients Ki (i = 1, 2, 3, 4, 5) (K1 = 3 for energy, K2 = 6 for metals, K3 = 3 for grains and oilseeds;
K4 = 6 for soft commodities; K5 = 28 for agricultural commodities) for the pairs of rates of return on
prices of commodity futures considered at Ti moments in time (T1 = 4818 for energy, T2 = 4819 for
metals, T3 = 4781 for grains and oilseeds, T4 = 4767 for soft commodities, T5 = 4782 for agricultural
commodities) were arranged into a Ti × Ki data matrix (the variable is Kendall’s tau coefficient; the
object is the point in time (day)). For the number of clusters ranging from 2 to 10 the sequences of
disjoint clusters were generated using the k-means algorithm. The calculations were performed in the
R programming environment using the clusterSim package [86]. The partitions were evaluated with
the Caliński-Harabasz clustering quality index and the Krzanowski-Lai clustering quality index. The
initial clustering result obtained using the k-means method provided a starting point for the fuzzy
clustering procedure based on the fuzzy c-means method. The calculations were performed in the R
environment using the fclust package [87].

3. Results and Discussion

The types of ARMA-GARCH models suitable for one-dimensional time series of returns on
commodity futures prices are shown in Table 1.

Table 1. Types of fitted ARMA-GARCH models for the analyzed rates of return.

Market Futures Model Distribution of
Innovations

energy HO.F GARCH(1,1) Student’s t
energy NG.F ARMA(0,1)-GARCH(1,1) skewed Student’s t
energy CL.F ARMA(0,1)-EGARCH(1,1) skewed Student’s t
metals GC.F GARCH(1,1) skewed Student’s t
metals SI.F APARCH(1,1) skewed Student’s t
metals PL.F ARMA(1,2)-GARCH(1,1) skewed Student’s t
metals HG.F ARMA(1,0)-EGARCH(1,1) skewed Student’s t

agricultural; grains and oilseeds ZC.F GARCH(1,1) skewed Student’s t
agricultural; grains and oilseeds ZW.F APARCH(1,1) skewed Student’s t
agricultural; grains and oilseeds ZS.F APARCH(1,1) skewed Student’s t

agricultural ZL.F GARCH(1,1) skewed Student’s t
agricultural; soft commodities CT.F GARCH(1,1) Student’s t
agricultural; soft commodities SB.F GARCH(1,1) skewed Student’s t
agricultural; soft commodities CC.F GARCH(1,1) skewed Student’s t
agricultural; soft commodities KC.F EGARCH(1,1) skewed Student’s t
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The series of rates of return covered by this study extend over a long period marked by crises and
perturbations in the markets analyzed. Hence, the fitted conditional variance models are GARCH (1,1)
or asymmetric GARCH (1,1) with a skewed Student’s t distribution (except for heating oil and cotton
futures). In accordance with the procedure described in item 2, first the conditional variance models
were fitted, then this step was followed by fitting the two-dimensional conditional copula models
(Table 2). In most cases, these were the conditional Student’s t copula models with the DCC dynamics
or conditional Gaussian copula models with the DCC dynamics.

Table 2. Types of fitted copula models for the pairs of analyzed rates of return.

Model Conditional Student t Copula
Model with DCC(1,1)

Conditional Gaussian
Copula Model with

DCC(1,1)

Conditional Constant
Student t Copula

Model with CCC(1,1)

Futures–Futures

HO.F–CL.F; GC.F–PL.F; GC.F–SI.F;
GC.F–HG.F; SI.F–HG.F; SI.F–PL.F;

PL.F–HG.F; ZC.F–ZW.F; ZC.F–ZS.F;
ZW.F–ZS.F; CC.F–KC.F; SB.F–KC.F;
ZC.F–CT.F; ZC.F–ZL.F; ZW.F–ZL.F;
ZW.F–CT.F; ZW.F–CC.F; ZS.F–CT.F;
ZS.F–KC.F; ZS.F–ZL.F; ZL.F–CT.F

HO.F–NG.F; NG.F–CL.F;
CT.F–CC.F; CT.F–KC.F;
CT.F–SB.F; SB.F–CC.F;

ZC.F–CC.F; ZC.F–KC.F;
ZC.F–SB.F; ZW.F–SB.F;
ZW.F–KC.F; ZS.F–SB.F;
ZL.F–CC.F; ZL.F–SB.F;

ZL.F–KC.F

ZS.F–CC.F

The dynamic Kendall’s tau coefficients were used to assess the strength of conditional dependencies
between the returns on prices of commodity futures in the markets for energy, metals, grains and
oilseeds, soft commodities and agricultural commodities. The resulting Kendall’s tau coefficients
(Figures 1–5) were clustered using the fuzzy c-means method (Figures 6–10).

The structure of conditional dependencies in commodity futures markets varied between 2000 and
2018, as confirmed by the different states of markets identified (Figures 6–10, Tables 3–7). In the period
from late 2007 to early 2013 marked by the global economic and financial crisis (the 2007–2009 subprime
crisis, the 2008–early 2013 European debt crisis), changes in the structure of these dependencies were
particularly noticeable in the markets for commodity futures, in which rates of return on quoted prices
were generally weakly correlated (soft commodities; agricultural commodities other than grains and
oilseeds). As regards futures contracts for agricultural commodities, the strongest dependence between
the rates of return was recorded for soybeans and soybean oil futures (Figure 1, Table 3). Soybeans are
used in the production of many foods because of their high protein content, with approximately 2/3 of
produced soybeans being processed into soybean oil and soybean meal. In turn, soybean oil is used to
produce cooking oils, margarine, mayonnaise and salad dressings, in the chemical industry and in
biodiesel production [88]. An increase in dependencies between soybeans and soybean oil futures
contracts was observed in 2004, with stronger relationships recorded over the next nine years. One of
the reasons for the increased dependencies may have been connected with the development of the
biofuel market. The requirement to add ethanol to fuels was introduced in 2001 by the European
Union and in 2005 by the U.S. Congress [89]. Two states of market were identified in the agricultural
commodity futures market (Figure 6, Table 3). The correlation between the rates of return on futures
prices in the agricultural commodity market became stronger in early 2008 and remained at a similar
level until mid-October, 2012. In approximately the same period stronger dependencies were also
recorded in the futures market for soft commodities, where two states of the market were also identified
(Figure 7, Table 4).
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Figure 1. (a) Estimates of dynamic Kendall’s tau coefficients for dependencies between rates of return
from futures for agricultural commodities. (b) Estimates of dynamic Kendall’s tau coefficients for
dependencies between rates of return from futures for agricultural commodities.
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Figure 2. Estimates of the dynamic Kendall’s tau coefficients for dependencies between rates of return
from futures for soft commodities.
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Figure 3. Estimates of the dynamic Kendall’s tau coefficients for dependencies between rates of return
from futures for grains and oilseeds.
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Figure 4. Estimates of the dynamic Kendall’s tau coefficients for dependencies between rates of return
from futures for metals.
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Figure 5. Estimates of the dynamic Kendall’s tau coefficients for dependencies between rates of return
from futures for energy.
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Figure 7. Temporal evolution of the state of the futures market for soft commodities.
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Table 3. Weighted means* of dynamic Kendall’s tau coefficients for the agricultural futures market.

Specification ZC.F–ZW.F ZC.F–ZS.F ZC.F–ZL.F ZC.F–CT.F ZC.F–SB.F ZC.F–CC.F ZC.F–KC.F

State 1 0.47 0.39 0.34 0.19 0.18 0.11 0.18
State 2 0.40 0.36 0.27 0.10 0.07 0.03 0.06

Specification ZW.F–ZS.F ZW.F–ZL.F ZW.F–CT.F ZW.F–SB.F ZW.F–CC.F ZW.F–KC.F ZS.F–ZL.F

State 1 0.35 0.32 0.17 0.16 0.11 0.18 0.58
State 2 0.26 0.19 0.09 0.08 0.03 0.07 0.43

Specification ZS.F–CT.F ZS.F–SB.F ZS.F–CC.F ZS.F–KC.F ZL.F–CT.F ZL.F–SB.F ZL.F–CC.F

State 1 0.21 0.16 0.06 0.19 0.23 0.18 0.15
State 2 0.11 0.07 0.06 0.07 0.11 0.06 0.05

Specification ZL.F–KC.F CT.F–SB.F CT.F–CC.F CT.F–KC.F SB.F–CC.F SB.F–KC.F CC.F–KC.F

State 1 0.20 0.15 0.12 0.16 0.13 0.20 0.18
State 2 0.07 0.07 0.05 0.07 0.06 0.12 0.10

* Weighted means is calculated based on degrees of membership and values of variables.

Table 4. Weighted means* of dynamic Kendall’s tau coefficients for the soft commodities futures market.

Specification CT.F–SB.F CT.F–CC.F CT.F–KC.F SB.F–CC.F SB.F–KC.F CC.F–KC.F

State 1 0.12 0.10 0.14 0.11 0.18 0.16
State 2 0.08 0.05 0.07 0.07 0.13 0.10

* Weighted means is calculated based on degrees of membership and values of variables.
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Table 5. Weighted means* of dynamic Kendall’s tau coefficients for the grains and oilseeds
futures market.

Specification ZC.F–ZW.F ZC.F–ZS.F ZW.F–ZS.F

State 1 0.38 0.36 0.27
State 2 0.43 0.37 0.28

* Weighted means is calculated based on degrees of membership and values of variables.

Table 6. Weighted means * of dynamic Kendall’s tau coefficients for the metals futures market.

Specification GC.F–SI.F GC.F–PL.F GC.F–HG.F SI.F–PL.F SI.F–HG.F PL.F–HG.F

State 1 0.59 0.44 0.23 0.44 0.30 0.26
State 2 0.51 0.29 0.11 0.28 0.17 0.13

* Weighted means is calculated based on degrees of membership and values of variables.

Table 7. Weighted means * of dynamic Kendall’s tau coefficients for the energy futures market.

Specification HO.F–NG.F HO.F–CL.F NG.F–CL.F

State 1 0.30 0.68 0.28
State 2 0.12 0.67 0.11
State 3 0.14 0.47 0.12

* Weighted means is calculated based on degrees of membership and values of variables.

The changes described were not observed in the structure of conditional dependencies between
the rates of return on prices of grains and oilseeds futures. In this market two patterns of conditional
dependency structure were identified (Figure 8, Table 5). The dependencies between the rates of
return on prices of grains and oilseeds futures were moderate or weak. Longer periods of stronger
dependencies were recorded from October 2006 to the end of January 2008 and from the end of
September 2009 to the end of 2018. In contrast, 2009 saw a decline in the correlation between the
rates of return on the analyzed futures (Figure 3), as their prices peaked at record levels at different
times, after which they dropped dramatically. The stronger correlations between the rates of return on
wheat, corn and soybeans futures in October 2006 were caused by a considerable increase in prices
of these futures. During the boom in the market for raw materials, wheat futures prices quadrupled,
while corn and soybeans futures prices approximately tripled. The source literature usually lists
the following determinants for price growth in the grains and oilseeds market: the development of
the biofuel market and the related increase in the correlation between cereals and oilseeds prices
and crude oil prices; increased demand caused by economic growth in Asian countries, particularly
China; trade liberalization; low stocks of raw materials; underinvestment in agriculture; increase in
fertilizer prices; adverse weather conditions; a loose monetary policy (particularly in the US before
2007), which stimulated physical and speculative demand for raw materials; and speculation in the
financial markets [5,89–94]. The strengthening of dependencies in the futures market for grains and
oilseeds is related to an increase in trade volumes in that market. This increase was related to the
transition of the Chicago Board of Trade (CBOT) from the open outcry trading system to a new, more
efficient online transaction-matching system, as well as the introduction of ETFs and the inflow of
capital from financial investors [10]. Opening the market to a broader group of investors resulted in a
considerable increase in the number of transactions executed using the online transaction-matching
system in the years 2006–2008. According to Irwin and Sanders [10], the enlargement of the group
of market players contributed to a decrease in the risk premium and thus reduced hedging costs for
raw material producers and processors. In turn, this could also have led to reduced price volatility in
commodity markets and the growing integration between commodity and financial markets.

The economic and financial crises (late 2007–early 2013) had no marked impact on the dependency
structure in the metal futures market. Two states of the market were identified in the metal futures



Sustainability 2020, 12, 2571 17 of 22

market (Figure 9, Table 6). The structure of conditional dependencies between the rates of return on
prices of metal futures changed in 1Q 2004. Afterwards the rates of return on metal futures were
correlated more strongly (Kendall’s tau coefficients increased from approx. 0.1–0.3 to 0.4–0.6), which
was particularly evident in the rates of return on the following pairs of futures: platinum–gold and
platinum–silver. A relatively strong and stable relationship existed throughout the study period between
the rates of return on gold and silver futures (Figure 4, Table 6). The above conclusions are consistent
with the findings reported by Sensoy [95], who when analyzing the dynamic conditional correlations
in the market of precious metals (gold, silver, platinum and palladium) in the years 1999–2013 found
a strong correlation between precious metals in the past decade. This makes diversification less
beneficial and indicates a convergence towards one class of assets. When investigating the conditional
dependence structure between precious metal rates of return, Wanat et al. [39] also recorded a change
on April 29, 2004. Since this study applied the fuzzy c-means method, when analyzing the degrees of
membership of moments (days) to the identified states of the market it may be clearly seen that the
period of transition from one state of the market to another in the metal futures market was longer and
lasted two years (2004–2005). In those years the correlation between the rates of return on metal futures
was increasing. Additionally, it was also a period marked by a considerable rise in metal futures
prices. These findings do not corroborate the general observation that in the financial markets the
dependencies between assets tend to become stronger in periods of declining prices [96]. Conversely,
our results are consistent with those reported by Attaf et al. [12], who when studying the period
1960–April 2014 found stronger relationships between most analyzed spot markets for non-energy
commodities (metals and minerals, fats and oils, grains, other foods, beverages, agricultural raw
materials) during periods of price increases in those markets.

Three patterns of conditional dependency structures were identified in the energy futures market
(Figure 10, Table 7). The structure of conditional dependencies underwent a major change in early 2Q
2002 and next in April 2003. Between then and mid-2006 the correlation between the rates of return
on energy futures prices was greater than in the other periods. During most of the above-mentioned
period contract prices followed an upward trend. This was caused by a sharp rise in crude oil prices,
which began in March 2003 following the invasion of Iraq. Global economic growth is believed to be
the main cause for the increase in crude oil prices in the years 2003–2008 [97]. During the suprime
crisis (February 2008–January 2009) also, the energy futures market was in the state characterized by
the highest level of correlation. A strong and relatively stable relationship existed between the rates of
return on crude oil and heating oil futures (Figure 5, Table 7). That relationship was caused by links
between these basic commodities (heating oil is produced by the distillation of crude oil).

Based on these findings it may be concluded that very weak correlations existed between the rates
of return on prices of most futures in the markets for agricultural commodities and soft commodities.
Conversely, moderate or strong and relatively stable relationships were found between rates of return
on futures on fundamentally interrelated commodities (i.e., commodities which are substitutes or raw
materials used to produce other commodities) (Figures 1–5, Tables 3–7).

4. Conclusions

The use of copula-GARCH models and fuzzy clustering methods in assessing the structure
of dependencies in five selected markets for commodity futures (agricultural commodities, soft
commodities, grains and oilseeds, metals, energy) in the years 2000–2018 allowed the formulation of
the following conclusions. In all commodity futures markets the structure of conditional dependencies
changed over the study period. Two states of the market (corresponding to typical patterns of conditional
dependency structures) were identified in the markets for agricultural commodities, soft commodities,
grains and oilseeds and metals, while three states of market were identified in the energy market.
The strongest (and relatively stable) conditional dependencies existed between the rates of return on
futures contracts on commodities which are linked with a substitution relationship or are raw materials
used to manufacture other commodities (i.e., crude oil—heating oil; gold—silver, soybeans—soybean
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oil). In turn, during the economic and financial crises (late 2007–early 2013), a marked change in
the structure of conditional dependencies was particularly evident in the futures markets for soft
commodities, agricultural commodities and energy. However, it needs to be remembered that following
an increase in late 2007–early 2008, the correlation between the rates of return on prices of most futures
traded in the markets for soft commodities and agricultural commodities continued to be weak. This
means that portfolios composed of futures listed in these two markets were well diversified and the
turbulence affecting those markets did not lead to any significant risk increase for those portfolios. The
dependencies were stronger in the futures markets for grains and oilseeds, as well as metals and energy.
In the grains and oilseeds futures market stronger correlations were found in the two sub-periods:
from October 2006 until the end of January 2008 and from the end of September 2009 until the end
of 2018. A major shift in the conditional dependence structure in the metal futures market (towards
a greater correlation between the rates of return) took place in 1Q 2004. In turn, the energy futures
market experienced a longer period of stronger dependencies, which included two sub-periods: from
the beginning of 2Q 2002 until the end of 1H 2006, and from February 2008 until mid-January 2009.

The analysis of the structure of conditional dependencies in the markets for commodity
futures provides insight into the stability of conditional dependencies in commodity markets. The
findings from this study may be useful to investors and portfolio managers in the risk management
process. This information also may provide some implications for policy makers and participants in
commodity markets.

A limitation in this study was connected with a lack of a synthetic measure, which would determine
dependencies between all market contracts at individual moments (days) or periods corresponding
to specific states of the market. The analysis presented in this paper shows that the correlations
between commodity futures vary significantly. This phenomenon may result in numerous problems
when constructing well diversified portfolios. Using a single aggregated value of correlation for
all pairs of contracts instead of their actual values the investors could build more stable portfolios.
Elton and Gruber [98] and Ledoit and Wolf [99] demonstrated that using a “mean” correlation helps
in selecting a portfolio which is less volatile than those based on pair-wise correlations. Therefore,
the next step of this research will consist in constructing a synthetic measure, which using a single
number would determine the relationships between all assets in the market at individual moments
or states of the market. Further research will focus on analyzing the effect of the diversification of
investment portfolios with the use of a dynamic synthetic measure. Another direction for future studies
will concern the analysis of dependencies between extreme values recorded in commodity futures
markets. The analysis of extreme dependencies is of particular importance to investors and managers
of portfolios composed of commodities or commodity futures, since prices of many commodities rise
as a consequence of shocks generated by catastrophic events (e.g. drought, war).
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