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Abstract: Precise estimation of passenger spatial-temporal trajectory is the basis for urban rail transit
(URT) passenger flow assignment and ticket fare clearing. Inspired by the correlation between
passenger tap-in/out time and train schedules, we present a method to estimate URT passenger
spatial-temporal trajectory. First, we classify passengers into four types according to the number
of their routes and transfers. Subsequently, based on the characteristic that passengers tap-out in
batches at each station, the K-means algorithm is used to assign passengers to trains. Then, we acquire
passenger access, egress, and transfer time distribution, which are used to give a probability estimation
of passenger trajectories. Finally, in a multi-route case of the Beijing Subway, this method presents
an estimation result with 91.2% of the passengers choosing the same route in two consecutive days,
and the difference of route choice ratio in these two days is 3.8%. Our method has high accuracy and
provides a new method for passenger microcosmic behavior research.
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1. Introduction

Urban rail transit (URT) passenger route choice behavior is the core of passenger flow assignment
and ticket fare clearing [1]. Under the condition of network operation and seamless transfer, passengers
have plenty of routes to choose, which makes the estimation of route choice behavior difficult. Factors
such as the design of the station, transfer convenience, and station service influence passenger behavior,
making the estimation of passenger behavior very difficult. With the continuous growth of passenger
volume, URT operation needs more precise estimation of passenger flow distribution. The precise
estimation of passenger spatial-temporal trajectory is of great significance to station operation and
train scheduling.

Traditional research adopts expected utility theory (EUT) to describe passenger route choice
behavior. The EUT-based approach analyzes the factors considered by passengers when choosing
a route such as the travel motivation, travel time, and transfer convenience [2]. By considering all
these factors, an EUT-based model can predict the route choice behavior of passengers. This approach
estimates passenger route choice result but ignores the spatial-temporal details of passengers in URT
system. The EUT method has limitations when passenger flow distribution and evolution in smaller
time granularity is needed. Smart card data collected by Passenger Automated Fare Collection System
(AFC) provides a new idea for estimating passenger spatial-temporal trajectory. Compared with
the EUT-based approach, the AFC data-based approach analyzes the passenger choice result rather
than predicting passenger choice. And the result of data-based approach could in turn calibrate the
parameters of the EUT-based model. Passenger trajectory estimation based on smart card data has
attracted the attention of researchers in recent years [3]. It has the following advantages:
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1. Large data volume and easy access. The AFC system records millions of passenger travel data
every day, which has lower cost to obtain comparing to traditional manual surveys.

2. Provides actual RP data. Smart card data are all actual RP (Revealed Preference) data, which have
higher authenticity than SP (Stated Preference) survey.

3. Provides abundant hidden information. Each single smart card data only records simple
information such as tap-in, tap-out time and station number, but large-scale smart card data can
provide abundant hidden information, especially when combined with the train schedule data.

However, the existing methods for estimating passenger trajectory using smart card and train
operation data still have some shortcomings. For example, statistical analysis methods from a macro
perspective can hardly describe the travel behavior of individual passengers, while the methods
from a micro perspective usually neglect the implicit information of passenger groups. How to mine
passenger travel information from AFC data set and train schedules as much as possible become
an important issue. In this paper, we cluster passenger tap-in and tap-out time with trains to estimate
the distribution of passenger access, egress, and transfer time based on smart card data and train
schedules. Then, we present a probabilistic method for estimating passenger spatial-temporal trajectory.

The paper is structured as follows. Section 2 reviews the earlier literature of passenger trajectory
estimation. Section 3 is the backbone of this paper: first, we introduce the data set and passenger type
classification; then, an estimation method for passenger access, egress and transfer time distribution is
presented; finally, we present the passenger spatial-temporal trajectory estimation method. Section 4
delivers a case study of this method in Beijing Subway.

2. Literature Review

The passenger route choice problem is the core of the passenger flow assignment and ticket
fare clearing. As the URT system usually adopts seamless transfer, the passenger travel information
recorded by the AFC system cannot reflect the passenger choice behavior. To cope with this problem,
researchers have devoted significant effort to passenger behavior modeling. An important modeling
idea is to use the expected utility theory to describe the passenger choice behavior, assuming that
passengers choose the route with the highest utility [4–6]. However, different from the urban road
system, the increase of passenger flow in an URT route does not significantly affect the travel time
on this route. Therefore, the route choice model based on utility maximization may cause the
result of passenger flow assignment deviate from the truth. Compared with the deterministic utility
theory (DUT), the random utility theory (RUT) is an expansion under the framework of the EUT.
The RUT-based models can make up for the defect of DUT-based models by introducing a random
error. A typical RUT-based model is the Logit model [7–10], which assumes that the utility random
term is independent and obeys the Gumbel distribution. Because the Logit model assumes that the
options are independent and has IIA characteristics, this assumption cannot be satisfied when the
alternative route contains overlapping sections. With the deepening of research, the defects of the Logit
model are improved in its application. To solve this problem, one solution is to introduce the Nested
Logit model [11]. As the Nested Logit model may cause lots of parameters to be estimated and result
in a heavy calculation burden, researchers try to make the alternative routes as independent as possible
by simplifying the relationship between overlapping routes. The Path Size Logit (PSL) model built by
Ben-Akiva [12], the Path Size Correction Logit (PSCL) model built by Bliemer [13], and the Recursive
Logit (RL) model built by Nassir [2] adopt the above idea. In order to improve the EUT-based model,
methods for fast route search are also applied [14].

Even though the EUT-based approach can describe the choice behavior of passengers, the precise
spatial-temporal trajectories of passengers cannot be deduced by the EUT-based methods. On the other
hand, the EUT-based methods need a large number of passenger choice results to calibrate parameters.
Traditional passenger behavior research collects passenger travel details by Stated Preference (SP) or
Revealed Preference (RP) survey, which is not only costly but also limited in data volume. Smart card
data provides a new means for travel information collection. The methods for passenger route choice
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estimation based on smart card data can be divided into two categories—the aggregate method and
the disaggregate method.

2.1. The Aggregate Method

The idea of the aggregate method is to mine effective information from large-scale smart card
data by statistical analysis. One strategy is to study the relationship between passenger volume and
individual behavior. Through analyzing historical smart card data, Silva et al. [15] proposed a method
to predict passenger demand during transit disruption. Similarly, a method for estimating the number
of passengers with different behaviors in a disruption event based on large scale smart card data was
proposed by Sun et al. [16]. Chen et al. [17] proposed a method to analyze metro passenger travel
distance by using smart card data. Further, Yu et al. [18] analyzed the space-time variation of passenger
flow and commuting characteristics of residents using smart card data from the Nanjing metro.

Another strategy is to mine information hidden in passenger travel time. Sun et al. [19] used
a Bayesian approach to estimate parameters such as link travel time, transfer time, and route choice
ratio. The core idea of this approach is to mine the correlation between the travel time data set and
those parameters. Lee et al. [3] constructed a Gaussian mixture model to analyze passenger travel
time and estimated route choice ratio according to travel time distributions. Li et al. [20] adopted
a Synchronous clustering algorithm to analyze travel time data trimmed by train schedules, and each
cluster represents an effective route. In addition to the above statistical methods, scholars have
introduced data fusion technology to estimate passenger route choice behavior. Kusakabe et al. [21]
proposed a data fusion technology based on a naive Bayesian method, which fuses the SP survey and
smart card data. This approach makes up for the shortcoming of smart card data which lack of personal
information of passengers. In summary, the aggregate methods are applicable to the macroscopic
study of passenger behavior because they analyze the aggregated characteristics of passenger groups
and ignore individual behaviors.

2.2. The Disaggregate Method

The disaggregate method uses the data of typical passengers as a reference to accurately analyze
behaviors of other passengers and is usually combined with train schedules. The difficulty of passenger
trajectory estimation is that the traveling process in URT may include many links, such as entry
walking, waiting a train, riding in train, transfer walking, and exit walking. Except for the fixed
time of riding in train, all these link travel times are difficult to estimate due to passenger individual
difference. Researchers had supplemented data through manual surveys. Zhu et al. [22] investigated
the access and egress walking distance of each station and proposed a probabilistic Passenger-to-Train
Assignment Model based on smart card data and train schedules. Although this model has strongly
interpretation ability, it has weakness that the manual survey could not reflect the distribution of real
passenger flow due to congestion in rush hours.

To solve these problems, a solution strategy is to simplify passenger behavior by putting forward
reasonable assumptions. Under the assumption that passengers will choose the train which has
minimum waiting time, Kusakabe et al. [23] took advantage of the difference between suburban railway
trains, and estimated passengers’ train choice behavior. Zhou et al. [24] limited access and egress time
to a certain range and assumed that the waiting time at each station are very close. Similarly, Sun et
al. [25] assumed that passengers have the same fail to board (FtB) probability at the same station during
a short period of time. According to this assumption, the passenger trajectories could be estimated by
the timetable. All these methods can easily provide passenger trajectories, but due to the idealized
assumptions, their estimation results may differ from actual behaviors of passengers.

Another strategy is to mine information from some typical passengers and carry out the estimation
rely on their travel information. Sun et al. [26] noticed that the smart card data contains “typical
passengers” who have the shortest travel time between the same OD pairs and inferred that these
typical passengers’ waiting time were zero. Using the travel time of such typical passengers and the
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train schedules, the access and egress time of each station, and then the trajectories of passengers can
be inferred. This approach was expanded to transfer passengers by Zhang et al. [27], Zhao et al. [28],
and Zhao et al. [29]. Hong et al. [30] and Kim et al. [31] found that the tap-out time of passengers
were concentrated in a short time after train arrival, which caused passenger arrival waves at fare
gates. According to this characteristic, they proposed the concept of the “reference passenger” and
estimated passenger trajectory by building a relationship between passengers and the trains. Hörcher
et al. [32] classified passengers according to the number of their routes and transfers, and the route
choice behavior of passengers can be deduced by using passengers who have a relatively simple trip
as a reference.

In summary, the core idea of disaggregate methods is to mine typical passenger behaviors.
By combining typical passenger information with train schedules, researchers can provide precise
estimation of passenger trajectories. Compared with aggregate methods, disaggregate methods are
applicable to the microscopic study of passenger behavior. The estimation accuracy of the disaggregate
methods rely on typical passengers. However, due to the complexity of URT passenger behavior,
the estimation based on passenger individuals may cause errors.

In this paper, we propose an approach combining the advantages of aggregate methods and
disaggregate methods. We utilize the hidden information of passenger group and also give precise
microscopic trajectory estimation.

3. Data and Methodology

3.1. Data and Assumptions

The smart card data and train schedules used in this paper were provided by Beijing Subway,
the urban rail operator of Beijing. Smart card number, tap-in time, tap-in station, tap-out time,
and tap-out station were completely recorded in the AFC system. The train schedules recorded the
arrival and departure time of trains at each station.

This paper uses the access, egress, and transfer time distribution of each station to estimate passenger
travel trajectory. However, those time distributions of each station will be different in each period. In order
to simplify the problem, we think those distributions of the same station remain unchanged in a short
period of time (for example, 30 min). Then, we have the following reasonable assumptions:

1. Passengers riding to the same direction in the same station have the same access time distribution.
2. Passengers arriving from the same direction in the same station have the same egress

time distribution.
3. Passengers transfer to the same direction in the same transfer station have the same transfer

time distribution.

3.2. Passenger Classification

With the expansion of URT network, there are massive routes for the same OD trip. But some
obviously unreasonable routes will not be considered by passengers. We call the “effective route”
a route that passengers might consider. In order to balance the computational complexity and the
number of alternative routes, we use 1.5 times the shortest route travel time as the effective route
threshold [32], that is, only the routes with travel time less than 1.5 times the shortest route will be
considered by passengers. According to the number of effective routes and the transfer number of
a route, we classify passengers into the following four classes, and their travel process is shown in
Figure 1.

� Type A passengers have a single effective route and no transfer in the route;
� Type B passengers have a single effective route and one transfer in the route;
� Type C passengers have a single effective route and two or more transfer in the route;
� Type D passengers have multiple effective route.



Sustainability 2020, 12, 2574 5 of 13

t
jrideo

jacc d
jegr

o
jacc 1t

jride 2t
jride d

jegrtr
jtrans

o
jacc 1t

jride 2t
jride1tr

jtrans 3t
jride2tr

jtrans d
jegr

o
jacc 1t

jride 2t
jride d

jegrtr
jtrans

o
jacc 1t

jride 2t
jride d

jegrtr
jtrans

Figure 1. Urban rail transit passenger travel process. 

The purpose of passenger classification is to select passengers whose routes are unambiguous, 
and we use their trip information to estimate the choice of other passengers whose routes are 
ambiguous. Hörcher et al. [32] classified passengers into seven classes; they selected passengers with 
unique spatial-temporal trajectory as a reference to estimate passenger walking time distribution. 
However, according to Zhu et al. [22], passengers with unique spatial-temporal trajectory always 
have higher walking speed than other passengers. Taking these passengers as a reference may cause 
errors. Therefore, this paper presents an unbiased sampling method to obtain reference passengers 
and uses their trip information to estimate passenger walking time distribution. 

3.3. Passenger Spatial-Temporal Trajectory Estimation 

The spatial-temporal trajectory candidates of each type passengers are shown in Figure 2. In this 
section, we provide a method to find the true trajectory for each type of passengers. We propose a 
clustering-based approach to estimate the spatial-temporal trajectory of Type A passengers. We then 
use the access and egress time distribution acquired from the Type A passengers to estimate the 
spatial-temporal trajectory of Type B, C, and D passengers. The estimation process is shown in Figure 
1. 

 

Figure 1. Urban rail transit passenger travel process.

The purpose of passenger classification is to select passengers whose routes are unambiguous,
and we use their trip information to estimate the choice of other passengers whose routes are ambiguous.
Hörcher et al. [32] classified passengers into seven classes; they selected passengers with unique
spatial-temporal trajectory as a reference to estimate passenger walking time distribution. However,
according to Zhu et al. [22], passengers with unique spatial-temporal trajectory always have higher
walking speed than other passengers. Taking these passengers as a reference may cause errors.
Therefore, this paper presents an unbiased sampling method to obtain reference passengers and uses
their trip information to estimate passenger walking time distribution.

3.3. Passenger Spatial-Temporal Trajectory Estimation

The spatial-temporal trajectory candidates of each type passengers are shown in Figure 2. In this
section, we provide a method to find the true trajectory for each type of passengers. We propose
a clustering-based approach to estimate the spatial-temporal trajectory of Type A passengers. We then
use the access and egress time distribution acquired from the Type A passengers to estimate the
spatial-temporal trajectory of Type B, C, and D passengers. The estimation process is shown in Figure 1.
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3.3.1. Type A Passenger

The Type A passenger has the simplest travel process and unambiguous route. Therefore,
we estimate the access and egress time distribution based on smart card data of Type A passengers
and train schedules. We show the passenger tap-out time of Beijing Subway Xierqi station in Figure 3.
We can see passenger clustering is significant during off-peak hours (Figure 3a). Inspired by this
characteristic, Zhang et al. [27], Zhao et al. [28], and Zhao et al. [29] chose the first tapping-out
passengers from each cluster as a reference. Hong et al. [30] put forward the concept “alighting and
boarding time intervals” based on tapping-out passenger clusters and used these time intervals to
assign passengers to trains. As shown in Figure 3b, during peak hours, the tapping-out passenger
clusters may overlap each other due to higher passenger volume and lower train interval. This makes
it difficult to identify passenger clusters only by observation. In this paper, we present a clustering
approach taking both passenger tap-in and tap-out time into account to directly estimate which train
the Type A passengers rode.
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(b) tap-out time during peak hours.

The tap-in and tap-out time distribution of passengers riding from Shahe station to Xierqi station
on Beijing Subway Line Changping is shown in Figure 4. We can see notable clusters of passengers,
and each cluster corresponds to a train which the passengers rode. We find that passengers with longer
egress time also have longer access time than others. This consistent with the fact that passenger
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walking speed is stable during the whole trip. Therefore, by taking both the tap-in and tap-out time of
Type A passengers into account, the passenger overlapping problem could be solved to a certain extent.
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The K-means algorithm has a disadvantage in that the number of clusters k needs to be given in 
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of trains running between these two stations. The access time contains access walking and waiting 
time and is far longer than the egress time due to failing to board in peak hours. Therefore, using 
Euclidean distance to directly calculate the distance between each sample data and cluster centers 
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In this paper, we use the K-means clustering algorithm [33] to cluster passengers according to
their tap-in and tap-out time. The K-means algorithm has the advantages of convenient and fast
calculation. This algorithm iteratively updates the clustering center until the result no longer changes.
The K-means algorithm has a disadvantage in that the number of clusters k needs to be given in
advance. However, as the train schedules are known, the number of clusters k is equal to the number
of trains running between these two stations. The access time contains access walking and waiting
time and is far longer than the egress time due to failing to board in peak hours. Therefore, using
Euclidean distance to directly calculate the distance between each sample data and cluster centers may
overestimate the effect of access time. We present a scaling factor α to zoom out the tap-in time of
passengers. The distance between sample data and cluster center is calculated as

V =
k∑

i=1

∑
x j∈PA

√
(xout

j − µ
out
i )

2
+ α(xin

j − µ
in
i )

2
∀x j ∈ PA (1)

where PA is the data set of Type A passengers; k is the number of trains/clusters, (xin
j , xout

j ) are the

tap-in and tap-out time of passenger x j; (µin
i ,µout

i ) are the coordinate of the ith cluster center; α is the
scaling factor between 0 and 1 which depends on the degree of “fail to board” and the headway of
trains. For example, if a passenger fails to board one train due to the limit of train capacity, his access
time will add an extra headway time. The more passengers fail to board or the higher the headway
time is, the closer the value of α is to 0. Conversely, the value of α is closer to 1.

According to the clustering algorithm, each passenger xod
j from station O to station D will be

assigned to a certain train traini. The access time acco
j and egress time egrd

j of passenger xod
j could then

be deduced by train schedules. By collecting the acco and egrd of station o and d in the same period of
time we can obtain the access time distribution f o

acc of station o and the egress time distribution f d
egr of

station d.

3.3.2. Type B Passenger

The trip of Type B passengers contains one transfer. As shown in Figure 2b, a Type B passenger
x j ∈ PB may have several spatial-temporal trajectory candidates C j

l in his available trajectory set

C j = (C j
1, C j

2, . . . , C j
n). The diversity of the trajectories makes it difficult to estimate the true one directly
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through clustering. So, we present a probabilistic approach to estimate the trajectory of the Type B
passengers based on the access and egress time distribution f o

acc and f d
egr.

First, we build an available spatial-temporal trajectory set C j = (C j
1, C j

2, . . . , C j
n) for all x j ∈ PB

according to these basic constraints:

acco
j,l = traino,dep

l,1 − xin
j > 0 ∀x j ∈ PB, C j

l ∈ C j (2)

egrd
j,l = xout

j − traind,arr
l,2 > 0 ∀x j ∈ PB, C j

l ∈ C j (3)

transtr
j,l = traintr,dep

l,2 − traintr,arr
l,1 > 0 ∀x j ∈ PB, C j

l ∈ C j (4)

where acco
j,l, egrd

j,l, and transtr
j,l are the access time at station o, the egress time at station d, and the

transfer time at station tr of the lth trajectory C j
l respectively. And traino,dep

l,1 , traind,arr
l,2 , traintr,dep

l,2 , traintr,arr
l,1

are shown in Figure 2b.
According to assumption 2 and 3 in Section 3.1, passengers who departure from station o to station

d and transfer at station tr will have access time acco and egress time egrd obeying the distribution f o
acc

and f d
egr. The probability that C j

l being the true trajectory could be calculated by

PB(C
j
l ) =

P(acco
j,l| f

o
acc) · P(egrd

j,l| f
d
egr)∑

C j
l ,∈C j P(acco

j,l| f
o
acc) · P(egrd

j,l| f
d
egr)

∀x j ∈ PB, C j
l ∈ C j (5)

We choose the trajectory with maximum probability as the estimation result, and the transfer time
transtr

j,l of passenger x j will be stored in the data set of transfer station tr to estimate the transfer time

distribution f tr
trans.

3.3.3. Type C Passenger

The trip of Type C passenger contains multiple transfers. We use the access, egress, and transfer
time distribution obtained from Type A and B passengers to estimate the trajectory of Type C passengers.
The transfer stations in the trajectory of Type C passengers are denoted by Tr = (tr1, tr2, . . . , trn).
Like the Type B passengers, the available trajectory set C j of the Type C passengers is shown in Figure 2c.
The probability that C j

l being the true trajectory can be calculated by

Pc(C
j
l ) =

P(acco
j,l| f

o
acc) · P(egrd

j,l| f
d
egr)
∏

tr ∈ TrP(transtr
j,l| f

tr
trans)∑

C j
l ,∈C j P(acco

j,l| f
o
acc) · P(egrd

j,l| f
d
egr)
∏

tr ∈ TrP(transtr
j,l| f

tr
trans)

∀x j ∈ PC, C j
l ∈ C j (6)

Then, we choose the trajectory with maximum probability as the estimation result.

3.3.4. Type D Passenger

The trip of Type D passenger contains multiple routes, and this makes it difficult to estimate their
trajectories. To estimate the trajectory of a Type D passenger, we need to calculate the probability of all
his available trajectories in the set C j = (C j

1, C j
2, . . . , C j

n) (as shown in Figure 2d). For each alternative

trajectory, its probability PD(C
j
l ) could be calculated by formula (5) or (6) according to the number of

transfers. Finally, the trajectory C j
l with maximum probability PD(C

j
l ) is estimated as the true one.

4. Case Study

We take a typical OD pair (Pingxifu to Xierqi) in the morning rush hours (07:30–09:30) of two
consecutive days (21–22 December 2016) in the Beijing Subway as an example to show the estimation
process of our method. There were 207 and 199 passengers traveled between Pingxifu and Xierqi



Sustainability 2020, 12, 2574 9 of 13

during this same period in these two days separately. Only 159 of them traveled both the consecutive
days. As these two days are weekdays, we can think of these passengers as commuters and their choice
behavior is relatively stable. Beijing Subway operates 19 metro lines with 345 stations, which forms
a complex network by the end of January 2017. Passengers from Pingxifu to Xierqi station have two
effective routes and belong to the Type D passenger. As shown in Figure 5, we choose this OD pair
because the travel time of these two routes are extremely close. According to the train schedule, riding
time of route 1 and route 2 are separately 15 minutes 33 seconds and 15 minutes 29 seconds, and both
the two routes have one transfer. Obviously, it is difficult to identify the actual routes by using the EUT
based methods or AFC based aggregate methods.

two effective routes and belong to the Type D passenger. As shown in Figure 5, we choose this OD 
pair because the travel time of these two routes are extremely close. According to the train schedule, 
riding time of route 1 and route 2 are separately 15 minutes 33 seconds and 15 minutes 29 seconds, 
and both the two routes have one transfer. Obviously, it is difficult to identify the actual routes by 
using the EUT based methods or AFC based aggregate methods.  

 
Figure 5. The routes between Pingxifu and Xierqi stations of the Beijing Subway. 

4.1. Access and Egress Time Estimation 

First, we carried out the clustering procedure introduced in Section 3.3.1 to estimate the 
trajectories of Type A passengers between OD pairs of Pingxifu–Zhuxinzhuang, Zhuxinzhuang–
Xierqi, and Huoying–Xierqi. Due to the congestion in morning rush hours, we set the scaling factor 𝛼 to 0.15 to avoid overestimate the role of tap-in time in clustering. Clustering result of passengers 
are shown in Figure 6. We can obtain the access time of Pingxifu station by the clustering of Pingxifu–
Zhuxinzhuang and obtain the egress time of line Changping and line 13 Xierqi station by the 
clustering of Zhuxinzhuang–Xierqi and Huoying–Xierqi respectively. The access time distribution of 
Pingxifu station and egress time distribution of Xierqi station are shown in Figure 7. Similar to the 
conclusion of Hong et al. [30], the generalized extreme value distribution fits the access time and 
egress time better than the normal distribution. 

 

Figure 6. Clustering result of the Type A passengers. 

Figure 5. The routes between Pingxifu and Xierqi stations of the Beijing Subway.

4.1. Access and Egress Time Estimation

First, we carried out the clustering procedure introduced in Section 3.3.1 to estimate the
trajectories of Type A passengers between OD pairs of Pingxifu–Zhuxinzhuang, Zhuxinzhuang–Xierqi,
and Huoying–Xierqi. Due to the congestion in morning rush hours, we set the scaling factor α
to 0.15 to avoid overestimate the role of tap-in time in clustering. Clustering result of passengers
are shown in Figure 6. We can obtain the access time of Pingxifu station by the clustering of
Pingxifu–Zhuxinzhuang and obtain the egress time of line Changping and line 13 Xierqi station by the
clustering of Zhuxinzhuang–Xierqi and Huoying–Xierqi respectively. The access time distribution of
Pingxifu station and egress time distribution of Xierqi station are shown in Figure 7. Similar to the
conclusion of Hong et al. [30], the generalized extreme value distribution fits the access time and egress
time better than the normal distribution.

two effective routes and belong to the Type D passenger. As shown in Figure 5, we choose this OD 
pair because the travel time of these two routes are extremely close. According to the train schedule, 
riding time of route 1 and route 2 are separately 15 minutes 33 seconds and 15 minutes 29 seconds, 
and both the two routes have one transfer. Obviously, it is difficult to identify the actual routes by 
using the EUT based methods or AFC based aggregate methods.  

 
Figure 5. The routes between Pingxifu and Xierqi stations of the Beijing Subway. 

4.1. Access and Egress Time Estimation 

First, we carried out the clustering procedure introduced in Section 3.3.1 to estimate the 
trajectories of Type A passengers between OD pairs of Pingxifu–Zhuxinzhuang, Zhuxinzhuang–
Xierqi, and Huoying–Xierqi. Due to the congestion in morning rush hours, we set the scaling factor 𝛼 to 0.15 to avoid overestimate the role of tap-in time in clustering. Clustering result of passengers 
are shown in Figure 6. We can obtain the access time of Pingxifu station by the clustering of Pingxifu–
Zhuxinzhuang and obtain the egress time of line Changping and line 13 Xierqi station by the 
clustering of Zhuxinzhuang–Xierqi and Huoying–Xierqi respectively. The access time distribution of 
Pingxifu station and egress time distribution of Xierqi station are shown in Figure 7. Similar to the 
conclusion of Hong et al. [30], the generalized extreme value distribution fits the access time and 
egress time better than the normal distribution. 

 

Figure 6. Clustering result of the Type A passengers. 
Figure 6. Clustering result of the Type A passengers.



Sustainability 2020, 12, 2574 10 of 13

 
Figure 7. Access and egress time distributions. 

4.2. Transfer Time Estimation 

In order to obtain the transfer time distributions, we estimate the trajectories of Type B 
passengers between OD pairs of Yuzhilu–Xierqi and Huidong–Xierqi based on the method 
introduced in Section 3.3.2. The transfer time distribution of Zhuxinzhuang and Huoying station is 
shown in Figure 8. Similar to the access and egress time distribution, the generalized extreme value 
distribution fits the transfer time better than the normal distribution. 

 
Figure 8. Transfer time distribution of Zhuxinzhuang and Huoying station. 

4.3. Passenger Spatial-Temporal Trajectory Estimation 

As introduced in Section 3.3.3, we use the depth-first algorithm to search the feasible spatial-
temporal trajectories of Pingxifu–Xierqi passengers under the constraints of Equations (2)–(4). By 
calculating Equation (5), we get the probability of each spatial-temporal trajectories for each 
passenger. The trajectory with highest probability for a passenger is considered to be the true one.  

To verify the accuracy of this method, 159 passengers who traveled from Pingxifu to Xierqi in 
the same period (07:30–9:30) of two consecutive days (21–22 December 2016) were selected to 
compare their route choice in these two days. In most cases, commuters tend to choose a fixed route 
every day. Even if some commuters change their route choice in two consecutive days, the route 
choice ratio of the same OD pair is usually stable. In our case, 145 of the 159 passengers choose the 
same route in two consecutive days, accounting for 91.2%. Route 1 had a higher chosen ratio, which 
were 66.0% and 69.8% in these two days with a difference of 3.8% (Figure 9). The reason for this 
difference may be related to the day-to-day route choice behavior of passengers. Generally speaking, 
the route choice proportion estimated by this method is relatively stable, which verifies the accuracy 
of our method.  

We also analyzed the reason for the higher chosen proportion of Route 1. In our case, these two 
routes have extremely close travel time and the same transfer number, but Route 2 has a longer 
transfer walking time (3 min) than Route 1 (1.5 min). Although Route 1 needs to transfer to Line 

Figure 7. Access and egress time distributions.

4.2. Transfer Time Estimation

In order to obtain the transfer time distributions, we estimate the trajectories of Type B passengers
between OD pairs of Yuzhilu–Xierqi and Huidong–Xierqi based on the method introduced in
Section 3.3.2. The transfer time distribution of Zhuxinzhuang and Huoying station is shown in
Figure 8. Similar to the access and egress time distribution, the generalized extreme value distribution
fits the transfer time better than the normal distribution.

 
Figure 7. Access and egress time distributions. 

4.2. Transfer Time Estimation 

In order to obtain the transfer time distributions, we estimate the trajectories of Type B 
passengers between OD pairs of Yuzhilu–Xierqi and Huidong–Xierqi based on the method 
introduced in Section 3.3.2. The transfer time distribution of Zhuxinzhuang and Huoying station is 
shown in Figure 8. Similar to the access and egress time distribution, the generalized extreme value 
distribution fits the transfer time better than the normal distribution. 

 
Figure 8. Transfer time distribution of Zhuxinzhuang and Huoying station. 

4.3. Passenger Spatial-Temporal Trajectory Estimation 

As introduced in Section 3.3.3, we use the depth-first algorithm to search the feasible spatial-
temporal trajectories of Pingxifu–Xierqi passengers under the constraints of Equations (2)–(4). By 
calculating Equation (5), we get the probability of each spatial-temporal trajectories for each 
passenger. The trajectory with highest probability for a passenger is considered to be the true one.  

To verify the accuracy of this method, 159 passengers who traveled from Pingxifu to Xierqi in 
the same period (07:30–9:30) of two consecutive days (21–22 December 2016) were selected to 
compare their route choice in these two days. In most cases, commuters tend to choose a fixed route 
every day. Even if some commuters change their route choice in two consecutive days, the route 
choice ratio of the same OD pair is usually stable. In our case, 145 of the 159 passengers choose the 
same route in two consecutive days, accounting for 91.2%. Route 1 had a higher chosen ratio, which 
were 66.0% and 69.8% in these two days with a difference of 3.8% (Figure 9). The reason for this 
difference may be related to the day-to-day route choice behavior of passengers. Generally speaking, 
the route choice proportion estimated by this method is relatively stable, which verifies the accuracy 
of our method.  

We also analyzed the reason for the higher chosen proportion of Route 1. In our case, these two 
routes have extremely close travel time and the same transfer number, but Route 2 has a longer 
transfer walking time (3 min) than Route 1 (1.5 min). Although Route 1 needs to transfer to Line 

Figure 8. Transfer time distribution of Zhuxinzhuang and Huoying station.

4.3. Passenger Spatial-Temporal Trajectory Estimation

As introduced in Section 3.3.3, we use the depth-first algorithm to search the feasible
spatial-temporal trajectories of Pingxifu–Xierqi passengers under the constraints of Equations (2)–(4).
By calculating Equation (5), we get the probability of each spatial-temporal trajectories for each
passenger. The trajectory with highest probability for a passenger is considered to be the true one.

To verify the accuracy of this method, 159 passengers who traveled from Pingxifu to Xierqi in the
same period (07:30–9:30) of two consecutive days (21–22 December 2016) were selected to compare
their route choice in these two days. In most cases, commuters tend to choose a fixed route every day.
Even if some commuters change their route choice in two consecutive days, the route choice ratio of
the same OD pair is usually stable. In our case, 145 of the 159 passengers choose the same route in two
consecutive days, accounting for 91.2%. Route 1 had a higher chosen ratio, which were 66.0% and
69.8% in these two days with a difference of 3.8% (Figure 9). The reason for this difference may be
related to the day-to-day route choice behavior of passengers. Generally speaking, the route choice
proportion estimated by this method is relatively stable, which verifies the accuracy of our method.

We also analyzed the reason for the higher chosen proportion of Route 1. In our case, these two
routes have extremely close travel time and the same transfer number, but Route 2 has a longer transfer
walking time (3 min) than Route 1 (1.5 min). Although Route 1 needs to transfer to Line Changping,
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which has a higher headway (5 min) than Line 13 of Route 2 (3.5 min), more passengers prefer the route
with shorter walking distance when the total travel time are extremely close. Some other factors such
as the congestion degree inside the train, the environment inside the train, and even the personal choice
preference may affect the route choice results. All these reasons need further research for quantitative
analysis; in this paper, we only present the method to estimate the true spatial-temporal trajectory of
passengers, which may be useful for further research.
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5. Conclusions

This paper presents a method for estimating URT passenger spatial-temporal trajectory by using
smart card data and train schedules. On the basis of passenger classification, we use the K-means
algorithm to cluster passengers with relatively simple trip and then acquired their access, egress,
and transfer time distribution. To estimate passenger actual spatial-temporal trajectory, we proposed
a probability approach based on aforementioned time distribution. Finally, a case study of the Beijing
Subway was carried out to verify the reliability of this method. Using our method to estimate passenger
route choice behavior between two similar routes, we found that 91.2% of the passengers choose the
same route in two consecutive days, and the difference of route choice ratio in these two days is 3.8%.

Our method can be applied to URT passenger flow assignment and ticket fare clearing and
serve as a basis for deeper research on passenger behavior. This method could be applied in other
transit systems that have high frequency and seamless transfer. In future research, we will explore
the influence of failing to board, in-vehicle crowding, and other factors on passenger route choice
behavior. By introducing further trip chain analysis of URT passengers or multimodal travelers,
this method may provide more detailed travel behavior analysis such as commuting and tourism
passenger analysis, the influence of crowding degree on passenger choice behavior, the day-to-day
choice behavior of passengers, etc. Other studies on passenger microscopic behavior can also carried
out using our method.
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