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Abstract: With current efforts to increase energy efficiency and reduce greenhouse gas (GHG)
emissions of buildings in the operational phase, the share of embedded energy (EE) and embedded
GHG emissions is increasing. In early design stages, chances to influence these factors in a positive
way are greatest, but very little and vague information about the future building is available.
Therefore, this study introduces a building information modeling (BIM)-based method to analyze the
contribution of the main functional parts of buildings to find embedded energy demand and GHG
emission reduction potentials. At the same time, a sensitivity analysis shows the variance in results
due to the uncertainties inherent in early design to avoid misleadingly precise results. The sensitivity
analysis provides guidance to the design team as to where to strategically reduce uncertainties in
order to increase precision of the overall results. A case study shows that the variability and sensitivity
of the results differ between environmental indicators and construction types (wood or concrete).
The case study contribution analysis reveals that the building’s structure is the main contributor of
roughly half of total GHG emissions if the main structural material is reinforced concrete. Exchanging
reinforced concrete for a wood structure reduces total GHG emissions by 25%, with GHG emissions
of the structure contributing 33% and windows 30%. Variability can be reduced systematically by
first reducing vagueness in geometrical and technical specifications and subsequently in the amount
of interior walls. The study shows how a simplified and fast BIM-based calculation provides valuable
guidance in early design stages.

Keywords: early building design; life cycle assessment (LCA); building information modeling (BIM);
embedded greenhouse gas emissions; embedded global warming potential; life cycle energy analysis;
life cycle energy assessment; design assessment; embedded primary energy

1. Introduction

Buildings play an important role in providing comfortable conditions for human life and work.
Therefore, it is not surprising that constructing and operating them and the related infrastructure
consumes a large part of global resources [1], both in terms of material as well as energy [2], and directly
and indirectly emits 40% of global greenhouse (GHG) gas emissions [3]. Hence, the building industry
is one of the focus areas for the reduction of energy demand and GHG emissions [4]. Life cycle energy
demand by and emissions from buildings consist of two components—embedded (also known as
embodied) and operational [5]. Due to the long lifespan of buildings, conditioning the building is
responsible for the largest share of energy consumption and emissions of existing buildings. Therefore,
efficiency efforts have focused on the operation phase [4]. However, with increasing energy efficiency
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and a growing share of renewable energy for building operation, embedded energy and environmental
impacts gain importance. The European directive on the energy performance of buildings [6] requires
all newly constructed buildings in Europe to be nearly zero energy buildings (NZEB) starting in the
year 2020. This means that new buildings will consume almost no non-renewable energy during
their operation. Consequently, all non-renewable energy demand and thus the largest share of GHG
emissions will occur during the construction, maintenance, and end-of-life phases. Recent studies
underline this trend [5,7].

To evaluate the environmental performance of building throughout their entire life cycle, life cycle
assessment (LCA) is in the process of being established in the building industry [8]. However, unlike
operational energy calculations, LCA is not part of standard planning processes. Even operational
energy calculations are conducted as late as possible in the design process when more information
about the future building is available, mainly to show compliance with standards [9]. LCA calculations
are not mandatory except for certification purposes by a green or sustainable building certification
system, such as DGNB (Deutsche Gesellschaft für nachhaltiges Bauen, German Sustainable Building
Council) [10] or LEED (Leadership in Leadership in Environmental and Energy Design) [11]. In light of
the increasing importance of the construction, maintenance, and end-of-life phases, both standardization
and tools for evaluation are needed [12].

Energy and environmental performance evaluation throughout the building design process
bears significant improvement opportunities [13], but at the same time, it poses multiple challenges.
The assumptions made throughout the initial design stages and the decisions based on these assumptions
have significant influence on building performance [14,15]. As the potential to minimize energy demand
and GHG emissions is greatest in these early design stages [16,17], there is increasing demand for
performance evaluation in these stages. However, there is a lack of information about future building,
and information, which can serve as a basis for analysis, is uncertain. To deal with this vagueness,
sensitivity analyses should be employed in order to visualize uncertainties in the results as well as
influential parameters contributing significantly to result uncertainties [18]. Moreover, for the designer,
it is also valuable to see which building parts contribute most to the overall quantity of energy demand
and environmental impact. For the purposes of this study, we use the term contribution analysis for
this calculation.

Uncertainty analysis has recently been used extensively in building (operational) energy
assessment [19]. For LCA, which includes embedded energy and environmental impact calculations,
uncertainty analysis is less common [20], but with increasing relevance of embedded life cycle phases
of buildings, it is becoming an important research field. Sources of uncertainty in embedded energy
and impacts overlap with uncertainties for operational energy mainly when they pertain to exterior
building parts [21]. Of the different uncertainties present in LCA studies—parameter uncertainty,
model uncertainty, and scenario uncertainty [22]—this study is concerned with uncertainty in the
building design parameters.

Uncertainty analysis consist of a sampling step (preprocessing), calculation (uncertainty
propagation), and final analysis (post-processing) of the results [23]. The sampling step involves
varying the input parameters according to their distribution functions. Monte Carlo simulation is
one of the most commonly used sampling technique in probabilistic calculations, generating random
samples based on the input parameters’ distribution functions [24]. Subsequently, the uncertainties are
propagated, i.e., the output results for each sample and mean value and variance of all output values
are calculated. Global sensitivity analysis then identifies how much input parameter uncertainties
contribute to output variance. Only if sampling is based on distribution functions, global sensitivity
analysis is possible [25]. Global sensitivity analysis techniques usable in LCA include (squared)
standardized regression coefficients, squared Spearman correlation coefficients, or Sobol indices [25].

Full building LCA calculations require detailed information about the materials used in the
building, construction processes, energy demand and generation, and end-of-life scenarios. Although
there are building characteristics that influence both embedded and operational energy and impacts,
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the calculation methods for each are essentially different: operational energy demand ideally requires
dynamic thermal simulation taking into account the exterior conditions (climate, shading provided by
surrounding buildings, etc.). The calculation of environmental impacts for building operation uses
the operational energy demand as an input value and calculates the related environmental impact by
taking the energy sources (mechanical systems and energy carrier) into account. Embedded energy and
environmental impact calculations, in contrast, are essentially matrix calculations whose complexity
stems from the amount of data and information required. To reduce this complexity to a manageable
level, aggregated data is provided in building LCI/LCIA databases such as the Oekobaudat [26].
This paper explores in detail the analysis of embedded energy and GHG emissions in early design
stages in addition to the uncertainty analysis of relevant parameters for both operational and embedded
energy published in Harter et al. [21]. The related operational energy calculation is described in detail
by Singh and Geyer [27].

Existing LCA and energy calculation tools work well for later design stages when the building’s
shape and materials are established in detail [28]. Current methods to calculate embedded energy and
impacts do not lend themselves to early design stages, as they require more information input than
commonly available at an early stage. In early stages, missing information in terms of both materials
and missing building elements have to be estimated. However, estimations require expert knowledge
and lack transparency for the designer. Moreover, design uncertainties are not systematically taken
into account [20]. In this context, building information modeling (BIM), a well-established modeling
technology with 3D-data including geometry and information on different levels [29], offers several
opportunities: it facilitates managing the amount of data needed for calculations and providing
automated or semi-automated calculations [30,31].

In early stage performance analysis, few, if any, variants of a project are evaluated, as standard
calculations are lengthy and hence time-intensive. Commonly, only a handful of previous sample
projects are available, providing guidance from experience to find the most relevant parameters.
However, as various buildings are only comparable to a limited extent, even normalization to usable
floor area and one building type does not provide satisfying standard values [32], as influential
parameters can differ from project to project. Hence, the aim of this project is the development
of a tool for engineers and designers to provide a project-specific quick estimate of the embedded
energy and GHG emissions of the building using a limited number of background datasets, but taking
uncertainties caused by design vagueness into account. Subsequently, this will be integrated into the
overall performance evaluation such that trade-offs between operational and embedded life cycle
phases can be visualized and other criteria (cost, fire safety, etc.) are taken into account.

This paper presents the calculation methods and our sample project in Section 2, starting with
the LCA method (Section 2.1), subsequently describing the integration into BIM (Section 2.2) the
sensitivity and contribution analysis (Section 2.3), and finally the sample project (Section 2.4). We split
the results, Section 3, into three parts. In Section 3.1, we tackle the question of which parameter
uncertainties contribute the most to result uncertainties (sensitivity analysis). Section 3.2 analyses the
contribution of the building parts, i.e., which parts contribute the most to total embedded energy and
environmental impacts (contribution analysis). Section 3.3 tests the influence of a different material
choice for the building part with the most contribution to GHG emissions. Section 3.4 evaluates the
order of magnitude of average total rough estimate results and validates them against a complete LCA
and a simplified manual LCA of the final building design. Section 4 discusses the results, describes the
limitation of this project, and provides an outlook toward future research.

2. Methods

2.1. Life Cycle Assessment (LCA)

Building LCA in Europe is standardized per the norms DIN EN ISO 14040 (Environmental
management—Life cycle assessment—Principles and framework) [32] and DIN EN 15978 (Sustainability
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of construction works—Assessment of environmental performance of buildings—Calculation
method) [33]. The norm DIN EN ISO 14040 provides the general framework, structuring LCA into
four steps: goal and scope definition, life cycle inventory, life cycle impact assessment, and reporting.
Our calculations follow this standard, with the goal defined as the comparison between design variants
and scope as life cycle primary energy (PE) analysis and analysis of GHG emissions. The life cycle
inventory was conducted with a quantity takeoff from an IFC model and a link to Oekobaudat [26].
For the purposes of this study, we translated required Oekobaudat datasets into an SQL database, which
provide PE and global warming potential (GWP) values. We included the following building phases:
A1–A3 production (including raw materials supply, transportation, manufacturing), B4 replacement,
and C3–C4 end-of-life (waste processing and disposal), as defined by DIN EN 15978 [33]. Phase D,
reflecting end-of life credits and loads from reuse, recovery, recycling, was calculated separately and is
not included in total results. Values for A1–A3, C3–C4, and D come directly from Oekobaudat, whereas
phase B4 is related to the reference service life of the building components. For Oekobaudat data, it is
mandatory that for construction materials life cycle stages A1–A3 are included. Whenever neither data
for life cycle phases C3 nor C4 was included in specific datasets, we used generic end-of-life processes
such as construction waste processing. An example for this is mineral wool, for which the generic
dataset “construction rubble landfill” provides end-of-life impacts.

We considered building parts (Table 1) that typically contain the largest share of building
materials [32]. Reference service life (RSL) lengths of materials were combined for building parts
following the definitions used in German LCA studies conducted for building certification [34] which
is based on [35]. For the internal walls, instead of the 50-year RSL of gypsum boards, we assumed
a conservative value (20 years) for office buildings, for which the interior is renewed more often
than every 50 years due to a change in user or for reasons of representativeness. The study period
is 50 years, as this is the standard defined by DGNB [36] and BNB (Bewertungssystem Nachhaltiges
Bauen, Sustainable Building Certification System) [37] certification systems and used by the majority
of recent building LCA studies [38].

Table 1. Building parts included and reference service life (RSL) considered.

Building Part Structure Insulation Windows Internal

Elements included

Ground slab Exterior insulation:
Frames

Interior walls
Floor slabs Ground slab

Exterior walls Exterior walls (Triple) glazing
Roof slab Roof

RSL (years) >50 40 40 20

We considered result values for PE demand in megajoules (MJ), split into renewable (PERT)
and non-renewable (PENRT) primary energy, and global warming potential (GWP) in kg CO2-eq.
This choice is based on the fact that buildings contribute significantly to global energy demand and
GHG emissions (Section 1). PENRE, the energy resources part of PENRT, and GWP are related because
the burning of fossil fuels emits carbon dioxide and thereby contributes to global warming. Therefore,
we additionally looked for a possible correlation between PENRT and GWP.

2.2. Integration into BIM

The LCA calculations described in Section 2.1 rely on BIM methods developed within the research
group EarlyBIM [39]. The calculation process involves quantity takeoffs of the main building parts
from an early design stage IFC model, including exterior wall areas, base plate area, roof area and
floor slab areas (Figure 1). The sampling process uses these quantity takeoffs in conjunction with
vagueness defined by the designer. To provide information about geometric and semantic uncertainties
in BIM-models, the meta-model allows specification of vagueness of the overall building model
and building components [40]. We use this meta-model to integrate vagueness into PE and GWP
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calculations. The designer and the consulting engineer provide additional information needed for
the calculations, such as window-to-wall-ratio or u-values (Table 2). This information also contains
vagueness according to the design stage.
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As described, parameters termed “geometry” are derived from the BIM model. The parameter
“interior walls” represents the (volume) percentage of interior walls of total interior volume of
the building (i.e., gross volume minus volume of exterior walls, base plate, floor slabs, and roof).
The window-to-wall-ratio is the ratio of transparent area to total exterior wall area. The technical
specifications depend on consultant input. U-values of exterior building parts determine the energy
standard of the building. “Construction thicknesses” represent the thickness of the structural elements
(i.e., excluding insulation), depend on the structural requirements of the building parts, and are
subdivided by building part (base plate, floor slabs, exterior walls, and roof). Finally, the reinforcement
amount is needed for concrete building parts only and is defined to be the mass (kg) of reinforcing steel
per volume (m3) of concrete. As we are analyzing embedded impacts in more detail, the number of
parameters is reduced compared to our previous study concerned with LCEA [21]. Also, the reduced
number of parameters allows us to regroup them differently providing a more specific analysis.

The method is integrated with the concept of building development levels (BDL) developed
within the EarlyBIM research group [41,42]. BDL describes the project-specific maturity of a BIM
model. This concept was developed, because the commonly used term level of development (LOD)
specifies the geometric and semantic information content of building elements but explicitly not the
entire building model [43]. On the contrary, models typically are multi-LOD-models, i.e., they consist
of elements of various LODs throughout the design process. The BDL concept was developed to
enable the project team to specify required information and vagueness on a building level during
the design process. The LOD concept is used as a basis for the elements contained in the models.
Starting with BDL1, when no 3D information is available yet, models are increasingly enriched with
geometric and semantic information with decreasing vagueness of the contained information. As the
BDL specification does not contain values for LCA calculations, we defined a set of input parameters
needed for our calculations (Table 2) and grouped them according to the design process, as a group
of parameters tends to be defined at the same time by the same actor. For each parameter, a mean
value and vagueness (percentage of possible deviation) are provided. Quantities and specifications in
conjunction with corresponding vagueness serve as input parameters for the following sensitivity and
contribution analysis.

2.3. Sampling Process, Sensitivity, and Contribution Analysis

The input parameters (Table 2) for the LCA calculation elements are subsequently sampled using
a uniform distribution of the design parameters as recommended by Kristensen and Petersen [44]
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for design uncertainties. All parameters are varied simultaneously (Monte Carlo), such that each
building sample consists of a unique combination of parameter values. The sampling sets are generated
within MatLab using the ERAdist MCS (normal MOM) probability distribution class developed by
Geyer et al. [45]. Given the very short calculation time (less than 30 seconds for the initial calculation
of one BDL, less than five seconds for subsequent calculation and generation of graphs), we chose
a generous number of sampling sets (105). For each sample, the LCI/LCA results are calculated for
primary energy (PENRT, PERT) and GHG emissions (GWP).

Table 2. Input parameter groups.

Geometry (Areas) 1 Interior 2 Windows 2 Technical Specifications 3

Ground slab Interior walls (%) WW-ratio u-values
Floor slabs - - Construction thicknesses

Exterior walls - - Reinforcement amount
Roof - - -

1 Extracted from building information modeling (BIM) model (IFC); 2 Additional designer input (experience values);
3 Additional consultant input (experience values).

For the subsequent variance-based sensitivity analysis, we calculated first-order sensitivity indices,
showing how input parameter uncertainties influence result uncertainty. The sum of the sensitivity
coefficients should be equal or close to 100%, as it is assumed that higher-order effects are close to
zero. This sensitivity analysis provides guidance to the designer which uncertainties to systematically
reduce in order to improve exactness of calculations.

Additionally, we conducted a contribution analysis. We calculated the means and standard
deviation per building part (Table 1) and for the whole building to see which building parts contribute
the largest share to energy demand and GHG emissions. This contribution analysis shows the relevance
of each building part for the total outcome and guides the designer toward the building parts with
the highest overall reduction potential. Contribution and sensitivity analysis are related—parameters
influencing the most relevant building parts will also prove to exhibit comparatively larger sensitivities.

According to Raskin and Tylor [46] various terms for uncertainty are used in both colloquial and
scientific language, with their definitions themselves uncertain. We use the term uncertainty—as
suggested in Hawer at al. [47]—as an umbrella term for all types of uncertainty such as fuzziness,
vagueness, ambiguity, etc. To further specify design uncertainty separated from other uncertainties
inherent in the BIM model we used the term vagueness. In this, we differ from Abualdenien and
Borrmann [41] where design uncertainty was referred to as fuzziness. Both concepts are, however,
closely connected according to [48]. In our study, vagueness is due to decisions not yet made in the
design process. It is assumed that this vagueness is eliminated by the time the building has been
built. Of course, even the as-built state of a building contains uncertainties due to e.g., construction
tolerances or the dynamic nature of u-values.

Huijbregts et al. [22] identified three types of uncertainty in LCA studies—parameter, scenario,
and model uncertainty. Of these, our study is concerned with parameter uncertainty, termed vagueness,
as explained above. Uncertainties in the underlying scenarios or assumptions, such as length of the
study period or reference service lives, were not included in our sensitivity analysis, as these are
outside of the influence of the architect or engineer during the planning process. Rasmussen et al. [49]
provide an overview of the influence of these choices. Neither are LCA models, such as characterization
methods, varied in our study, as the employed database, Oekobaudat [26], does not provide data for
this, and designers cannot influence these choices. Therefore, the underlying datasets are fixed in this
study, in contrast to Tecchio et al. [50,51], which employed the method of structured under-specification
to capture uncertainty in material choice in early design stages.

The value corridors for the input parameters determine the characteristics of the building
to be analyzed, covering a wide range of building forms and construction types. For example,
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the window-to-wall ratio represents the type of façade, such as fully glazed curtain wall or opaque
façade with few window openings.

2.4. Case Study

We applied our method to the office building “FTmehrHAUS” by Ferd. Tausendpfund GmbH,
using BIM models at BDL 2, 3, and 4. The case study is a three-story, rectangular-shaped building
with a gross floor area of approximately 1200 m2 located in Regensburg, Germany. The building was
built in 2016 using three different wall types for each story of exterior wall: concrete, masonry and
sand lime stone, each with an exterior insulation and finishing system (EIFS). The building’s structure
is made of reinforced concrete. Table 3 shows the input values for the calculations representing the
sample building. The building’s energy standard exceeds the requirements of the current German
energy saving ordinance [52].

Table 3. Input values representative of the sample building.

Parameter
Group Parameter Mean Value Vagueness at BDL2

Geometry

Ground slab area 405 m2 ±10%

Floor slab area 810 m2 ±10%

Exterior wall area (total) 840 m2 ±10%

Roof area 405 m2 ±10%

Interior Interior Walls 6% ±25%

Windows WW-ratio 30% ±25%

Technical
Specifications

u-value (ground slab) 0.19 W/m2
× K ±25%

u-value (ext. wall) 0.18 W/m2
× K ±25%

u-value (roof) 0.15 W/m2
× K ±25%

Construction thickness (ground slab) 0.35 m ±25%

Construction thickness (ext. wall) 0.20 m ±25%

Construction thickness (floor slabs) 0.25 m ±25%

Construction thickness (roof slab) 0.25 m ±25%

reinforcement 140 kg/m3 ±25%

Initial vagueness percentages were chosen to represent a rough design of the case study building
at BDL2. Geometric uncertainties were chosen to be lowest, as we assumed that the rough volume
is decided upon early in the process. However, these are project-specific and can vary greatly from
project to project, as they depend on the specific site conditions. For example, it is possible that the
building footprint is fixed by a development plan, such that the vagueness of the ground and floor slab
areas would be zero. All other vagueness percentages were set to 25% to represent a reasonable range
of values in order to test the method. These, too, can differ from project to project, as there might be
specific requirements, such as an ambitious energy standard with very low u-values. Vagueness is
subsequently reduced following guidance from the sensitivity analysis. The results of this case study
cannot be generalized for the above reasons, but the method can be applied to other buildings.

For validation purposes, a standard LCA calculation of the project based on the execution
drawings and additional information from the client was conducted. To maintain comparability with
the probabilistic calculation, as described in Section 2.1, we considered one uniform wall type (concrete
with EIFS) for the entire exterior wall. The Oekobaudat version (2016-I), study period, and products’
reference service lives are identical with the respective framework for the probabilistic calculation.
For comparison with the sampling and uncertainty propagation results, all data was input into the
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tool eLCA [53], from which results were exported in csv format and split into the four building parts
structure, insulation, windows, and internal (Table 1).

3. Results

3.1. Sensitivity Analysis

Figure 2 shows uncertainties and resulting uncertainty contribution for each parameter group
according to BDL 2, 3, and 4. Exact numbers are listed in Appendix A, Table A1. Input parameter
uncertainties are strategically reduced with increasing BDL to reduce overall uncertainty in the results.
Note that the sum of uncertainty contribution is always close to one (100%) (see Section 2.3). It has to
be kept in mind that Figure 2 shows uncertainty contribution, not overall result uncertainty. The latter
is shown in Section 3.2.
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In BDL 2, result uncertainties are highly dependent on the geometrical parameter uncertainties,
followed by the uncertainties in technical specifications. Hence, these input uncertainties are reduced
for BDL3 in order to increase the accuracy of the results. In BDL3, result uncertainties, now overall
lower than in BDL2, are strongly dependent on interior (for PERT and PENRT) and still on technical
specifications (for GWP). Therefore, uncertainty in these parameters is reduced for BDL4. In BDL4,
the uncertainty contribution of windows increases for GWP and PENRT, as all other uncertainties
are small. In this process, it is clear that there are trade-offs involved when decreasing uncertainties
simultaneously: reducing uncertainties in one parameter increases the contribution of another
parameter, e.g., uncertainty contribution of the technical specifications to GWP does not change, as the
uncertainty contribution of interior decreases simultaneously. However, overall uncertainty decreases
significantly with increasing BDL (see Section 3.2).

Overall, an ideal picture would show equal sensitivities for all parameters. This, however,
is impossible due to the differing nature of the indicators considered. Between PENRT and GWP,
parallels can be identified. This is not surprising, as the use of fossil energy sources (represented
by the indicator PENRT) contributes largely to GHG emissions, represented by the indicator GWP.
However, GWP and PENRT do not correlate entirely, as there are other sources of GHG emissions,
such as the chemical process of clinker production, which is a step in the process of cement production.
PERT behaves differently from both PENRT and GWP: Results’ uncertainty for PERT is to the largest
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extent due to the uncertainty of the amount of interior walls, starting from BDL3. In turn, the uncertainty
in window construction is insignificant for PERT uncertainty. This is related to the fact that the materials
used in interior wall construction (gyp board) have a comparatively high content of PERT, whereas the
materials used in window construction (PVC, glass) do not.

The sensitivity analysis guides the workflow of strategic uncertainty reduction and thereby
reduces overall uncertainties. From the BDL 2 analysis, the planning team receives the information
that geometric uncertainties and technical specifications are the main sources for result uncertainty.
Therefore, planning efforts should focus on these aspects to arrive at BDL3. Subsequently, the layout
of the interior walls needs to be specified in addition to the aforementioned parameters. These steps
increase reliability of results as will be shown in the following Section 3.2.

3.2. Contribution Analysis

This section analyses the contribution of functional parts of the building to show how the sensitivity
analysis indicates where in the building the highest potential to reduce PE demand and GHG emissions
is located. This pertains to the indicator GWP for GHG emissions and PERT and PENRT for primary
energy use. Building parts are defined in Table 1.

Figure 3 shows the results for the sample building for BDL2 and BDL4. BDL 3 was omitted as
results lie between BDL2 and BDL4 and do not contain additional information regarding the building
part contribution.

First, the overall reduction of result uncertainty is clearly visible. Average values stay constant
as we did not change any of the mean input values. The contribution of the building parts changes
insignificantly from one BDL to the next. This, too, is an expected result for the same reason as the
(mean) input values stay the same.

Second, the contribution analysis can guide architects and consultants towards strategic building
parts, i.e., the parts that should be considered primarily when looking for ways to reduce energy
demand and GHG emissions. To render a building part truly strategic a second condition must
be fulfilled: alternative materials with lower PE content and GHG emissions need to be available.
For example, for a concrete base plate, no alternative materials are available. However, alternatives in
structural design either providing a different kind of foundation or an alternative concrete/reinforcement
combination might be available. Hence, this study provides guidance toward the building parts with
the highest influence but does not provide design assistance, i.e., it entrusts the design team with
determining if alternative solutions are available. For GWP and PENRT, the building’s structure,
made of reinforced concrete, clearly emerges as a decisive part, contributing half of the building’s GWP
and 37% of PENRT. Second, windows are relevant and thirdly, interior walls. Insulation plays a lesser
role despite the above average energy standard of the building.

As a building part’s contribution depends on the materials used for each building part, reducing
overall emissions without changing any of the input parameters requires looking at alternative
building materials.
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Figure 3. Box plots of sample building contributions and uncertainties for a reinforced concrete
building: global warming potential (GWP), renewable primary energy (PERT), and non-renewable
primary energy (PENRT). The mean is represented by a horizontal line, the interquartile range by a
thick line, min and max are connected by a thin line and outliers are shown as dotted lines.

3.3. GWP Reduction Potential

Since the structure is the largest contributor to total GWP and the use of wood is known to reduce
GHG emissions, we ran the sensitivity and contribution analyses with wood instead of reinforced
concrete. In general, this alternative is only available when fire safety requirements allow the use of
wood (which is the case for our case study as we deal with a building of a low fire safety class) and
takes into account that some parts cannot be replaced such as the base plate. All results are listed in
Appendix A, Table A2. This case study shows the effect of a different material choice. Overall, changing
the structural material reduces GWP by 25% and PENRT by 10% while at the same time increasing
PERT by 123% (see Figure 4). This result is in line with previous LCA studies, which unequivocally
state that the use of wood structures reduces GHG emissions [54]. The large increase in PERT is due to
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potential (GWP), renewable primary energy (PERT), and non-renewable primary energy (PENRT).
The mean is represented by a horizontal line, the interquartile range by a thick line, min and max are
connected by a thin line and outliers are shown as dotted lines.

The analysis also shows that, at BDL2, uncertainties are such that there are reinforced concrete
building samples with lower GWP than some of the wood building samples. However, this overlap
between the probabilistic results is located outside of the interquartile range. This means that the wood
structure is highly likely to perform better in this indicator. For PENRT, the wood structure is still
likely to perform better, but the overlaps between the two material options are greater than for GWP.
For the indicator PERT, on the other hand, there are no overlaps. Therefore, any sample of the wood
building will demand more PERT than any sample of the concrete building. However, PERT is still
only roughly 26% of overall PE demand, compared to 12.5% for the concrete building. In other words,
total PE demand of the wood building is 7% higher than of the concrete building.

The contribution of the building parts shifts accordingly (Figure 5). The wood structure is
responsible for 33% of GHG emissions instead of 50% for the case the reinforced concrete structure.
The absolute results for other building parts stay the same, but their contribution increases as the total
decreases. For PERT, the same applies reversely: the contribution of the structure doubles from 36% to
73%, reducing the relevance of all other building parts.
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Figure 5. Boxplots of contribution and overall values of wood structure for BDL2 for global warming
potential (GWP), renewable primary energy (PERT), and non-renewable primary energy (PENRT).
The mean is represented by a horizontal line, the interquartile range by a thick line, min and max are
connected by a thin line and outliers are shown as dotted lines.

According to this analysis, the next step to minimize GHG emissions would be to look at other
material options for the window frames. This is building-specific and has to be evaluated on a
case-by-case basis.

3.4. Order of Magnitude and Validation

Since we are using a simplified model with only few materials, we verified the results with
a more detailed LCA calculation based on the execution drawings of the case study. Additionally,
we conducted a simplified LCA manually in order to verify the probabilistic calculation. This simplified
calculation uses a fixed size of the building matching the mean input values and the same reduced
number of materials as the probabilistic calculation. For the probabilistic calculation, mean values of
the BDL4 calculation are shown, as these are the least uncertain. However, as described in Section 3.2,
mean values are consistent throughout the BDLs.

Table 4 shows the results of the simplified and probabilistic calculations in comparison to the
detailed calculation based on the execution drawings. All values are rounded without digits. Hence,
the sum of all contribution percentages can differ from 100%, as it does for PERT and PENRT simplified
(99%) and PENRT detailed (99%). Simplified and probabilistic calculations generally deliver similar
results differing by a maximum of −5% and +8%. This indicates that the probabilistic calculation is by
far superior to a manual simplified calculation, as it can calculate 105 samples in less than one minute,
a task that is virtually impossible for a traditional calculation by hand.

Compared to the detailed calculation, the probabilistic calculation underestimates GWP and
PENRT by 27% and 30%, respectively, but does not differ significantly in PERT results. Therefore,
we look at GWP and PENRT separately from PERT results. Generally, for GWP and PENRT, detailed
results are at the high end of the value corridor of the BDL2 calculation shown in Figure 3. This is to
be expected as the probabilistic calculation neglects all finishes and small elements and therefore is
restricted to a handful of materials, whereas the detailed calculation is based on 42 different materials.
Hence, the absolute values of the calculation should not be used in the planning process, for example
to determine compliance to certification benchmarks. Instead, the design process should be based on
comparative analyses.
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Table 4. Comparison of life cycle assessment (LCA) results of probabilistic, simplified and detailed
calculation for the case study.

LCA GWP [kg CO2-eq.] PERT [MJ] PENRT [MJ]

Detailed

TOTAL 470,482 (100%) 538,084 (100%) 5,229,523 (100%)

structure 45% 212,979 40% 217,507 34% 1,785,981

insulation 16% 74,065 10% 51,446 21% 1,118,043

windows 20% 94,727 16% 84,939 21% 1,101,638

internal 19% 88,710 34% 184,192 23% 1,223,861

Simplified

TOTAL 358,621 (76%) 524,702 (98%) 3,756,157 (73%)

structure 49% (+4%) 177,351 37% (−3%) 193,148 36% (+2%) 1,368,205

insulation 16% (±0%) 50,146 11% (+1%) 60,055 18% (−3%) 674,660

windows 23% (+3%) 81,115 11% (−5%) 60,239 25% (+4%) 953,488

internal 12% (−7%) 42,497 40% (+6%) 211,260 20% (−3%) 759,804

Probabilistic
(mean, BDL4)

TOTAL 336,788 (73%) 517,086 (96%) 3,619,140 (70%)

structure 50% (+5%) 167,852 37% (−3%) 189,709 38% (+4%) 1,361,042

insulation 13% (−3%) 45,252 9% (−1%) 46,475 14% (−7%) 524,675

windows 23% (+3%) 76,742 11% (−5%) 56,994 25% (+4%) 902,003

internal 14% (−5%) 46,943 43% (+9%) 223,908 23% (±0%) 831,419

However, the contribution analysis, i.e., the indication of strategic building parts, differs by +5%
(GWP) or −7% (PENRT) or less. The shares of structure and windows are slightly overestimated,
the shares of insulation and internal underestimated. At the same time, the ranking of the building
parts remains the same as in the detailed model for GWP. For PENRT, it indicates correctly the structure
as the main contributor, but differs in the ranking of the other building parts, as their contributions
are very close (21%, 21%, and 23%) in the detailed calculation. As guidance to the design team,
the analysis shows correctly where the largest contribution and thereby the potentially largest reduction
potential lies, as the probabilistic calculation matches the detailed calculation without uncertainties.
This tendency of concrete structures to be the main contributor of GWP confirms results from previous
studies [55,56].

For PERT, the overall result differs by a maximum of +5% (simplified calculation) and +2%
(probabilistic calculation), but contribution differs by up to −5% and +9%, changing the ranking
of building parts. The detailed calculation indicates that the structure offers the largest reduction
potential, whereas the probabilistic and simplified calculations suggest the internal walls as the largest
contributor. The underlying reason for this is the fact that the probabilistic calculation uses one
material, gypsum board, for the interior walls; whereas the interior of the as-built building consists
of a mixture of different wall types, e.g., glass partitions or masonry walls. Gypsum board demands
about 10 times more renewable energy pro volume (m3) than masonry (2167 MJ vs. 263 MJ) but shows
only roughly three times as much GWP. Hence, for a building part with an inhomogeneous mix of
materials, the simplification to just one material can have a large influence on results. For building
parts with fewer materials, like the building’s structure, where the bulk of the building part is made of
one material, the probabilistic calculation should render accurate indications of their relevance within
the building.

4. Discussion

Our results highlight the possibility of real-time life cycle analysis in early stages of design.
Although the early stage analysis tends to underestimate the absolute values for PE demand and
GHG emissions, valuable advice can be provided in two ways. First, the sensitivity analysis guides
the designer towards the input parameters whose uncertainty causes the highest result uncertainties.
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Second, a contribution analysis reveals the strategic building parts where the potential is largest to
reduce emissions and energy consumption.

The design team can use the results of the sensitivity analysis to reduce result uncertainties
systematically by reducing the vagueness of the most relevant input parameters during the design
process. Although reducing vagueness is a natural part of the detailing process, in a regular design
process the design team is not aware of the impact on the precision of environmental analysis if an
input parameter is detailed. Our analysis provides guidance toward which parameter’s uncertainty to
reduce first to get a more precise indication of environmental impact. A previous study [21] showed
that this method can also applied to the entire life cycle including operational energy consumption.
Future work should add other criteria (such as cost) and take into account the multi-criterial nature of
decision processes in building design.

The contribution analysis shows the building parts contributing most to PE demand and GHG
emissions hence revealing their theoretical reduction potential. In order to determine the reduction that
can be realized, alternative materials need to be tested. We provided an example of this by replacing
the concrete structure by a wood structure where possible. To integrate this trial-and-error process
into a design assistance tool, a database containing alternatives for different materials and building
parts needs to replace our simplified database containing only fixed materials. Hollberg et al. [57]
and Röck et al. [58] employ a component catalogue to address this challenge showing the realizable
reduction potential.

The contribution analysis works well for homogenous building parts, such as the structure,
and confirms results from previous studies. On the other hand, the contribution analysis tends to skew
results when building parts with a multitude of materials, such as the building’s interior, are concerned.
One way to counteract this would be to subdivide the building into more parts but thereby losing the
early design stage simplicity. In addition, this phenomenon relates to material uncertainties in early
design stages, which were not included in this study, but are subject to current (e.g., Tecchio et al. [51])
and future research.

For our early stage analysis, we considered three indicators. This represents a simplification from
all 23 indicators available in Oekobaudat. However, the analysis shows that strategically reducing
uncertainties in parallel for all three indicators is unachievable because result uncertainty for each
indicator is dependent on input uncertainty of different parameters. This was to be expected regarding
non-renewable and renewable energy, as increasing the use of renewable energy sources reduces
non-renewable PE demand, i.e., these two indicators should inversely correlate. It is somewhat
surprising that GWP and PENRT do not correlate, as the burning of fossil fuels, i.e., the use of PENRT,
causes GHG emissions. In part, the fact that the chemical process of clinker production in the cement
production process emits CO2 provides an explanation. For other materials than concrete, the reasons
for the lack of correlation are less clear. Generally, this points to the fact that LCA results should not
be reduced to one indicator, as none of the indicators can be regarded as representative for all others.
Instead, decisions based on LCA results need to be treated as multi-criteria decisions.

To increase the completeness of results, more building materials will be implemented in our model.
In order to achieve this, additional input parameters will have to be considered (e.g., concrete strength)
and additional information (e.g., type of waterproofing) will have to be estimated. Additionally,
the structural material types, reinforced concrete and wood, will be complemented by structural steel
and hybrid structures. This has implications on the possible application of the method but does not
change the methodological approach.

As shown in our previous work [21], LCA is incomplete if it neglects the operational phase.
Therefore, we direct future research efforts towards integrating all life cycle phases, which implies
also including the building’s mechanical systems. We expect multiple interdependencies calling for a
detailed sensitivity and contribution analysis in conjunction with a weighting system for results.
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Appendix A. Results of Probabilistic Calculation

Table A1. Sensitivities as shown in Figure 2.

BDL2

geo 10% tech 25% win 25% int 25% sum

‘gwp’ 0.48 0.48 0.02 0.04 1.01

‘pert’ 0.49 0.25 0.01 0.27 1.02

‘penrt’ 0.54 0.34 0.02 0.11 1.01

BDL3

geo 2% tech 10% win 25% int 25% sum

‘gwp’ 0.13 0.53 0.09 0.26 1.01

‘pert’ 0.06 0.12 0.01 0.83 1.02

‘penrt’ 0.11 0.27 0.09 0.54 1.01

BDL4

geo 1% tech 5% win 25% int 10% sum

‘gwp’ 0.11 0.46 0.30 0.14 1.01

‘pert’ 0.08 0.17 0.03 0.74 1.02

‘penrt’ 0.10 0.25 0.34 0.32 1.01

Table A2. Full results of probabilistic calculations for BDL 2, 3, and 4 and concrete and wood structure.

BDL 2 Concrete

- - Mean Var StD %con %ins %win %int

‘gwp’ ‘kgCO_2-Eq’ 3.3924E + 05 3.5565E + 08 1.8859E + 04 49.81% 13.51% 22.77% 13.92%

‘pert’ ‘MJ’ 5.2745E + 05 1.1230E + 09 3.3511E + 04 36.68% 9.04% 11.02% 43.27%

‘penrt’ ‘MJ’ 3.6601E + 06 3.9457E + 10 1.9864E + 05 37.58% 14.57% 24.90% 22.94%

‘pert+penrt’ MJ 4.1876E + 06 5.3446E + 10 2.3118E + 05 - - - -

PENRT/PET 12,60% - - - - - - -
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Table A2. Cont.

BDL 2 Wood

Mean Var StD %con %ins %win %int

‘gwp’ ‘kgCO_2-Eq’ 2.5298E + 05 1.5306E + 08 1.2372E + 04 33.11% 18.00% 30.34% 18.55%

‘pert’ ‘MJ’ 1.1750E + 06 6.2815E + 09 7.9256E + 04 72.12% 3.98% 4.85% 19.05%

‘penrt’ ‘MJ’ 3.3117E + 06 2.7923E + 10 1.6710E + 05 31.72% 15.94% 27.24% 25.10%

‘pert+penrt’ MJ 4.4867E + 06 5.7203E + 10 2.3917E + 05 - - - -

PENRT/PET 26.19% - - - - - - -

BDL 3 Concrete

Mean Var StD %con %ins %win %int

‘gwp’ ‘kgCO_2-Eq’ 3.3683E + 05 4.9952E + 07 7.0677E + 03 49.84% 13.44% 22.78% 13.94%

‘pert’ ‘MJ’ 5.1711E + 05 3.4538E + 08 1.8584E + 04 36.69% 8.99% 11.02% 43.30%

‘penrt’ ‘MJ’ 3.6196E + 06 7.4711E + 09 8.6436E + 05 37.60% 14.51% 24.92% 22.97%

‘pert+penrt’ MJ 4.1367E + 06 1.0806E + 10 1.0395E + 05 - - - -

PENRT/PET 12.50% - - - - - - -

BDL 3 Wood

mean var StD %con %ins %win %int

‘gwp’ ‘kgCO_2-Eq’ 2.5271E + 05 2.8307E + 07 5.3204E + 03 33.14% 17.92% 30.37% 18.57%

‘pert’ ‘MJ’ 1.1745E + 06 9.7327E + 08 3.1197E + 04 72.13% 3.96% 4.85% 19.06%

‘penrt’ ‘MJ’ 3.3086E + 06 6.2364E + 09 7.8971E + 04 31.74% 15.87% 27.26% 25.13%

‘pert+penrt’ MJ 4.4831E + 06 1.1056E + 10 1.0515E + 05 - - - -

PENRT/PET - 26.20% - - - - - -

BDL 4 Concrete

mean var StD %con %ins %win %int

‘gwp’ ‘kgCO_2-Eq’ 3.3679E + 05 1.4690E + 07 3.8328E + 03 49.84% 13.44% 22.79% 13.94%

‘pert’ ‘MJ’ 5.1709E + 05 6.2175E + 07 7.8851E + 03 36.69% 8.99% 11.02% 43.30%

‘penrt’ ‘MJ’ 3.6191E + 06 2.0592E + 09 4.5378E + 04 37.61% 14.50% 24.92% 22.97%

‘pert+penrt’ MJ 4.1362E + 06 2.7302E + 09 5.2251E + 04 - - - -

PENRT/PET - 12.50% - - - - - -

BDL 4 Wood

mean var StD %con %ins %win %int

‘gwp’ ‘kgCO_2-Eq’ 2.5267E + 05 1.0625E + 07 3.2596E + 03 33.14% 17.91% 30.37% 18.58%

‘pert’ ‘MJ’ 1.1744E + 06 2.2059E + 08 1.4852E + 04 72.12% 3.96% 4.85% 19.07%

‘penrt’ ‘MJ’ 3.3082E + 06 1.8105E + 09 4.2550E + 04 31.74% 15.86% 27.27% 25.13%

‘pert+penrt’ MJ 4.4826E + 06 2.7277E + 09 5.2227E + 04 - - - -

PENRT/PET - 26.20% - - - - - -
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