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Abstract: Urban freight transport is primarily fulfilled by commercial road vehicles. Within cities,
overnight parking is a critical element influencing commercial vehicle operations, particularly for
heavy vehicles with limited parking options. Providing adequate overnight parking spaces for
commercial vehicles tends to be a challenge for urban planners. Inadequate parking supply can result
in illegal parking and additional vehicle kilometers traveled, contributing to traffic congestion and air
pollution. The lack of tools for evaluating the impacts of changing parking supply is an impediment
in developing parking-related solutions that aim to minimize the negative externalities. In this study,
we develop an overnight parking choice model for heavy commercial vehicles and integrate it with
SimMobility, an agent-based urban simulation platform, demonstrating the potential of this tool for
policy evaluation. Using simulations applied to a case study in Singapore, we compare two parking
supply scenarios in terms of vehicle kilometers traveled due to changes in the first and last trips of
vehicle tours, as well as resulting impacts in traffic flows.

Keywords: urban freight; freight parking; city logistics; parking choice; SimMobility

1. Introduction

The rapid urbanization and structural change in logistics, such as the proliferation of just-in-time
inventory management practices and growth in e-commerce, have led to a significant increase in urban
freight movements around the world [1]. Commercial vehicles dominantly serve the first and last
miles of supply chains in most cities [2]. Trucks, vans, prime movers and tankers are typical examples
of commercial vehicles fulfilling urban freight movements. The contributions of commercial vehicles to
road traffic and air pollution are known to be disproportionally high compared with other vehicles [3].
These negative impacts of commercial vehicle trips are of concern to urban planners.

The distribution of overnight parking facilities within cities partially determines commercial
vehicle traffic, as vehicles are parked at such facilities during inactive periods. In this paper, we
distinguish the parking activity at the end of a work shift in a dedicated parking facility as “overnight
parking”, and parking at other locations as “in-operation parking”. Furthermore, we define a vehicle
tour as a sequence of stops starting and terminating at an “overnight parking” location interspersed
with one or more “in-operation parking” locations.
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Vehicle owners and operators might have different goals when it comes to overnight parking. The
overnight parking location affects the total distance and time traveled, and thus the operating cost of
a commercial vehicle. A suboptimal choice of parking location might lead to an infructuous empty
trip if the vehicle is not parked close to or at a frequent pickup location, or if pickup locations change
frequently. Furthermore, urban planners are often motivated to improve the efficiency of land-use.
While earmarking land for overnight parking is one of the policy measures available to them, it is a
challenge to measure the social benefit associated with changes in parking supply.

The literature on commercial vehicle parking is limited and primarily focused on in-operation
parking (i.e., pickup and delivery). It can be broadly distinguished into analytical and simulation-based
approaches. The former examines the economics of parking by evaluating in-operation parking policies.
Arnott and Inci [4] analyze the trade-off between car parking price, parking supply and cruising
for finding a parking space, under the assumption of homogenous drivers and a Manhattan Street
Network. Their analysis indicates that setting the parking price at a level which eliminates cruising
maximizes social surplus, while an increase in curbside parking supply is the second-best policy. Amer
and Chow [5] propose an analytical model for truck delivery parking, where small delivery trucks and
passenger vehicles compete for the same curbside parking supply. They evaluate the impact of limited
parking capacity on the cruising behavior of cars, and on delivery trucks’ double parking, with the
objective of assessing the trade-offs between parking spaces, pricing and congestion. They apply the
model to a representation of downtown Toronto, assuming homogeneous agents and a Manhattan
Street Network. While analytical models provide valuable insights on the impact of parking policies,
the results might not hold under the assumptions of homogenous agents and of a Manhattan Street
Network, especially when the study area is extended to an entire city. In such cases, a simulation-based
approach is more appropriate to evaluate parking policies.

Simulation-based approaches have been widely used to assess the impacts of policies related to
in-operation parking of commercial vehicles. Marcucci et al. [6] analyze the impact of pricing policies
on the availability of loading and unloading bays for commercial vehicles. Alho et al. [7] evaluate
strategies to reduce double parking attributable to the unavailability of loading bays. Nourinejad
et al. [8] use traffic simulation to assess the impact of commercial vehicle parking policies in the central
business district of Toronto. Benenson et al. [9] use PARKAGENT, an agent-based simulator, to assess
the impact of an off-street overnight car parking facility on the distribution of walking distance and
search time for existing on-street parking spaces. Using data from Tel Aviv, they demonstrate that
minor additions to parking capacity do not affect the distribution of parking search time and walking
distance when the overall parking demand significantly exceeds parking supply.

While the in-operation parking behavior of commercial vehicles in urban areas has been studied,
there are only a few studies focusing on overnight commercial vehicle parking. Wong et al. [10] estimate
the total parking demand in Hong Kong for both passenger and commercial vehicles. Using the data
collected from a stated preference survey, they develop aggregate econometric models for forecasting
parking demand. However, they do not consider agent heterogeneity in the model. Furthermore, they
do not study the effect of changes in parking supply and subsequent demand on resulting traffic. Lau
et al. [11] updated and recalibrated the models developed in [10] using data from a follow-on survey,
and present revised parking demand forecasts for Hong Kong.

In conclusion, there is a knowledge gap in the relationship between parking supply and the
operational efficiency of commercial vehicles, as well as in revealing associated negative externalities,
such as traffic congestion and emissions. To contribute towards our understanding of these relationships,
we propose the use of an overnight parking choice model, integrated with an agent-based urban freight
simulator. This allows us to evaluate traffic impacts of various parking supply scenarios, specifically,
the extent of inefficiency introduced in vehicle tours due to overnight parking choice, such as the
empty trips from overnight parking locations to pick-up and delivery points. In this paper, we detail
such a case study for the island-state of Singapore, leveraging an existing agent-based urban freight
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simulator—SimMobility [12,13]—inclusive of its land-use models, to analyze traffic impacts associated
with different overnight parking supply scenarios.

2. Methods and Data

2.1. Case Study Description

The study area, Singapore, covers an area of 719.9 km2 with a population of 5.6 million and a
GDP of USD 311 billion [14]. As a hub of economic activity, Singapore hosts one of the largest financial
centers in the Southeast Asia region and has large freight generators such as a container port, an airport,
logistics facilities, and two large oil refineries within its territory. Singapore is a dense island-nation
and an ideal test bed to study the impact of changing parking infrastructure due to its closed-system
nature when compared with other cities. At the end of each workday, most commercial vehicles will
remain within the city boundaries.

Singapore has a registered vehicle population of over 950,000 of which 144,000 are commercial
vehicles [15]. Within the population of commercial vehicles, 112,000 are light commercial vehicles
(LCVs) while the remaining 32,000 are categorized as heavy commercial vehicles (HCVs). A commercial
vehicle is categorized as such if its maximum laden weight (MLW) is more than five metric tons (MT).
The definition still covers a wide range of carrying capacities, body types and industries served. For
example, MLW of trucks may range from 5 MT to 34 MT. Body types include refrigerated trucks,
articulated vehicles, cranes, construction vehicles, etc., and there are multiple industries served by
these vehicles such as construction, wholesale, retail, warehousing, agriculture etc. Unlike LCVs,
which can share parking facilities with cars, HCVs require dedicated facilities to accommodate their
larger size. HCV parking provision tends to be land resource-intensive, requiring planning attention.
This means that a non-negligible share of vehicle owners and operators might not be able to park in
their preferred location, having to select an overnight parking location due to multiple factors, such as
the cost of subscription and drivers’ accessibility of parking lot to drivers, and from lot to business
locations. Therefore, in this paper, we focus on the impact of redistributing the HCV parking supply.

The parking supply for HCV consists of approximately 41,800 HCV parking spaces. It is owned
by parking operators categorized into four types: public 1, public 2, private–open and private–closed.
The public 1 and public 2 parking lots together constitute 26% of the total parking supply, and are
operated by two large public entities in Singapore. In contrast, there are over 3500 individual private
parking operators. For these, each parking lot is considered private–open when it is accessible to vehicles
belonging to any owner, and private–closed otherwise. The share of private–open parking lots amounts
to 14% of the overall private parking supply, with the remaining categorized as private–closed. We
assumed lots with subscription prices found online as private–open, and those without as private–closed.

HCV parking supply and commercial vehicle registry data were obtained from official sources in
Singapore. Singapore law requires HCV vehicle owners to report a monthly subscription to the transport
authority detailing a designated overnight parking location for every HCV. The characterization of
a baseline HCV parking supply and demand scenario was possible by matching these two datasets.
Information on land-use type (industrial, residential, commercial etc.) was obtained from the Singapore
Master Plan [16], and referred to for the development of alternative parking supply scenarios.

In this study, we use traffic analysis zones (TAZs) as the spatial unit for parking demand and
supply. Singapore is divided into 1169 TAZs distributed across five regions: North, East, West, Central,
and Northeast. The HCV parking supply is distributed in 526 TAZs. These regions are illustrated in
Figure 1.
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2.2. Overnight Parking Choice Model

The parking subscription of an HCV is modeled using a multinomial logit model framework.
For computational efficiency, the overnight parking locations are aggregated into a set of composite
parking alternatives. The composite alternatives are defined by park ownership type (public 1, public 2,
private–open and private–closed) and TAZ. The spatial aggregation results in 539 unique TAZ–park
ownership type alternatives, with 78 TAZs in public 1, 44 in public 2, 100 in private–open and 317 in
private–closed. It is assumed that the elementary alternatives in a composite alternative, i.e., parking
lots of the same park type in a TAZ, are equally likely to be chosen.

We hypothesize that the overnight parking location choice of HCVs is influenced by factors
such as the distance of parking lot to the vehicle owner’s location, the industry category of the
vehicle owner, vehicle characteristics, and price of parking. We do not have suitable individual
vehicle-level information on freight pick-up locations or drivers’ residential addresses to compute
unbiased accessibility measures. HCV freight pick-up locations are often manufacturing units or large
warehouses located in industrial areas. Furthermore, vehicles with different MLW are assumed to
differ in sensitivity to park ownership type. A dummy variable for parking operator type is included
to account for differences in preferences for different park operators.

The vehicle owner derives a random utility by parking a vehicle n in a composite alternative j,
which is defined as a function, linear in parameters, of the attributes of the parking alternative and
vehicle characteristics. Parking capacity of the composite alternative is included as a size variable
resulting from the aggregation of elementary alternatives [17]. The utility of parking, Unj, is defined as
the sum of a systematic component, Vnj, and a random error term, εnj, as follows:

Unj = Vnj + εnj

=
(
βptpt j + βdistlog

(
distnj

)
+ βprice price j+(

βind, private−closed indn + βw, private−closed log(wn) + βage, public−1 agen
)

+ log
(
cap j

)
) + εnj

(1)
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yn = argmax jUnj

where
β : Parameters to be estimated
pt j: Park ownership type dummy variable (public 1, public 2, private–open and private–closed)
distnj: Distance from the owner location of vehicle n to parking alternative j
price j: Monthly parking subscription price for parking alternative j
wn: MLW of vehicle n
agen: Age of vehicle n
indn: Industry category of owner of vehicle n
cap j: Size variable of parking alternative j
yn: Parking choice of vehicle n

εnj: i.i.d. Type-I extreme value (Gumbel) distributed error term
We observe the dependent variable, yn, and the other attributes described above. The probability

of a vehicle n selecting location j from a choice set Cn is given by the following expression [18]:

Pnj =
eVnj∑

k∈Cn eVnk
(2)

The parameters of the utility function are estimated by maximum likelihood estimation with a
sample size of 1000 HCVs. The results are detailed in the “Results” section.

2.3. Simulation

2.3.1. SimMobility Overview

SimMobility is an agent-based, multitemporal, multiactivity urban simulation platform for
evaluating land-use changes and passenger and freight mobility. It is an integrated simulator with
a consistent set of agents: individuals, establishments and drivers across both the passenger and
freight modules. A synthetic population of individuals, establishments and vehicles is constructed in
SimMobility [18] and used in this study.

SimMobility Freight [13] as displayed in Figure 2, is a component of SimMobility, which covers
the simulations of commodity flows, overnight parking subscription decisions, logistics planning, and
driver-level behaviors. Commodity contracts and shipments influence “pre-day” logistics planning
such as carrier selection and vehicle operation planning. Along with overnight parking decisions, these
are the inputs for simulating vehicle-level behaviors. Network traffic is simulated in a mesoscopic
simulator, in which the decisions on route choice are simulated for each vehicle. The inputs to the
overnight parking module are the overnight parking supply, synthetic population of vehicles, and
vehicle-owning establishments. The impact of changes in overnight parking supply on traffic is
assessed using SimMobility.

2.3.2. HCV Parking Supply Scenarios

To estimate the impact of changing HCV parking supply, we set two supply scenarios: a baseline
and a hypothetical parking supply scenario. Hereafter, the baseline will be referred to as Scenario 1
and the hypothetical scenario as Scenario 2. We hypothesize that shifting parking locations closer to
major industrial areas, will: (a) release the scarce land resources in nonindustrial areas; (b) segregate
the HCV parking supply, reducing interactions of HCVs with cars and thereby increasing safety [19],
particularly for the trips to and from the overnight parking location; and (c) ameliorate air quality in
nonindustrial areas as the HCV traffic has an adverse effect on air pollution [20].

In Scenario 1, HCV supply consisting of 41,800 parking spaces is distributed to 3560 parking
locations that spread over 379 TAZs. In Scenario 2, the total number of parking spaces is kept constant,
but parking capacities at the locations in the Scenario 1 are redistributed based on a measure of
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proximity to industrial areas. In Scenario 2, the 41,800 parking spaces are distributed into 2910 parking
locations across 236 TAZs. In effect, for Scenario 2, there are fewer but larger parking lots predominantly
in the industrial areas of Singapore’s Western region. The HCV parking supply scenarios are shown in
Figure 3.
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2.3.3. Simulation Setup

The simulation setup is summarized in Figure 4. Considering the given overnight parking supply
infrastructure scenario, we applied the overnight parking choice model to obtain overnight parking
assignments. Iterating over vehicles randomly, and taking vehicle attributes as well of those of their
owner as inputs, the utility of available parking alternatives is calculated, and the alternative with
the largest utility is assigned to the vehicle. Note that the parking alternatives are the composite
alternatives prior described, defined by park-ownership type (public 1, public 2, private–open and
private–closed) and TAZ membership. Thus, upon selection of the alternative, a random assignment
is performed on the subalternative at the TAZ level. Following, the capacity of the given alternative
is reduced by one. Upon obtaining parking assignments for all vehicles, the planning for their tours
takes place. Note that to measure the isolated impact of changing overnight parking supply for HCVs,
we fixed commodity contracts and shipments, vehicle ownership, and vehicle operation plans which
determine activity locations during the simulation for both scenarios. The vehicle operations plan for
HCVs in Scenario 1 is determined by running the “pre-day” module in SimMobility. In Scenario 2,
only the overnight parking locations of the vehicles are changed. The other activity locations in the
vehicle tours are retained. The only impact on trips other than first and last trips, which originate or
terminate at an overnight parking location, is due to the randomness incorporated in the dynamic
route choice simulations.
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2.3.4. Metrics of Interest

The two scenarios are compared in terms of a few performance measures. We compute, for each
vehicle, the length of trips to and from the overnight parking location under the assumption that the
remaining trips on the vehicle tour are fixed. As mentioned earlier, a vehicle tour is a sequence of stops
starting and terminating at an overnight parking location. The sum of these trip lengths is an proxy of
the change in negative impacts such as pollution and energy consumption associated with trips to and
from the overnight parking location. Furthermore, we compute changes in HCV traffic for different
segments of the road network which can help to identify potential traffic bottlenecks.

3. Results

In this section, the estimated overnight parking choice model is detailed, followed by an
examination of the outcomes of its application to the alternative parking supply scenario—Scenario
2—and the resulting traffic flows and associated metrics. The parameters of the estimated overnight
parking choice model are summarized in Table 1.

Table 1. Estimated parameters of parking choice model.

Serial No. Parameter Value Std.Err. t-Value

1. Park-ownership type
1(a) Public 2 0.647 0.302 2.14
1(b) Private-open 0.925 0.306 3.02
1(c) Private–closed 2.20 0.446 4.93

2. Distance (km) –1.39 0.0459 30.2
3. Price (100 SGD) –0.128 0.0765 1.68
4. Vehicle weight (Tones) –0.493 0.121 4.07
5. Vehicle age (years) 0.0665 0.0208 3.2
6. Industry category

6(a) Manufacturing 0.279 0.304 0.918
6(b) Transportation –0.546 0.214 2.55

The initial loglikelihood is equal to –5437.6, and the final equal to –4456.6. Thus, the log-likelihood
ratio index (see, e.g., [21]) is 0.175, which is comparable to the results of spatial choice models found
in literature ([22,23]). The results indicate that vehicle owners prefer parking at locations closer to
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their own business, which is seen in the negative coefficients for distance. Furthermore, as expected,
owners are sensitive to changes in parking prices as reflected in the negative price elasticities. Owners
with heavier vehicles (such as cranes, etc.), and those in the transportation industry are unlikely to
park in private–closed parking locations. This can be related to locations of demand for these vehicles
varying over time, thereby requiring a shift in the overnight parking location. In contrast, owners of
manufacturing industry vehicles prefer private–closed parking, which is not surprising as the vehicles
might potentially be closer to the first pick-up location. Older commercial vehicles tend to park in
public 1 parking locations, which often have advantages such as a convenient location, a low parking
fee and a first-in/first-out policy of allocation.

Applying the overnight parking choice model to the parking supply in Scenario 2 results in
the spatial distribution of realized demand shown in Figure 5. Note this figure details the realized
demand, meaning it considers supply constraints in the assignment of demand to supply. Furthermore,
Table 2 summarizes the changes in region-wise utilization of parking supply in Singapore. Due to the
redistribution of parking spaces primarily to the West of Singapore, the utilization rate of parking lots
increases in the Central, East and Northeast regions of Singapore, and decreases in the North region.

Table 2. Region-wise HCV parking demand across scenarios.

Region Scenario 1 Scenario 2
Supply Utilization (%) Supply Utilization (%)

Central 5100 94 3000 100
East 4100 81 1100 100

North 8700 61 7800 56
Northeast 3500 86 3000 91

West 20400 76 26900 77

Total 41800 76 41800 76

Three iterations of the traffic simulation were performed in SimMobility and the traffic flow results
were found to be stable across the runs. The total vehicle kilometers travelled (VKT) by all HCVs
in a day increased by 7%, from 1,869,029 km in Scenario 1 to 2,000,783 km in Scenario 2, indicating
a longer distance traveled by the vehicles to fulfill the same commodity flows. The sum of the first
and last trip lengths increased across the scenarios by 36%, from 20.44 km in Scenario 1 to 27.81 km in
Scenario 2, indicating an adverse impact on the vehicle operating costs. Furthermore, the HCV traffic
on the road network increased in the industrial areas in the West, and decreased by a small amount in
HCV traffic in the East and Central regions of Singapore as shown in Figure 6. This is not surprising,
as the parking supply increased primarily in the industrial areas in the West. We also compared the
change in speed across scenarios for the different segments of the network. There was a negligible
change, which was expected, as HCVs (32,000) constitute only 3% of the total vehicle population of
Singapore. We found that a shift in overnight parking provision away from nonindustrial areas fulfils
the objective of segregating HCV traffic in Central and Eastern regions. Furthermore, it makes land in
nonindustrial areas available for other purposes. However, this results in an increase in VKT to fulfill
the same amount of commodity flows within the city.
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Figure 6. Percentage change in heavy commercial vehicle traffic volume over a day (filtered for
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4. Conclusion

In this research, we quantified the impact on vehicle operations and traffic of changes in the spatial
distribution of overnight parking supply. The method can be extended to other cities facing similar
land constraints as to evaluate overnight parking infrastructure policies. The study demonstrated the
potential for using behavioral models and simulation tools to evaluate the impact of changes in land-use
planning, thereby aiding planners to meet the challenges of growing urban freight demand. Despite
this, the overnight parking choice model is limited by the exclusion of variables such as the proximity
of parking location to driver’s residence and freight pick-up locations. Incorporating these variables
to refine the overnight parking models should reveal interesting insights and improve the estimated
flows. Furthermore, extending the scope of parking policy analysis to include pricing strategies will
unravel the potential costs and benefits of pursuing two divergent urban parking policies, long-term
land-use changes, and short-term pricing strategies. We leave this topic for future research.
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