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Abstract: Water is a limited resource but essential to sustaining life and supporting economic
development. Only 2.5% of all the water on Earth is freshwater and can be used to meet basic
human needs such as a clean supply of water for drinking, cooking, and bathing. Water scarcity is
the result of an imbalance between supply and demand. Efficient water resource management is
definitely of interest to research and is a practical topic. At the same time, water-related disasters
such as floods and droughts cause the loss of life and property. Disasters increase the difficulty of
effective water resource management. An increase in climate extremes can also increase the risk of
floods and droughts. This overview covers 150 peer-reviewed journal publications from the last
twenty years focusing on risk-reduction strategies for floods and droughts. First, a definition and
classification of flood and drought was introduced. Second, studies and techniques associated with
risk reduction were grouped into three themes and discussed: prediction and warning; monitoring;
and impact assessment, response, and management. As a result, many studies were solely focused
on, and achieve excellence in, their own themes. Special attention was needed to find in these studies
what can convert the adverse impacts such as flood water to positive outcomes such as drought relief.
Multidisciplinary cooperation is necessary to achieve sustainability and to adapt to climate change.
Finally, advanced techniques such as artificial intelligence (AI) and the internet of things (IoT) were
foreseen to have a tremendous impact on future disaster risk reduction.
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1. Introduction

The United Nations (UN) proposed 17 sustainable development goals (SDGs) in 2015,
which promote economic, environmental, and social advancements to achieve a better and more
sustainable future for all. The SDGs are interconnected, and none of them is less important than the
others. It is a call for action by all countries who recognize that the achievement of the goals by the
target date of 2030 must go hand in hand with strategies to solve and address different social and
economic issues, while tackling climate change and working to preserve our living environment [1].
Water resources are essential and significantly interconnected to the content of the SDGs. For example,
Goal 6 demonstrates that clean, accessible water for all is an essential part of the world if humans
want to live sustainably. However, water scarcity is still an issue. Only 2.5% of all the water on
Earth is freshwater, and the remainder is saltwater. Of this freshwater, two-thirds is snow and ice,
and one-third is below ground. Therefore, only 0.3% of all the freshwater on Earth is available as
surface water for use. The UN mentioned that more than 2 billion people are living with the risk
of reduced access to freshwater resources, and at least one in four people is likely to be affected by
chronic or recurring shortages of freshwater by 2050. Water scarcity is the result of an imbalance
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between supply and demand. Over 1.7 billion people are currently living in river basins where water
use exceeds supply [1]. Therefore, efficient water resource management reduces the risk of water
scarcity that affects the global population and helps sustain life on Earth. Goal 13 calls on all nations
to take action on climate change. The consequences of climate change, such as sea-level rise and
frequent extreme weather events, affect lives, costing people, communities, and countries dearly today.
For example, the El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting
extreme weather conditions worldwide. Cai et al. [2] showed that ENSO-related catastrophic weather
events are likely to occur more frequently because of a slowdown in the Walker circulation. However,
the results of the study are still waiting for further testing when new models, observations, and insights
become available. The increase in catastrophic events, such as floods and droughts, is significant
for achieving SDGs because it generates multiple impacts, including loss of life, damage to property,
destruction of crops, and outbreaks of waterborne diseases. Water-related disasters such as floods
and droughts are the most frequent calamities worldwide [3]. These disasters cause significant loss
of life and property. For example, the 2011 Thailand flood caused over hundreds of deaths and the
economic damage was estimated to be 40 billion USD [4]. The impact of the 2002 South Dakota,
USA drought on crops and livestock production was estimated to be from 1.4 billion to 1.8 billion
USD [5]. Climate extremes increase the risk of floods and droughts. However, the consequences of
natural disasters such as floods and wildfires are not necessarily negative. For example, floods in
natural systems maintain key ecosystem functions and biodiversity by linking the river with the land
surrounding it, recharging groundwater systems, filling wetlands, increasing the connectivity between
aquatic habitats, and moving both sediment and nutrients around the landscape and into the marine
environment [6]. Therefore, innovative water hazard preparedness and management can secure the
resilience of communities and even turn adverse impacts (e.g., excess water) into positive outcomes
(e.g., drought relief).

This literature overview aims to provide a systematic summary focused on the advanced
technologies that have been developed to mitigate and prevent damage from droughts and floods.
The overview employs three databases and does not limit itself to specific journals, or publishers,
but mainly focuses on research after 2000. The study selected three research databases that are commonly
used in literature reviews: Scopus, Google Scholar, and Web of Science. In line with other systematic
literature reviews in the field, the keywords flood, drought, water management, disaster, sustainability,
climate change, and resilience were used as search criteria. The search was conducted in January
2020, when a combination of the keywords was used to retrieve over 150 related journal publications.
Among them, 92 publications were on the flood issue and 53 publications were on the drought issue.
The remains of the publications were on the integrated studies for floods and drought. It is expected
that professionals and experts in water resources have an obligation to plan and manage water resource
systems so that they will fully contribute to an improved quality of life for all people, now and in the
future. This paper is organized as follows. Section 2 presents the classification of natural disasters and
focuses on floods and droughts. Section 3 shows the literature review metrics adopted and proposes
an overall synthesis of the results. Section 4 provides examples of a systematic disaster risk reduction
strategies for floods and droughts. Finally, Section 5 includes some concluding remarks.

2. Definition and Classification of Flood and Drought

Natural disasters are divided into six disaster groups: biological, geophysical, meteorological,
hydrological, climatological, and extraterrestrial [7]. Floods are in the hydrological group. There are
three disaster subtypes in this group: general (river) floods, flash floods, and storm surges or coastal
floods. Drought is in the climatological group, and there are no disaster subtypes. A classification
and associated definition of floods and droughts based on a variety of studies are discussed below
and shown in Table 1. It serves as a foundation for further discussion in other sections in this
literature review.
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2.1. Flood

This literature overview classifies floods into three categories: (1) pluvial flooding, (2) fluvial
flooding, and (3) coastal flooding. The categories are similar to those in study [7], but this literature
review uses fluvial flooding instead of general flooding to describe river floods. The details are
described below.

(1) Pluvial flooding occurs in rural areas, when the rate of precipitation falling on an area exceeds
the infiltration rate into the ground, and in urbanized areas, when the floodwater exceeds the capacity of
the built storm drain systems. Pluvial flooding is defined as flooding that results from rainfall-generated
overland flow and ponding before the runoff enters any watercourse, drainage system or storm drain,
or cannot enter it because the network is full to capacity [8]. Some studies [8–13] differentiate “surface
water flooding” from “pluvial flooding”, and the former term is usually adopted to describe the source
of flooding being surface water during heavy rainfall in urban areas. More broadly, “surface water
flooding” includes pluvial flooding, sewer flooding, flooding from small open-channel and culverted
urban watercourses, and overland flows from groundwater springs [8]. The discussion of differences
in these two terms is beyond the scope of this review and will not be addressed hereafter. It appears
that the frequency of pluvial flooding caused by extreme rainfall events is leading to increased impacts
in terms of the threat to life and damage. The frequency is possibly increased further as a result of
climate change [9,10]. The term “flash flooding” attracts much attention because of its unpredictability
and disaster-causing characteristics [13,14]. Flash flooding may also be associated with high-intensity
rainfall and cause flooding within 6 hours [14]. Therefore, the details of “flash flooding” are provided
in the section on “fluvial flooding”.

(2) Fluvial flooding, similar to pluvial flooding, usually occurs when an excessive amount of
rainfall exceeds the capacity of a river. In some areas, such as North America, fluvial flooding can
also be caused by heavy snowmelt and ice jams [15,16]. There are two main types of riverine flooding:
One is “overbank flooding”, which is the most common, and occurs when water rises to overflow
the edges of a river. Second, “flash flooding” is characterized by an intense, high-velocity torrent of
water that occurs in a river within 6 hours or less. The causes of flash floods can be high-intensity
rainfall or the sudden breakage of a dam or levee. Flash floods along with debris are very dangerous
and destructive not only because of the force of the water but also because of the short warning
and response times in comparison with that of normal floods [17]. Flash floods can also occur in
mountainous areas due to steep topographic and geological conditions. These conditions may intensify
flash-flood damage, but most damage is still found in flat lowlands where population and property are
often concentrated [18]. Studies have shown that fluvial flooding is an essential natural process for
river and floodplain ecosystems [19,20]. Maintaining the proper functioning of river ecosystems from
floods while minimizing damage is definitely a research topic of interest.

(3) Coastal flooding in low-lying areas is usually caused by wind waves and elevated water
levels [21]. They are usually generated by large waves, storm surge, high tides, and mean sea-level
anomalies. In some areas, such as deltas and estuaries, precipitation and river flow may also contribute
to coastal flooding [21]. Many studies have predicted that with climate change, there will be an
increase in the intensity and frequency of tropical cyclones and sea-level rise [22–24]. As a result,
coastal flooding from storm surges will become more frequent with sea-level rise [24]. Furthermore,
densely populated regions affected by coastal flooding from tropical cyclones have experienced a rate
of sea-level rise near or greater than the global average [23]. It is expected that the population will
continue to grow along coastal areas in the future. The frequency of coastal flooding will increase as
a result of accelerated sea-level rise and frequent tropical cyclones [22]. Unfortunately, most coastal
populations are still not prepared for an increase in the frequency of extreme coastal flooding or a
significant rise in sea level [23].
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2.2. Drought

A precise definition of drought is not clear because of different hydrometeorological conditions,
geographical locations, or even stochastic water demands in different regions around the world [25].
For example, the World Meteorological Organization (WMO) [26] and UN [27] identified drought
as a condition of deficiency in precipitation. It can be identified as a condition in which crops fail
due to the lack of moisture in the soil [28]. It can also be defined as a condition in terms of low
annual daily streamflow [29]. Droughts are typically classified into four categories: (1) meteorological
drought, (2) hydrological drought, (3) agricultural drought, and (4) socio-economic drought [25,30,31].
The details are described below. It is noted that groundwater drought is not included in this literature
overview because only limited research has been done on the occurrence and propagation of droughts
in groundwater. Some studies considered groundwater drought as a new type of drought [25,32].
However, groundwater drought is difficult to quantify due to a lack of comprehensive groundwater
observations at regional and global scales [32]. Therefore, groundwater drought may be treated as a
new type of drought when more data are available [25]. The details of the four types of drought are
described below.

(1) Meteorological drought is defined as precipitation deficits over a region for a period of time.
It is considered drought when precipitation is below the average values [33]. The time frame to
determine drought can be monthly or seasonal precipitation [34,35]. A previous study has shown
that meteorological drought is highly related to sea surface temperature (SST) as well as temperature
anomalies. However, the level of deficit required to define a meteorological drought is not yet clear [35].

(2) Hydrological drought is related to a period with surface and subsurface water resource
(drought in rivers, lakes, and groundwater) shortfalls on adequate water supplies for established water
uses (e.g., sources of drinking water or support for aquatic animals and ecosystems) of a given water
resource management system [25]. Therefore, the assessment of hydrological drought is crucial for
water resource management. Instead of precipitation data used for meteorological drought, streamflow
data have been widely applied for hydrologic drought analysis [36,37]. Hydrological droughts can
cover extensive areas and can last for months to years [38]. Major differences between meteorological
and hydrological droughts are related to the features of climate and catchment [37].

(3) Agricultural drought refers to a period with declining soil moisture and consequent crop
failure without any reference to surface water resources [25,39]. Drought starts with meteorological
drought and persistent dry conditions and then induces agricultural, hydrological, and agricultural
droughts [35]. A decline in soil moisture depends on several factors, such as soil properties, climate,
weather, topography, and land cover [40]. For example, when evaporation is greater than precipitation,
a depletion of soil water and crop wilting occur to trigger agricultural droughts. Food production is in
jeopardy and agricultural droughts cause socio-economic impacts.

(4) Socio-economic drought is associated with the failure of available water resources to meet water
demands, thus associating droughts with the supply of and demand for an economic good [25,31].
Socio-economic drought occurs when the demand for an economic good exceeds supply as a result of
a weather-related shortfall in water supply [25]. Therefore, the first three drought categories address
ways to measure drought as a physical phenomenon. Among the four types of drought, socio-economic
drought has a direct impact on human production and daily life [41].
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Table 1. Classification of floods and droughts.

Disaster Classification Definition Reference

Flood

Pluvial The rate of precipitation falling on an area
exceeds the infiltration rate into the ground. [8–14]

Fluvial The excessive amount of rainfall exceeds the
capacity of a river. [15–20]

Coastal Flood in low-lying areas is usually caused by
wind waves and elevated water level. [21–24]

Drought

Meteorological Precipitation deficits occur over a region for a
period of time. [33–35]

Hydrological
Surface and subsurface water resources are

not enough to meet water supplies of a given
water resources management system.

[36–38]

Agricultural
Declining soil moisture and consequent crop
failure are without any reference to surface

water resources.
[35,39,40]

Socio-economic
The demand for an economic good exceeds

supply of a weather-related shortfall in water
supply.

[41]

3. Recent Research on Disaster Reduction

Measures taken to prevent or mitigate the impacts of floods and droughts can be identified
as structural and nonstructural measures. Common structural measures, such as retention ponds,
dams, river improvement, urban drainage systems, and levees or dikes, are used to store floodwater,
decrease peak stage, and retain floodwater to mitigate the impact of floods [42–44]. Nonstructural
measures include early flood warning, hydrological taxes, flood emergency planning and response, and
environmental education [44,45]. Structural measures are engineering constructions that aim to reduce
or remove the volume of floods. Some studies argue that structural measures are fundamental to
solving most flood problems, but in addition to being costly, they do not by themselves effectively and
sustainably resolve the most complex problems [45,46]. Nonstructural measures are applied to prevent
and reduce damage through actions, legislation, standards, and programs [45,47]. One study showed
that flood impacts are more efficiently reduced with structural strategies compared to nonstructural
strategies [48]. Nevertheless, the benefits based on the avoided damages from these measures must be
compared to their costs. Therefore, a cost-benefit analysis must be carried out for further evaluation [48].
Measures to mitigate drought impacts are classified into three categories: (1) water-supply measures,
(2) water-demand measures, and (3) impact minimization measures [49]. The first two measures
tackle water-scarcity issues, and the third measure minimizes the social, economic, and environmental
impacts of drought on human society. Structural measures can increase new water storage, such as the
construction of new reservoirs, and improve existing water system efficiency, such as leak detection.
Nonstructural measures are the development of drought warning systems to identify early warning
signals of drought and the taking of response measures and policy-related actions that can be taken to
reduce the impact on society. For example, Texas in 2011 suffered from drought and the government
used an insurance program to pay out $10.8 billion for agriculture compensation [50]. Other actions,
such as the reduction of water usage for industrial sectors and incentives for low flow fixtures, can also
be taken according to the drought stage and existing conditions.

This overview focuses on nonstructural measures that are more proactive and easier to apply and
understand from the public point of view. Meanwhile, nonstructural measures are also relatively cost
effective, require a short time to implement, and supplement structural measures well. Many published
papers were reviewed following the major themes and subtopics in the years from 2000 to 2020.
A typical disaster-reduction cycle consists of prevention, preparedness, and emergency response as
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well as recovery and rehabilitation. In terms of research themes corresponding to the cycle, this review
identified three major themes: prediction and warning; monitoring; and impact assessment, response,
and management (Figure 1). The three categories are interconnected. In other words, the initiated
item can be any of them. For example, flood disaster mitigation can start with the establishment of
a monitoring network and then provide prediction and warning information to decision makers for
taking necessary response measures. A systematic overview of these three categories is provided here,
and Table 2 shows the number of published papers according to different themes from 2000 to 2020.
The details of each theme are discussed below.
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3.1. Prediction and Warning

3.1.1. Flood

Prediction and warning are proactive approaches to disaster management. The most common
information used for the prediction and warning for floods are flood levels and peak discharges.
Along with an emergency response strategy, this approach can be implemented before and during
the events to evacuate residents or to prevent the failure of structural measures, such as levees
or reservoirs. The impact of disasters can be decreased due to precautionary measures. Studies
have shown that the development of an early warning system is the most cost-effective measure
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because it saves lives and property [51,52]. There are various approaches to simulate flooding
when rainfall information is given, and the most common approaches are divided into three groups:
data-driven-based methods, physics-based models, and other alternatives [53]. The latter considers
mass conservation and moment equations to better describe flow behaviors and provide high spatial
details in terms of flood forecasts. For example, one-dimensional modeling in the hydrodynamic model
usually assumes that flow discharge and water level along the flow direction are parameters of interest.
The most well-known model is the HEC-RAS model, which was developed and is continuously
maintained by the US Army Corps of Engineers [54]. It is a commercial free software, and many
studies have applied it for various purposes, not only limited to flood modeling but including sediment
transport simulation and dam break, etc. (e.g., [55–57]). The newer version of HEC-RAS even extends
its capabilities to two-dimensional inundation modeling [58]. Regarding two-dimensional models,
Saint-Venant equations are the most applicable assumptions in two-dimensional flood modeling. Most
well-known models, such as HEC-RAS, CCHE2D, MIKE21, and SOBEK, are designed to provide more
details regarding fluid motion, such as flow velocities in the longitudinal and transverse directions
(e.g., [59–61]). Some studies considered lumped and distributed hydrological models, such as SWAT,
AnnAGNPS, WEPP, or APEX, to provide peak flow at watershed scale [62–64]. The usefulness of
lumped hydrological models for forecasting may be limited by their coarse resolution, the need for
long-term historical data for calibration, and an inapplicability to poorly gauged catchments [14].
When the data is limited or there are no gauging stations at the study area, for example precipitation
data is missing or there is not enough, numerical models can be applied to generate future data of
flow used in models such as HEC-RAS for flood forecasting [65–68]. However, research on data
scarcity or ungauged basins is another fast-growing topic but beyond the scope of this overview.
The topic itself deserves another systematic review. Computational cost and data requirements are
significant in solving the detailed governing equations. During emergency response, efficiency and
numerical stability become very important for further applications in flood prediction and warning.
As a result, a variety of alternatives have been developed to improve the computing efficiency. Despite
active research in the field, rapid and accurate flood modeling at high spatiotemporal resolutions
remains a significant challenge in hydrologic and hydraulic studies. The data-driven-based model,
also referred to as the black-box model, is one of the models to attract the most attention. The model
itself may not include the abovementioned governing equations but instead involves mathematical
equations from the analysis of time series data. The analysis can then be used to provide flood
predictions and warnings e.g., [69,70]. The quantity and quality of data have a significant impact on the
performance. Its performance also deteriorates when the forecast lead time is extended [71]. Other than
the abovementioned categories, simple physics- (or conceptual models), threshold-, or index-based
models have also recently been discussed by many studies (e.g., [18,72–74]). Both simple physics- and
index-based models can provide rapid flood hazard assessments in different spatial and temporal
solutions. Therefore, the requirements of emergencies in terms of efficiency and reliability are easily
met. However, due to their simplicity in assumptions, they should not be considered as an alternative to
the complex hydrometeorological models but can be immediate tools for purely nontechnical decision
makers in the case of early warnings and flash floods [75]. As a conclusion, the trend of prediction and
modeling from traditional physics-based flood models moves to simple physics-based flood models to
meet the needs of operational purpose. Because of rapid development in data science, the artificial
intelligent or data-driven models are getting most researchers’ attention if observation data is provided.
Among all models, Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Machine (SVM),
and Artificial Neural Network (ANN) are most commonly used [69–71].

3.1.2. Drought

Short-term or immediate measures are of great benefit to reduce flood damage. Drought,
unlike floods, is usually a long-term effect. The slow progression and inception of drought can be
advantageous. Decision makers can foresee these events in advance and therefore take corresponding
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responses [76]. Therefore, long-term but not short-term advance prediction and warning are most
important for early preparedness to reduce the impact of drought. As addressed in the previous
section, drought can be classified into four categories. Among these, meteorological drought can
precede and lead to the three other categories [77]. Because of this prerequisite and the fact that
drought involves a long-term variation in climate, prediction and warning are usually focused on
meteorological drought. The two most common approaches to provide early drought information
are dynamic modeling and statistical modeling. The latter approach includes regression analysis and
stochastic, probabilistic, and artificial intelligence-based modeling [78,79]. Dynamic modeling can
provide real-time results. Given accurate real-time environmental monitoring information, such as
rainfall, streamflow, and temperature, and remote sensing data, such as broader earth weather or
the water content of the soil, drought monitoring and prediction systems can be established [80–82].
The results from dynamic modeling can provide predictions and warnings for meteorological drought.
Along with hydrological modeling and socio-economic methods, three other types of drought can
also be evaluated [83]. Dynamic modeling usually involves large-scale observations in larger areas,
and its complexity, such as the model structure itself and the requirement of computational resources,
makes dynamic drought modeling difficult to adopt by individuals. Monitoring information such
as remote sensing data serves as input, and its accuracy, therefore, has a significant impact on the
performance of dynamic modeling. In contrast, statistical modeling is relatively simpler than dynamic
modeling. Many drought indices have been derived for assessing the effect of a drought and defining
drought parameters, such as the intensity severity and spatial extent [79]. Among them, as rainfall is
the primary source for water resources, the standardized precipitation index (SPI) is the index most
adopted by different countries [84]. Many studies have applied the SPI as a drought-quantifying
factor to predict drought conditions at various time scales (up to 24 months lead time) with reasonable
accuracy [69,85–87]. Different statistical models have their advantages and disadvantages. For example,
the regression model is the simplest and most direct model. Its linearity assumption may limit
its application for longer lead time forecasting. Probabilistic models show good performance but
need larger computational resources in comparison with that of other statistical models [78]. Similar
to flood forecasting, drought forecasting traditionally was done based on dynamic modeling or
observation-based indexing. The trend of recent research is moving to the application of artificial
intelligence [79,84,88,89]. As with most applied modeling in flood forecasting, ANN, ANFIS, and SVM
are also the most mentioned models for drought forecasting [78,90,91]. The SVM model seems to
outperform other artificial intelligence models, especially for long-term forecasting [86,90]. This ca be
explained by SVMs seeking to minimize the generalization error while other models seek to minimize
the training error. Its advantage is to avoid overfitting and local minima [78]. Regardless of what
data-driven models are used to provide predictions or warnings, long-term and accurate monitoring
information is important to serve as inputs and has significant impacts on forecast performance.

3.2. Monitoring

Monitoring data that are ground or remote sensing based, such as rainfall, weather, crop conditions,
soil moisture, stream stage, and flow, serve as water availability inputs in early warning systems
for prediction [18,92–94]. The temporal length and spatial coverage of the data can also help the
understanding of extreme events in detail [17,34]. The reliability and credibility of data determine the
performance of prediction [95]. The spatial coverage of information such as rainfall observation data is
always an issue because gauging stations are never dense enough to characterize events [88]. Other
than being inputs to the models, information from ground-based gauges is also used as ground truth
to calibrate and validate the model performance. Ground-based monitoring systems can only offer
limited coverage in terms of spatial extent. Remote sensing-based observations such as satellite and
radar can complement data collected by ground systems. Satellites can observe soil and vegetation
moisture or provide images to estimate the SPI to understand drought conditions [96–98]. A technique
called data assimilation integrates remote sensing-based data and improves the performance of
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large-scale models for extreme forecasting, such as weather prediction models (WRFs) [99–101]. Along
with artificial intelligence, satellite observations can then provide precipitation estimations [102].
Recent studies have applied satellite images for flood detection or flood mapping [103,104]. This
approach is particularly helpful for those areas or countries without adequate ground-based
observations [105,106]. The improvement in radar observation techniques in dual-polarization radar
instead of single-polarization radar provides more accurate rainfall estimation [107]. Quality assurance
(QA) and quality control (QC) for the data are essential for subsequent applications. The common
approach is to adaptively correct remote sensing-based data with ground-based observations [108,109].
Recent studies have used data-driven or data-mining techniques to identify possible data bias or
extremes and further correct them simultaneously to meet the needs of disaster response [110–112].
Finally, because of rapid progress in the internet of things (IoT), sensors and associated components are
becoming cheaper than ever before. The deployment of large-scale and economically efficient sensory
networks is expected, and the quantity and quality of the monitoring can be increased and improved
accordingly [113,114]. New techniques, such as the application of commercial microwave links for
rainfall observations, the analysis of pictures from cameras, or the crowdsourcing of personal weather
stations, are rapidly developing to extend the horizon of monitoring for sustainability [115–118].
Other than the monitoring task itself, gauging stations according to their locations (e.g., upstream of
a watershed) can be used to for flood forecasts at a downstream area [119,120]. The early warning
systems based on upstream gauging stations can provide predictions within a watershed but only
with a limited lead time. If the time of concentration of the watershed is short (i.e., less than a few
hours), then the time window of disaster response is also narrow. Efficient numerical models such as
HEC-RAS, rapid flood evaluation models, or data-driven models are commonly applied to meet the
requirement of a short response time [119,121]. In conclusion, much research has put a lot of effort into
remote sensing monitoring technologies such as Synthetic Aperture Radar (SAR) flood detection [122].
Its 24-hour, all-weather monitoring capability can improve the accuracy of inundation area detection.
In addition, it is hard to build a dense monitoring network due to high cost of monitoring devices. It is
expected that much research will pay attention to low-cost devices and use them to provide accurate
and high-frequency monitoring data.

3.3. Impact Assessment, Response, and Management

3.3.1. Flood

Impact assessment, in terms of different disaster types, is carried out on the basis of the persistence
of stressed conditions, population, and critical infrastructure and, finally, its effect on social and
economic losses. The response means the measures during and after events to mitigate the impacts
of disasters. Management includes planning for water management through policymaking, better
water and crop management, and increased public awareness and education. Impact assessment is a
tool to support decision making. It not only provides flood risk assessment but also directly translates
the risk into the expected socio-economic impacts [123]. Along with flood or drought warning and
prediction models, the integration of different information and tools, such as geographic information
systems (GISs), satellite images, consensus data, the locations of critical structures, and socio-economic
impact assessment tools, is necessary [123,124]. Impact assessment can be classified according to its
evaluation time into pre- or during-disaster assessment. Pre-disaster impact assessments consider
climate change [22,125] and planning- or preparedness-related applications [126,127]. During-disaster
impact assessment is usually directly associated with immediate response [128–130]. A comprehensive
and well-established monitoring network is necessary for during-disaster or so-called near real-time
impact assessment. Given real-time observations along with detailed socio-economic investigation
data, the efficiency of predictions is another important issue. The computer models or evaluation
approaches must adopt the input information (such as real-time observations) and provide assessments
in a timely manner to meet the need of emergency response. As mentioned before, drought usually
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develops slowly and has a prolonged impact. Floods usually have a clear and sudden start and end,
but drought does not. However, drought can be unexpectedly ended by extreme precipitation [131].
Therefore, long-term instead of short-term impact assessment (here, short-term means a few hours to a
few days) is usually more important for drought. The assessment scale varies from a city to a national
scale according to the problems. Responses are consistent with being pre-disaster or during disasters
accordingly. In terms of flood reduction, Hegger et al. [132] distinguish five types of flood management
strategies: (1) flood defense through structural measures; (2) risk prevention by considering proactive
spatial planning to avoid high-risk areas; (3) risk mitigation by the flood-adapted design and use of
buildings; (4) the preparedness for response, e.g., using flood warnings and evacuation plans; and (5)
recovery considering risk transfer mechanisms such as flood insurance to compensate for flood losses.
These five management strategies cover structural (e.g., dams and dikes) and nonstructural measures
(e.g., land use planning and insurance programs).

3.3.2. Drought

Drought, as mentioned before, is a slow-developing process; therefore, the general public usually
does not feel the response in comparison to mitigation measures for floods. Short-term measures
would include providing early-warning information, increased emphasis on water conservation
(demand reduction), increased water supplies through other backup resources such as groundwater,
and water reutilization and recycling. A short-term strategy like water recycling can immediately
reduce the need of a water supply and the installation of a water recycling system can be done in
a timely and cost-effective manner. However, a comprehensive plan and long-term measures are
key to solving the drought issue fundamentally. Long-term measures include the construction of
reservoirs, joint operation of water supplies (interconnecting water supplies between neighboring
communities or nations), and drought preparedness planning to build greater institutional capacity
and awareness building and education [133]. A comprehensive plan includes long-term measures to
meet the long-term water demand along with short-term measures to provide a buffer to respond to
the uncertainty of the future. Among all the measures, demand reduction is always the most common
and efficient measure to take. It is considered that the water consumption of agriculture is always the
highest. Therefore, many studies have focused on agricultural drought responses [134–136].

Table 2. Research themes and associated studies related to flood and drought mitigation.

Research Theme Disaster Type

Prediction and Warning

Flood
Physics-based models [53–61]
Data-driven models [69–71]

Other alternatives: rainfall threshold/index-based models [72–74]

Drought
Statistic models [78,79]

Dynamic models [80–82]
Monitoring information and index-based monitoring [85–87]

Data-driven models [88–91]

Monitoring
Traditional observation approach [92,94]

Remote sensing techniques [96–98]
Advanced monitoring network [115–118]

Impact Assessment,
Response, and
Management

Climate change or
planning-related assessment

[125–127]
Immediate disaster evaluation and

response [128–130]

General measures to mitigate the
drought impact [127]

Specific measures for agriculture
drought [134–136]

3.3.3. Other Associated Studies

It has been confirmed that the state has the primary responsibility to protect people and property
from hazards. However, it has also been indicated that strengthening community-level capacities to
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reduce disaster risk is especially needed, considering that appropriate disaster-reduction measures
enable communities and individuals to significantly reduce their vulnerabilities to hazards [137].
The traditional paradigm for emergency response is a “top-down” approach: an executive decision
maker or other top person makes the decisions for emergency response. The community-based
approach, a so called “bottom-up” approach, is the opposite approach, in which everything is initiated
locally and designed to respond to a disaster immediately. Recent studies have shown the efficiency of
community-based emergency plans [138,139]. The first priority of disaster response is to protect people.
However, the interference of economic activities and the associated loss receives attention. Post-disaster
impact, such as interruption to the supply chain of industries, is also significant as floods can occur in
high-tech industry parks. To maintain a resilient business or a sustainable society, the concept of a
business continuity plan (BCP) has been generally applied and studied [140,141]. In conclusion, many
response and management strategies rely on historical records or past experiences. However, there
are more and more unprecedented extreme events, which mean no one thought they would happen.
The paradigm of disaster management must shift from prevention to management or mitigation in
order to achieve the goal of sustainability. The concept of BCP is a very good practice for business
sectors to adapt to climate extremes and return to regular trade in a timely manner [142].

4. Integration of Structural and Nonstructural Measures for Disaster Mitigation

Tables 3 and 4 show examples of risk reduction for floods and droughts, respectively. The tables
provide a systematic strategy for the risk reduction of floods and droughts. Furthermore, an integration
of structural and nonstructural measures is considered. The monitoring is an important role for the
risk reduction of floods and drought. There is no big difference in terms of monitoring for both floods
and droughts. Establishing a comprehensive monitoring network is essential for detailed observation.
It provides the condition of status quo and serves as a reference for future forecasts. Prediction and
warning can be done by using the monitoring information as input. At this stage, numerical models,
a nonstructural measure, are applied to provide results, such as river stage forecasts for floods and SPI
for droughts. Government and public entities can evaluate possible impacts, such as flood affected area
and drought duration, using the abovementioned forecasts. The socio-economic impact is obtained,
and decision makers can take precautionary measures as a response. The “response” is the biggest
difference between floods and droughts. Due to the characteristic of drought, it is almost impossible to
prevent drought from happening. Therefore, the main idea in response to droughts is to decrease the
socio-economic impact. Structural measures for drought are mainly used to increase water resources.
When a drought occurs, decision makers can only take nonstructural measures, such as lower water
pressure, water supply reduction, and compensation, against the drought loss. Differently from
droughts, the first idea in the response to floods is prevention and the second is mitigation. Therefore,
structural measures such as levees and emergency bypasses are built to prevent flooding. However,
people realize that the disaster cannot be prevented due to climate change and unprecedented extreme
weather events. Nonstructural measures are applied to mitigate the impact of flooding and adopt
to climate change. A combination of structural and nonstructural measures is the way forward to
maximize the disaster loss reduction. While structural measures are mostly initiated by governments,
the nonstructural measures mentioned above are more effectively supported and engaged in by the
general public.
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Table 3. Example of the integration of structural and nonstructural risk-reduction strategies for floods.

Strategy Measure Disaster Type

Structure Nonstructural Flood

Monitoring Establishment of monitoring network (gauging stations,
satellite, etc.)

Precipitation, river stage, soil
moisture, and, etc.

Prediction and warning n/a Numerical models River stage or urban inundation
forecasting

Impact assessment n/a Numerical models Evaluation of flood-affected area
and population

Response and
management

Reservoir, levee, emergency
diversion channel, temporary
flood wall, water pump, etc.

Evacuation, land-use planning,
flood insurance, flood-adopted

design and use of buildings, etc.

Prevention of flooding and
decrease the damage to life and

property

Table 4. Example of the integration of structural and nonstructural risk-reduction strategies for droughts.

Strategy Measure Disaster type

Structure Nonstructural Drought

Monitoring Establishment of monitoring network (gauging stations,
satellite, etc.)

Precipitation, river stage, soil
moisture, etc.

Prediction and warning n/a Numerical models Standardized precipitation index

Impact assessment n/a Numerical models Estimation of drought duration
and severity

Response and
management

Reservoir, maintenance of water
conveyance system, wastewater

recycling, etc.

Low water pressure, water
supply reduction, compensation

to stop farming, etc.

Decrease the socioeconomic
impact of drought

5. Conclusions

The occurrence frequency of floods and droughts is increasing due to climate change [143,144].
This overview provides definitions of floods and droughts and discusses the related research for disaster
reduction. However, the research outcomes regarding disaster reduction are too numerous to be covered.
There is always the possibility that relevant contributions or other advanced research studies have not
been covered in the overview. Moreover, the overview only includes articles published in English.
Therefore, articles published in other languages are not included. In conclusion, an integrated view of
the research area is provided, including three research themes corresponding to the disaster-reduction
cycle. Because of rapid advances in technology, the application of artificial intelligence and the internet
of things in disaster reduction are also discussed in this paper. The abovementioned components and
their interrelationships provide a cohesive overview of the literature on the special issue of “sustainable
water resource management for disaster risk reduction”. The findings of this review further indicate
that further research is required to enhance the environmental and social sustainability of disaster risk
reduction. The results of this review show areas lacking research or needing further development,
especially through multidisciplinary research and cooperation. The detailed conclusions are provided
as follows:

5.1. Implications for Flood and Drought Researchers

The results of this review help to identify the current status and studies of floods and drought in the
literature. This work provides a foundation for further examination of the topic and theory development
by pointing out needs for future research from various disciplines. An important contribution to this
work is the definition of flood and drought classification. The core contribution is classified into three
research themes (prediction and warning, monitoring, and impact assessment and response) based on
the disaster-reduction cycle: preparedness, response, recovery, and prevention. This contribution is
important because it helps researchers position their research better in the flood- and drought-related
disaster-reduction domain. Furthermore, this work provides thoughts for future research of interest,
particularly highlighting the need for sustainable development and urbanization aspects.
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5.2. Future Research of Interest

This systematic review provides an overview of three research themes related to floods and
drought and the associated disaster reduction. All the research works achieve significant contributions
to each theme. However, multidisciplinary research and cooperation across fields are necessary to
accommodate the urgent need for disaster reduction. For example, an improvement in drought and
flood monitoring can be achieved by considering hybrid ground-based observation and remote sensing
techniques [145]. The integration of physics-based and artificial intelligence-based models is also
another research topic worth investigating. Finally, only a few studies have focused on converting a
negative impact (e.g., flooding) into a positive impact (e.g., extra water resource). Disasters such as
floods or drought not only occur frequently but also occur alternatively. This occurrence creates an
enormous challenge for scientists and engineers to build up a resilient living environment adopted
for future climate change scenarios. Rapid urbanization and population growth in countries such
as China, India, and others has changed the environment and worsened the impact of disasters.
Therefore, integrated urban flood/drought policymaking with sustainable urbanization policymaking
to best contribute to minimizing flood and drought risks in cities is necessary [146]. Some sustainable
technologies or concepts, such as low-impact development (LID), green roofs, or sponge cities, may be
considered to achieve sustainable goals [147,148].

Special attention is initially paid to those research outcomes that convert negative impacts
into positive impacts. For example, rapid urbanization and population growth are considered
as a double-edged sword [146]. The progress exposes the population to a higher risk of disaster,
but the resulting socioeconomic development creates a better living environment. However, it is
a good opportunity for a city to build up the capacity to alleviate flood and drought risks by
increasing investment in sustainable urban structure, developing risk warning and management
systems, and reducing disaster risk through land-use planning. Another example— that of shifting
drought water storage from reservoirs to underground aquifers—has made substantially more storage
capacity available for winter flood management in California [149]. This requires a comprehensive
and integrated reoperation of many flood and water supply system elements [15]. As a conclusion,
sustainable disaster-reduction strategies should represent the ability or potential of a system to respond
successfully to climate variability and change, including adjustments in both behavior and in resources
and technologies responding to both floods and droughts. However, existing studies or measures still
remain within in this category and there is a lack of multidisciplinary cooperation to meet the needs of
future challenges.
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