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Abstract: Understanding ongoing trends at local level is fundamental in research on climate change.
However, in the Global South it is hampered by a lack of data. The scarcity of land-based observed
data can be overcome through satellite-derived datasets, although performance varies according to
the region. The purpose of this study is to compute the normal monthly values of precipitation for
the eight main inhabited areas of North Horr Sub-County, in northern Kenya. The official decadal
precipitation dataset from the Kenyan Meteorological Department (KMD), the Global Precipitation
Climatology Centre (GPCC) monthly dataset and the Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS) monthly dataset are compared with the historical observed data by means of
the most common statistical indices. The GPCC showed the best fit for the study area. The Quantile
Mapping correction is applied to combine the high resolution of the KMD dataset with the high
performance of the GPCC set. A new and more reliable bias-corrected monthly precipitation time
series for 1983–2014 results for each location. This dataset allows a detailed description of the
precipitation distribution through the year, which can be applied in the climate change adaptation
and tailored territorial planning.
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1. Introduction

Over the past decades, research on climate change has become of primary concern for different
disciplines at a global level. However, the understanding of the climate at a local level is key to
interpreting undergoing changes. Although there is an abundance of data in the Global North,
the countries of the Global South are struggling to fill the gap. More specifically, land-based
meteorological stations in African countries are still around half the optimal number required, unevenly
distributed and poorly equipped [1–3].

In Kenya, there are thirty-two land-based meteorological stations, distributed mainly in the south
and on the coast, which are the most developed and geared towards tourism [4]. To improve the
livelihoods of communities, enhance and protect property [5], the Kenyan government is promoting
the country’s research and development in climate information.

In North Horr Sub-County, situated in Marsabit County in northern Kenya, there are no land-based
meteorological stations to provide past climate observations. At a distance of 250 km, there are three
weather stations, two located in the highlands and one near lake Turkana. However, they are not close
enough to describe the peculiarities of the local climate of North Horr.

The area investigated is mainly inhabited by semi-nomadic pastoral communities which rely
on livestock production. They move around the area during the year looking for pasture and water

Sustainability 2020, 12, 2896; doi:10.3390/su12072896 www.mdpi.com/journal/sustainability

http://www.mdpi.com/journal/sustainability
http://www.mdpi.com
https://orcid.org/0000-0002-4530-7386
http://www.mdpi.com/2071-1050/12/7/2896?type=check_update&version=1
http://dx.doi.org/10.3390/su12072896
http://www.mdpi.com/journal/sustainability


Sustainability 2020, 12, 2896 2 of 18

according to the changing season [6]. Climate, therefore, plays an important role in their life, particularly
with regard to precipitation, and extreme events such as floods, flash floods and droughts can have a
catastrophic impact.

Three complex phenomena and their interaction mainly influence the climate of the Country: the
Intertropical Convergence Zone (ITCZ), El Niño Southern Oscillation (ENSO) and the Indian Ocean
Dipole (IOD).

Depending on the season, the periodic shift of the ITCZ north and south is mainly responsible
for the bimodal rainfall pattern in Kenya. The first rainy season, known as the “long rains season”,
lasts approximately from March to May (MAM), and the second, the “short rains season”, from October
to December (OND), with some variation across the country. The ENSO and IOD can affect and alter the
onset and duration of the rainy and dry seasons triggering events such as droughts and flooding [7–9].
In previous decades, changes in the amount of rainfall have been recorded. The northern Arid and
Semi-Arid Lands (ASALs) region of Kenya, including Marsabit County, showed a decreasing trend.
In particular, the period of 1991–2013 was generally drier than the period 1961–1990 with the MAM
season having the highest, yet statistically insignificant, decline in seasonal rainfall amounts [10].

Until recently, climate reference literature for the area consisted of outdated studies [6,11,12].
However, climate change effects on climate at a local scale have increased interest in research studies
of the area [13–16]. This research shows that agro-pastoralists have an awareness of climate change
and that the increasing rainfall variability combined with other environmental, social and political
pressures negatively affects their resilience [17–20]. However, although local knowledge is important,
if it is not confirmed by official climate information, it could be unusable and ultimately useless [21,22].

The lack of land-based meteorological stations in the area requires the use of satellite-derived
data and climatic models for further analysis. The relationship between large-scale weather systems
and local climate varies from region to region, making necessary to evaluate and correct them at local
scale [23,24], but the scarcity of land surface observation is one of the greatest difficulties in assessing
dataset performances [25]. Previous studies have tried to assess the performance of satellite-derived
and model-derived datasets in East Africa [26–32], in particular in Kenya [33–35], in order to address
the lack of data from land-based meteorological stations. However, these studies have a more regional
perspective rather than a local focus, and further investigation on their use at local scale is needed.

This study aims to contribute to precipitation data gap filling in northern Kenya through the
design of an innovative methodology for the identification of the normal monthly precipitation values
for the main inhabited areas of North Horr Sub-County.

Therefore, it has been necessary to assess and compare the performance of different precipitation
datasets with a local scale perspective and to apply a bias correction method, leading to the creation
of a new best-fit dataset for the area. Using a direct, point-to-pixel and validation through statistical
indices [26,27] approach, this research compares data from models with historical data obtained
from land-based meteorological stations in order to assess how well their properties fit the study
area characterized by a relatively simple topography. This method was preferred to others due to
its adaptability to the available data and to the study area. The no hierarchical k-means clustering
method [28] was discarded because of its subjectivity. While it reduces the shortcomings caused by
the differences in spatial coverage of the datasets, it requires a subjective choice on the number of
clusters of pixels based on the similarity of the annual rainfall cycle. Even an analysis based on the
ability of the datasets to detect rainfall events [29] was not suitable because it would have required
daily precipitation data instead of monthly data.

Therefore, three model-derived precipitation datasets were selected and compared with the
historical series of the nearby land-based meteorological stations of Lodwar, Marsabit and Moyale.

The precipitation datasets used were:

• The decadal dataset from the Kenyan Meteorological Department (KMD), with a resolution of
0.0375◦, hereinafter referred to as the KMD dataset [36] available at http://kmddl.meteo.go.ke:
8081/SOURCES/.KMD/;

http://kmddl.meteo.go.ke:8081/SOURCES/.KMD/
http://kmddl.meteo.go.ke:8081/SOURCES/.KMD/
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• The Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, with a 0.5◦

resolution, hereinafter referred to as the GPCC dataset [37] available at https://www.esrl.noaa.gov/psd/;
• The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) monthly dataset,

with a 0.05◦ resolution, hereinafter referred to as the CHIRPS dataset [38] available at https:
//iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.

The most commonly used statistical indices were calculated: Bias, Mean Absolute Error, Mean Squared
Deviation, Root Mean Squared Deviation, Correlation Coefficient and standard deviation [26–28,39,40].
The Taylor diagram was used as a graphical evaluation instrument [41].

The comparative analysis highlighted the relatively high performance of the GPCC dataset and
the low performance of the KMD dataset. The GPCC gauge-based dataset selected was used to rectify
the KMD dataset at local level on sampled reference points—the main inhabited areas, usually cited in
policy planning [42,43]—using the Quantile Mapping [44] bias correction algorithm. Specific normal
monthly precipitation values were identified for the reference points.

The new normal monthly precipitation values can be used in future studies for local purposes
while the experimented methodology can be applied in other scant data contexts.

In Section 2, the study area is described along with the precipitation datasets that were analyzed.
The steps of the methodology adopted are also detailed. In Section 3, the main results are presented.
Finally, in Section 4 the conclusions are discussed with particular attention to the limits and to the
possible future perspectives of the research.

2. Materials and Methods

2.1. Study Area

The study aims to define the best-fit precipitation dataset for North Horr Sub-County, which is
situated in Marsabit County, northern Kenya (Figure 1). The area is considered to be part of the ASALs,
with an evaporation rate that exceeds rainfall by more than ten times. However, there are some peculiarities
due to the influence of the altitude on the precipitation, which makes Mt. Marsabit (1865 m above sea
level), Mt. Kulal (2235 m above sea level), Hurry Hills (1685 m above sea level) and the Moyale-Sololo
escarpment (up to 1400 m above sea level) quite wet areas. By contrast, the Chalbi Desert, a large salted
depression lying between 435 m and 500 m above sea level, is the dryer feature of the area [45].

There are no land-based meteorological stations in the Sub-County. Therefore, an area within a
250 km radius from North Horr, the main village, has been defined and the meteorological stations
located inside this area have been selected. These land-based meteorological stations are situated in
Lodwar, Moyale and Marsabit.

The main inhabited areas—i.e., reference points—besides North Horr are Balesa, Dukana, El Gadhe,
El-Hadi, Gus, Kalacha and Malabot.

https://www.esrl.noaa.gov/psd/
https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/
https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/
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Measuring Mission) and MERRA Modern-Era Retrospective Analysis for Research and Application) 
based on eight major agro-ecological zones demonstrated that GPCC and CHIRPS achieved 
improved results in ASALs [35]. In fact, the GPCC dataset best estimates precipitation in tropical 
warm semiarid areas while CHIRPS best estimates precipitation in tropical warm arid areas. 
Similarly, the comparison of CHIRPS, TRMM 3B42, PERSIANN-CDR (Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural Networks Climate Data Record) and ARC2 
(African Rainfall Climatology version 2.0) showed that CHIRPS have excellent performance in ASAL 
regions (high correlation, low RMSE, and low standard deviation) [34]. At regional level (East Africa), 
GPCC and CHIRPS have similar consistent results [32]. The other principal gridded precipitation 
products were evaluated. TRMM 3B42—as well as TRMM 3B43—has a reduced temporal (1998–
present) [46] coverage compared to the aim of this research (1983–2013). PERSIANN-CDR 
underestimates rainfall in different topographical features and climatic conditions [34,47]. MERRA 
has a coarse resolution (0.5°), best estimates rugged mountainous zones and inaccurately predicts the 
rainfall amounts in relatively low-lying areas [35]. Following these considerations, three precipitation 
datasets have been selected and compared (Figure 2). The reference dataset is the KMD dataset 
provided by the National Meteorological Service. The other two datasets where selected on the base 
of previous studies results. They are highly reliable because they are provided by the World 
Meteorological Organization and the Climate Hazard Center funded by the U.S. Agency for 

Figure 1. Map of the study area: North Horr sub-County is highlighted along with the main reference
points. Within the 250 km radius from the reference point of North Horr, three land-based meteorological
stations are identified (Lodwar, Marsabit and Moyale).

2.2. Precipitation Datasets

Previous studies have assessed the performance of different gridded precipitation products over
East Africa [32] and Kenya [34,35]. The comparison of GPCC, CHIRPS, TRMM 3B42 (Tropical Rainfall
Measuring Mission) and MERRA Modern-Era Retrospective Analysis for Research and Application)
based on eight major agro-ecological zones demonstrated that GPCC and CHIRPS achieved improved
results in ASALs [35]. In fact, the GPCC dataset best estimates precipitation in tropical warm
semiarid areas while CHIRPS best estimates precipitation in tropical warm arid areas. Similarly,
the comparison of CHIRPS, TRMM 3B42, PERSIANN-CDR (Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks Climate Data Record) and ARC2 (African Rainfall
Climatology version 2.0) showed that CHIRPS have excellent performance in ASAL regions (high
correlation, low RMSE, and low standard deviation) [34]. At regional level (East Africa), GPCC
and CHIRPS have similar consistent results [32]. The other principal gridded precipitation products
were evaluated. TRMM 3B42—as well as TRMM 3B43—has a reduced temporal (1998–present) [46]
coverage compared to the aim of this research (1983–2013). PERSIANN-CDR underestimates rainfall
in different topographical features and climatic conditions [34,47]. MERRA has a coarse resolution
(0.5◦), best estimates rugged mountainous zones and inaccurately predicts the rainfall amounts in
relatively low-lying areas [35]. Following these considerations, three precipitation datasets have
been selected and compared (Figure 2). The reference dataset is the KMD dataset provided by the
National Meteorological Service. The other two datasets where selected on the base of previous
studies results. They are highly reliable because they are provided by the World Meteorological
Organization and the Climate Hazard Center funded by the U.S. Agency for International Development
(USAID), the National Aeronautics and Space Administration (NASA) and the National Oceanic and
Atmospheric Administration (NOAA).
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Figure 2. Comparison of the different resolutions of the gridded datasets. The Kenyan Meteorological
Department (KMD) dataset has the highest resolution (0.0375◦), while the Global Precipitation
Climatology Centre (GPCC) has the lowest (0.5◦). A precipitation value is available at each intersection
point on the grid.

The KMD dataset is a decadal precipitation dataset, part of the Enhancing National Climate
Services (ENACTS) project for development in Africa, which focuses on the creation of reliable climate
data for national and local decision making. It has been produced by combining quality-controlled
data from the national observation network with satellite estimates from the European Meteorological
Satellites (METEOSAT). The data processing was performed using the Climate Data Tool software
package developed by the International Research Institute (IRI) [36]. The dataset was directly furnished
by the KMD but is also available at http://kmddl.meteo.go.ke:8081/SOURCES/.KMD/. It has a spatial
resolution of 0.0375◦ and refers to the period 1983–2014.

The GPCC dataset, a monthly precipitation dataset, was developed by the Global Precipitation
Climatology Project in support of the WMO World Climate Research Programme (WCRP) and the
Global Energy and Water Cycle Experiment (GEWEX). It is a gauge-only product based on observations
from rain gauge stations only available at a coarser resolution of 0.5◦ and a temporal coverage from
1901 to 2013 [37]. Version 7 (DOI: 10.5676/DWD_GPCC/FD_M_V7_050), available at NOAA/OAR/ESRL
PSD website at https://www.esrl.noaa.gov/psd/, has been used for this study.

The CHIRPS dataset was developed to support the USAID Famine Early Warning Systems
Network (FEWS NET). It builds on an high resolution and long recording period of precipitation
estimates based on infrared Cold Cloud Duration (CCD) observations and on a station blending
procedure based on a modified inverse distance weighting algorithm [48]. Several studies ascertain the
effectiveness of this dataset in East Africa [26,27,38]. The monthly v2p0 version has been used, which is
accessible through the IRI Data Library at https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.
It has a spatial resolution of 0.05◦ and ranges from 1981 to near-present.

Finally, the monthly observed historical series from 1960 to 2016 from Marsabit, Moyale and
Lodwar meteorological stations have been used as benchmark for the comparison analysis. They have
been directly furnished by the KMD. Their characteristics are summarized in Table 1.

Table 1. Schematic summary of the meteorological stations’ characteristics.

Station ID Station District Lat Long Elevation

63612 Lodwar Turkana 3.1◦ 35.6◦ 523 m
63641 Marsabit Marsabit 2.3◦ 37.9◦ 1345 m
63619 Moyale Moyale 3.53◦ 39.1◦ 1097 m

http://kmddl.meteo.go.ke:8081/SOURCES/.KMD/
https://www.esrl.noaa.gov/psd/
https://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/
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2.3. Methodology

The methodology followed in this study was structured in three steps (Figure 3):

• Section 2.3.1 presents the comparison of the datasets with the observed historical series from the
selected land-based meteorological stations. This step lead to the identification and selection of
the “reference dataset” (D1) and “dataset to correct” (D2).

• In Section 2.3.2, the correction method is detailed. The series from D2 for each reference point
are corrected with D1 through the Quantile Mapping bias correction algorithm. This procedure
leads to the definition of a group of five series for each reference point, each series resulting from a
different correction method. The comparison of the five series with D1 identifies the most appropriate
correction method. Consequently, one series for each station and reference point has been selected.

• Section 2.3.3 refers to the extraction and computation of the precipitation normals for each
reference point.
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2.3.1. Comparison of Dataset Performance at Meteorological Station Level

The performance of KMD, GPCC and CHIRPS datasets have been evaluated by means of a pixel
to station comparison with the historical series of the meteorological stations at Marsabit, Lodwar and
Moyale over a selected common period from 1983 to 2013. Five statistical indices have been computed:
the bias, the Mean Absolute Error (MAE), the Mean Squared Deviation (MSD), the Root Mean Squared
Deviation (RMSD) and the Correlation Coefficient (CC) [49]. A comparison of standard deviations (σ)
was also performed in order to assess the dispersion of the values with regard to historical values.

A Taylor Diagram has also been created to provide an easier visual interpretation of the results.
In the same graph, the CC, the RMSD, and the σ are shown for each series analyzed [41]. The MATLAB
SkillMetrics toolbox developed by Peter Rochford has been used to create the diagram [50].

2.3.2. Correction through the Quantile Mapping Method

The KMD dataset, besides being provided by the official National Meteorological Service, has the
higher resolution and therefore it was chosen as the dataset to be corrected (D2).

The GPCC dataset was preferred to the three land-based meteorological stations as reference
dataset (D1). The stations in a 250 km radius, in fact, are not representative of the ASALs, while the
GPCC dataset offers reliable interpolated gauge-derived information. This approach, justified by the
scarcity of observed data in the region, is in line with previous studies, which aimed to overcome this
obstacle by resorting to gauge-derived datasets for the validation of satellite or reanalysis precipitation
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datasets [51,52]. The correction procedure aims at merging the information derived by the two datasets,
namely integrating the satellite-derived data, which is found to have too low level performances,
with the gauge-derived data [53,54]. Findings demonstrate that Quantile Mapping can cause inflation
problems (same temporal structure and variability of the coarser grid) when applied to datasets of
different resolution [55,56]. However, the procedure here used is opposite to the common downscaling
procedure; in fact, it aims at correcting a high-resolution satellite-derived dataset with a coarser grid
reference dataset.

The KMD dataset was therefore corrected using the Quantile Mapping bias correction algorithm
technique, which has been widely used for correction of precipitation datasets [57–59] and has
demonstrated high performances in arid and semi-arid areas [33,60]. In particular, the work of
Ringard et al. demonstrated its usefulness for satellite-derived datasets correction in scarce observed
data contexts [61]. Moreover, the Quantile Mapping correction method performs very well concerning
the reproduction of the precipitation annual cycle and of the wet and dry periods length [62].
This characteristic is fundamental with reference to the monthly normal identification and for future
climate analysis of the area.

The Quantile Mapping technique is based on statistical transformation which attempts to adjust
the distribution of modelled data such that it closely resembles the observed climatology solved using
a theoretical distribution The ‘qmap’ package developed by Lukas Gudmundsson for R software was
used for the computation [63]. The procedure was carried out for all the reference locations using a pixel
to pixel approach. The ‘qmap’ package supports five different analytical methods, both parametric and
non-parametric transformations. These methods use different functions to transform the distribution
of the modelled data to match the distribution of the observations. The five functions performed
are parametric transformations (PTF), distribution derived transformations (DIST), non-parametric
quantile mapping using empirical quantiles (QUANT), non-parametric quantile mapping using robust
empirical quantiles (RQUANT) and quantile mapping using a smoothing spline (SSPLIN)(for further
details see the documentation at the following link https://www.rdocumentation.org/packages/CSTools/
versions/2.0.0/topics/CST_QuantileMapping).

Five precipitation series were created for the three stations and for the eight reference locations.
The results of the Quantile Mapping correction were compared with the GPCC series for each

reference location through the statistical indices (Section 2.3.1). The most appropriate method was
identified, leading to the selection of a best-fit precipitation series for each reference location.

2.3.3. Reference Values Computation

New reference values were computed on the new precipitation series by averaging the monthly
precipitation amount for the entire period (1983–2013).

3. Results and Discussion

3.1. Comparison of Dataset Performance at Meteorological Station Level

The comparison of the precipitation datasets with the observed series led to an important first conclusion.
The KMD dataset does not feature the best indices values for all the stations. Results from the first step of
the analysis conducted indicated that the GPCC dataset was a better choice as the reference series.

According to the statistical indices (Tables 2 and 3) and to the Taylor diagrams (Figure 4), the GPCC
dataset fits better for the stations of Marsabit and Moyale, while the KMD dataset fits better for Lodwar.
However, for reasons of homogeneity and consistency, the GPCC dataset was also chosen as the
reference dataset for Lodwar station since its statistical values are close to the values obtained for the
KMD dataset.

https://www.rdocumentation.org/packages/CSTools/versions/2.0.0/topics/CST_QuantileMapping
https://www.rdocumentation.org/packages/CSTools/versions/2.0.0/topics/CST_QuantileMapping
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Table 2. Comparison based on statistical indices (BIAS, MAE, MSD, RMSD and CC) of the precipitation
datasets with the observed historical series from the selected land-based meteorological stations
(Lodwar, Marsabit and Moyale) for the period 1983–2013. For the CC index, “*” corresponds to a
p-value < 0.01, “**” corresponds to a p-value < 0.001 and “***” corresponds to a p-value < 0.0001. Values
in bold correspond to the best value of the index for each station.

Lodwar Marsabit Moyale

KMD GPCC CHIRPS KMD GPCC CHIRPS KMD GPCC CHIRPS

BIAS 0.99 2.52 −5.32 −8.21 2.35 13.40 24.7 5.04 2.16
MAE 5.4 5.74 10.72 14.83 12.7 25.32 29.1 14.9 18.45
MSD 237 260 414 1498 933 1528 2797 966 1087

RMSD 15.4 16.1 20.35 38.71 30.5 39.09 52.9 31.1 32.97
CC 0.83 *** 0.85 *** 0.71 *** 0.91 *** 0.95 *** 0.92 *** 0.82 *** 0.91 *** 0.90 ***

Table 3. Comparison based on the standard deviation of the precipitation datasets with the observed
historical series from the selected land-based meteorological stations (Lodwar, Marsabit and Moyale)
for the period 1983–2013.

Standard Deviation

Lodwar Marsabit Moyale
STAT.1 KMD GPCC CHIRPS STAT. 1 KMD GPCC CHIRPS STAT. 1 KMD GPCC CHIRPS

27.2 24.1 29.9 14.8 91.4 81.2 79.9 93.4 73.5 40.4 67.0 71.6
1 STAT. = STATION.
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is proportional to the distance from the point representing the observed historical series. Points closer 
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Correlation Coefficient, correspond to the best-fit datasets. 

  

Figure 4. Taylor diagrams showing the agreement between the observed historical series and the
precipitation datasets for the selected land-based meteorological stations (Lodwar, Marsabit and Moyale)
for the period 1983–2013. The standard deviation of each series (as reported in Table 3) is proportional
to the distance from the origin of the diagram. The Correlation Coefficient (in Table 2) between each
series and the observed historical series is expressed by the azimuthal angle. Finally, the Root Mean
Squared Deviation (in Table 2) between each series and the observed historical series is proportional to
the distance from the point representing the observed historical series. Points closer to the historical
series’ marker, that is, with similar standard deviation, lower RMSD and higher Correlation Coefficient,
correspond to the best-fit datasets.

3.2. Correction through the Quantile Mapping Method

As showed in the previous section, the GPCC dataset fits better than the other two datasets
compared with the historical series. However, the GPCC dataset has a lower resolution (0.5◦) compared
to the KMD dataset and CHIRPS dataset (0.0375◦ and 0.05◦, respectively), and the differences in local
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topography may be biased. Therefore, it was necessary to apply a bias correction method to overcome
these two problems. The strategy adopted was to correct the KMD dataset (D2), which is issued by the
official National Meteorological Service and has the highest resolution, with the GPCC dataset (D1)
which performs better on ASALs.

The bias correction method is performed using the Quantile Mapping method from the ‘qmap’ R
package. Five different bias-corrected series are obtained based on the five different transformations
applied: Parametric Transformations (PTF), Distribution Derived Transformations (DIST), Robust
Empirical Quantiles (RQUANT), Empirical Quantiles (QUANT), Smoothing Spline (SSPLIN).

From comparison analysis, the Parametric Transformations method, which fits a parametric
transformation to the quantile-quantile relation of observed and modelled values, provided the best
results (see Appendices A and B). Hereinafter, the Bias-Corrected KMD dataset will be referred to as
the BCKMD dataset (D3).

3.2.1. Quantile Mapping Validation at Station Level

The performance of the new BCKMD dataset is assessed by means of the statistical indices
mentioned previously (see Section 3.1). The indices have been calculated in relation to the historical
series of the land-based meteorological stations, then compared with the same indices calculated for
the KMD dataset.

As shown in Table 4, the BCKMD dataset fits the observed historical series better than the
KMD dataset, apart from Lodwar station. This may be due to a higher performance of the KMD
dataset—before correction—at Lodwar station compared to the GPCC concerning BIAS, MAE, MSD
and RMSD. However, the errors obtained are still acceptably low. In fact, the standard deviation values
and the relatively low values of the error’s indices, even for Lodwar, justify the selection of the BCKMD
dataset for the study area.

Table 4. Comparison based on statistical indices (BIAS, MAE, MSD, RMSD, CC and σ) of the KMD and
of the Bias-Corrected KMD (BCKMD) datasets with the observed historical series from the selected
land-based meteorological stations (Lodwar, Marsabit and Moyale) for the period 1983–2013. For the CC
index, “*” corresponds to a p-value < 0.01, “**” corresponds to a p-value < 0.001 and “***” corresponds
to a p-value < 0.0001. Values in bold correspond to the best value of the index for each station.

Lodwar Marsabit Moyale

KMD BCKMD KMD BCKMD KMD BCKMD
BIAS −0.99 2.29 −8.21 −4.28 −24.74 −5.96
MAE 5.41 7.71 14.83 16.78 29.10 26.02
MSD 237.3 295.32 1498.21 1427.56 2796.62 1881.38

RMSD 15.40 17.18 38.71 37.78 52.88 43.38
CC 0.83 *** 0.83 *** 0.91 *** 0.91 *** 0.82 *** 0.82 ***

Standard Deviation
Lodwar Marsabit Moyale

STATION KMD BCKMD STATION KMD BCKMD STATION KMD BCKMD
27.15 24.09 29.93 91.44 81.21 81.24 73.54 40.40 67.07

3.2.2. Quantile Mapping at Reference Point Level

The Quantile Mapping correction on the base of the GPCC dataset was also applied to the KMD
dataset at the reference points. The Parametric Transformations method has been used in accordance
with the validation carried out at the stations level. The result was a best-fit precipitation dataset for
the eight locations.
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3.3. Calculating Normal Values of Precipitation at Station Level

The normal values were calculated on the precipitation series obtained for the three stations,
by averaging the monthly precipitation amount for the entire period (1983–2013) (reported in Table 5).
Long rains amount, short rains amount and total annual amount were also calculated. Figure 5
compares the distribution of the precipitation through the year according to the observed series and to
the new BCKMD dataset.

Table 5. Comparison of normal values of precipitation (in mm) obtained from the historical time series
and the new precipitation dataset BCKMD for the three land-based meteorological stations (Lodwar,
Marsabit and Moyale). The table reports monthly cumulative amounts, long rains cumulative amount,
short rains cumulative amount and total precipitation amount.

Lodwar Marsabit Moyale

Historical Bckmd Historical Bckmd Historical Bckmd

Jan 6.5 10.7 30.2 31.3 17.4 18.4
Feb 4.2 4.4 19.2 20.8 19.4 21.1
Mar 30.0 33.2 50.2 44.5 53.2 36.0
Apr 38.3 50.9 212.4 195.4 164.9 193.0
May 28.3 37.8 75.1 77.4 100.1 75.3
June 10.6 10.6 10.6 6.7 18.0 9.8
July 12.1 12.4 9.0 3.7 10.2 3.8
Aug 14.5 16.2 8.1 5.1 10.1 7.8
Sep 10.2 13.9 5.3 5.5 15.5 12.9
Oct 11.2 13.9 88.4 87.1 106.6 75.9
Nov 20.4 17.5 139.3 127.3 92.9 79.9
Dec 15.1 7.1 57.5 48.9 28.7 31.6

Long rains 96.6 121.9 337.6 317.4 318.3 304.2
Short rains 46.7 38.5 285.3 263.3 228.1 187.4

Total 201.4 228.6 705.2 653.8 637.0 565.5

Sustainability 2020, 11, x FOR PEER REVIEW 10 of 18 

with the validation carried out at the stations level. The result was a best-fit precipitation dataset for 
the eight locations. 

3.3. Calculating Normal Values of Precipitation at Station Level 

The normal values were calculated on the precipitation series obtained for the three stations, by 
averaging the monthly precipitation amount for the entire period (1983–2013) (reported in Table 5). 
Long rains amount, short rains amount and total annual amount were also calculated. Figure 5 
compares the distribution of the precipitation through the year according to the observed series and 
to the new BCKMD dataset. 

Table 5. Comparison of normal values of precipitation (in mm) obtained from the historical time 
series and the new precipitation dataset BCKMD for the three land-based meteorological stations 
(Lodwar, Marsabit and Moyale). The table reports monthly cumulative amounts, long rains 
cumulative amount, short rains cumulative amount and total precipitation amount. 

 Lodwar Marsabit Moyale 
Historical Bckmd Historical Bckmd Historical Bckmd 

Jan 6.5 10.7 30.2 31.3 17.4 18.4 
Feb 4.2 4.4 19.2 20.8 19.4 21.1 
Mar 30.0 33.2 50.2 44.5 53.2 36.0 
Apr 38.3 50.9 212.4 195.4 164.9 193.0 
May 28.3 37.8 75.1 77.4 100.1 75.3 
June 10.6 10.6 10.6 6.7 18.0 9.8 
July 12.1 12.4 9.0 3.7 10.2 3.8 
Aug 14.5 16.2 8.1 5.1 10.1 7.8 
Sep 10.2 13.9 5.3 5.5 15.5 12.9 
Oct 11.2 13.9 88.4 87.1 106.6 75.9 
Nov 20.4 17.5 139.3 127.3 92.9 79.9 
Dec 15.1 7.1 57.5 48.9 28.7 31.6 

Long rains 96.6 121.9 337.6 317.4 318.3 304.2 
Short rains 46.7 38.5 285.3 263.3 228.1 187.4 

Total 201.4 228.6 705.2 653.8 637.0 565.5 

 

Figure 5. (a) Representation at local scale of the historical time series and of new bias-corrected monthly
precipitation time series for each land-based meteorological station divided into three cumulative
amounts: total annual amount (black and very dark blue bars), long rain season precipitation amount
(dark grey and dark blue bars) and short rain season precipitation amount (light grey and light blue
bars). (b) Comparison of the annual precipitation distribution for each station according to the observed
series and to the new bias-corrected monthly precipitation dataset.
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3.4. Calculating Normal Values of Precipitation at Reference Point Level

The normal values were calculated on the precipitation series obtained for each reference point,
by averaging the monthly precipitation amount for the entire period (1983–2013). Moreover, long rains
amount, short rains amount and total amount were calculated.

The normal values for the eight reference points are shown in Table 6. A visual representation of
the precipitation distribution at local scale is pictured in Figure 6.

The understanding of climate differences at local scale is crucial for an effective territorial planning
against negative impact of climate change. This study succeeded in obtaining normal values of
precipitation for each reference point despite the lack of land-based meteorological stations in the
area and high-resolution and fitting satellite-derived precipitation time series. Differences in rainfall
regime are evident in Figure 6, which shows higher precipitation amounts in the northern part of the
Sub-County then in the southern reference points.

The new precipitation time series can be used for the evaluation of drought indices as well as
for water security assessment. More specifically, the monthly normal values can be used as reference
values for comparing measured or forecasted data in order to evaluate drought or wet periods.

Moreover, it has been possible to calculate the normal values for the entire long rain season and
short rain season, by cumulating monthly values for March, April and May and for October, November
and December, respectively. Knowing the distribution of the precipitation throughout the year and
the possible deviation from normal values is fundamental. This is at the base of the community
organization for the local semi-nomadic pastoral population.Sustainability 2020, 11, x FOR PEER REVIEW 12 of 18 
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Figure 6. (a) Representation at local scale of the new bias-corrected monthly precipitation time series
for each reference point divided into three cumulative amounts: total annual amount (black bar), long
rain season precipitation amount (dark grey bar) and short rain season precipitation amount (light grey
bar). (b) Annual precipitation distribution for each reference points based on the new bias-corrected
monthly precipitation time series.
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Table 6. Normal values of precipitation (in mm) for the eight reference points in North Horr Sub-County.
The table reports monthly cumulative amounts, long rains cumulative amount, short rains cumulative
amount and total precipitation amount for each reference point.

Balesa Dukana El Gadhe El-Hadi Gus Kalacha Malabot North Horr

Jan 23.3 28.6 19.8 37.0 16.8 19.0 22.1 22.0
Feb 12.3 25.0 10.9 26.4 6.6 13.9 7.6 6.1
Mar 38.3 54.2 35.4 63.1 24.0 30.3 35.0 36.8
Apr 66.8 91.5 55.1 104.2 46.6 57.7 50.3 50.7
May 21.1 29.3 24.4 37.1 19.0 27.5 26.4 26.3
June 6.0 13.8 4.5 11.7 10.9 3.2 7.4 7.0
July 2.7 7.6 1.7 7.2 4.1 1.0 1.9 2.9
Aug 4.5 7.8 5.4 9.8 6.4 3.7 6.0 6.0
Sep 3.5 11.4 2.3 8.3 5.3 1.1 2.4 2.5
Oct 17.7 29.5 14.3 32.7 12.8 16.4 15.4 14.7
Nov 35.9 55.4 21.6 58.8 20.7 19.2 21.7 21.9
Dec 19.3 35.0 13.6 33.9 10.2 14.4 12.6 10.7

Long rains 126.2 175 114.9 204.4 89.6 115.5 111.7 113.8
Short rains 72.9 119.9 49.5 125.4 43.7 50 49.7 47.3

Total 251.4 389.1 209 430.2 183.4 207.4 208.8 207.6

4. Conclusions

The aim of this study was to obtain the normal values of the monthly amount of precipitation for
the main inhabited areas in North Horr Sub-County, in order to provide a benchmark for understanding
the ongoing changes in the local climate. Therefore, it was necessary to identify an appropriate historical
precipitation series. The comparison between the GPCC, KMD and CHIRPS datasets highlighted the
lower performance of the KMD dataset compared to the others, despite it being the dataset officially
issued and used by the Kenyan Meteorological Department for the whole country. Previous studies
on East Africa indicated the CHIRPS dataset to be a reliable global dataset for the region [26,27,32].
The relatively high performance of the GPCC dataset in northern arid Kenya is in line with the results
of previous studies, which indicated it as a good fit for the ASALs [35], but with a low capacity in
representing complex terrain [28]. However, the need to highlight local differences in the annual trend
of precipitation led to the use of the KMD dataset after a correction procedure based on the GPCC
dataset. This approach aimed to integrate the higher resolution of the KMD dataset—namely, its ability
to detect differences in the precipitation trend at a local scale—with the higher ability of the GPCC
dataset to represent the real historical values in the area. The methodology adopted created a new
bias-corrected monthly precipitation time series for each reference point, from which the local normal
values were extracted.

Since the need for high-resolution precipitation data covering the Global South is becoming urgent
for any discipline that must consider the role of climate, this study represents an attempt to provide a
solution to the scarcity of observed data. The absence of land-based meteorological stations in the area,
however, cannot be ignored and constitutes a limit in the study. Future research should be directed to
test the methodology proposed here in other contexts, where the availability of observed data could
provide a yardstick for its usefulness and accuracy.
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Appendix A

Table A1. Comparison based on statistical indices (BIAS, MAE, MSD, RMSD, CC and σ) of the GPCC
dataset with the five bias-corrected series for the period 1983–2013. For the CC index, “*” corresponds
to a p-value < 0.01, “**” corresponds to a p-value < 0.001 and “***” corresponds to a p-value < 0.0001.
Values in bold correspond to the best value of the index for each reference point.

Balesa

PTF DIST RQUANT QUANT SSPLIN
BIAS −0.09 0.02 0.14 0.10 0.29
MAE 14.84 14.68 14.95 14.96 14.97
MSD 632.88 609.68 652.85 652.73 659.10

RMSD 25,16 24.69 25.55 25.55 25.67
CC 0.71 *** 0.71 *** 0.70 *** 0.70 *** 0.70 ***

Standard Deviation
GPCC PT DIST RQUANT QUANT SSPLIN
32.94 32.83 32.29 32.84 32.86 33.18

Dukana

PTF DIST RQUANT QUANT SSPLIN
BIAS −0.23 29.97 28.68 28.59 28.87
MAE 19.31 30.00 29.99 29.96 30.18
MSD 875.66 2727.20 2409.16 2398.54 2504.03

RMSD 29.59 52.22 49.08 48.97 50.04
CC 0.73 *** 0.72 *** 0.72 *** 0.73 *** 0.72 ***

Standard Deviation
GPCC PTF DIST RQUANT QUANT SSPLIN
40.14 40.09 42.76 39.83 39.76 40.87

Elgade

PTF DIST RQUANT QUANT SSPLIN
BIAS 1.39 16.51 17.03 17.02 17.20
MAE 14.47 16.62 17.26 17.27 17.41
MSD 856.77 1343.05 1456.21 1455.56 1520.29

RMSD 29.27 36.65 38.16 38.15 38.99
CC 0.65 *** 0.65 *** 0.65 *** 0.65 *** 0.65 ***

Standard Deviation
GPCC PTF DIST RQUANT QUANT SSPLIN
34.19 34.10 32.72 34.15 34.15 34.99

El Hadi

PTF DIST RQUANT QUANT SSPLIN
BIAS 1.12 25.44 24.55 24.48 24.59
MAE 24.12 29.13 30.63 30.60 30.57
MSD 1324.09 2473.67 2578.99 2578.16 2583.05

RMSD 36.39 49.74 50.78 50.78 50.82
CC 0.71 *** 0.71 *** 0.70 *** 0.70 *** 0.70 ***

Standard Deviation
GPCC PT DIST RQUANT QUANT SSPLIN
45.00 45.17 42.74 44.45 44.49 44.48

Gas

PTF DIST RQUANT QUANT SSPLIN
BIAS 1.46 14.22 14.74 14.81 14.86
MAE 11.22 14.30 15.05 15.11 15.12
MSD 458.36 832.97 989.23 1016.25 1024.82

RMSD 21.41 28.86 31.45 31.88 32.01
CC 0.69 *** 0.69 *** 0.69 *** 0.69 *** 0.69 ***
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Table A1. Cont.

Gas

Standard Deviation
GPCC PTF DIST RQUANT QUANT SSPLIN
27.80 27.78 25.12 27.79 28.23 28.36

Kalacha

PT DIST RQUANT QUANT SSPLIN
BIAS 1.83 15.65 15.95 15.92 16.57
MAE 14.07 15.65 16.03 16.01 16.61
MSD 875.82 1345.08 1404.63 1405.52 1744.06

RMSD 29.59 36.68 37.48 37.49 41.76
CC 0.57 *** 0.56 *** 0.57 *** 0.57 *** 0.54 ***

Standard Deviation
GPCC PTF DIST RQUANT QUANT SSPLIN
34.19 34.11 33.33 34.19 34.21 38.55

Malabot

PTF DIST RQUANT QUANT SSPLIN
BIAS 1.37 16.90 17.11 17.00 17.14
MAE 13.75 16.90 17.29 17.19 17.34
MSD 824.68 1404.62 1466.47 1443.40 1505.37

RMSD 28.72 37.48 38.29 37.99 38.80
CC 0.68 *** 0.68 *** 0.68 *** 0.68 *** 0.67 ***

Standard Deviation
GPCC PTF DIST RQUANT QUANT SSPLIN
34.19 34.11 33.45 34.26 33.98 34.81

North Horr

PTF DIST RQUANT QUANT SSPLIN
BIAS 1.28 16.08 17.08 16.95 17.84
MAE 13.97 16.18 17.31 17.20 18.05
MSD 848.22 1218.58 1472.02 1445.25 1881.88

RMSD 29.12 34.91 38.37 38.02 43.38
CC 0.67 *** 0.67 *** 0.67 *** 0.67 *** 0.64 ***

Standard Deviation
GPCC PTF DIST RQUANT QUANT SSPLIN
34.19 34.01 30.99 34.36 34.03 39.54

Appendix B

Table A2. Comparison based on statistical indices (BIAS, MAE, MSD, RMSD, CC and σ) of the historical
values with the five bias-corrected series (PTf, DIST, RQUANT, QUANT, SSPLIN) for the period
1983–2013. For the CC index, “*” corresponds to a p-value < 0.01, “**” corresponds to a p-value < 0.001
and “***” corresponds to a p-value < 0.0001. Values in bold correspond to the best value of the index
for each station.

Lodwar

PTF DIST RQUANT QUANT SSPLIN
BIAS 2.30 2.92 2.92 2.61 2.64
MAE 7.73 8.12 8.12 7.84 7.88
MSD 296.12 294.70 294.70 305.80 307.05

RMSD 17.21 17.17 17.17 17.49 17.52
CC 0.83 *** 0.82 *** 0.82 *** 0.82 *** 0.82 ***

Standard Deviation
STATION PTF DIST RQUANT QUANT SSPLIN

27.15 29.93 29.07 29.07 29.91 29.94
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Table A2. Cont.

Marsabit

PTF DIST RQUANT QUANT SSPLIN
BIAS −4.28 −0.34 −2.12 −2.08 −1.38
MAE 16.78 17.96 17.65 17.69 18.16
MSD 1427.56 1443.34 1430.87 1437.01 1504.62

RMSD 37.78 37.99 37.83 37.91 38.79
CC 0.91 *** 0.91 *** 0.91 *** 0.91 *** 0.91 ***

Standard Deviation
STATION PTF DIST RQUANT QUANT SSPLIN

91.44 81.24 84.23 79.82 80.22 83.47

Moyale

PTF DIST RQUANT QUANT SSPLIN
BIAS −5.96 −2.04 −4.48 −4.85 −4.24
MAE 26.02 25.92 26.32 26.18 26.67
MSD 1881.38 1954.03 2206.42 2157.35 2423.31

RMSD 43.37 44.20 46.97 46.45 49.23
CC 0.82 *** 0.81 *** 0.78 *** 0.79 *** 0.77 ***

Standard Deviation
STATION PTF DIST RQUANT QUANT SSPLIN

73.54 67.07 69.04 66.99 65.36 69.01
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