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Abstract: With the increasing awareness of environmental protection, firms pay much more attention
to the recycling and remanufacturing of used products. This paper addresses the problem of the
optimal pricing in recycling and remanufacturing in uncertain environments. We consider two
strategies of remanufacturing products, by which a recycled product can be repaired and sold as
a second-hand product or dissembled into materials for production of new products according to its
quality. As the market demand for products and the quantities of recycled products, such as fashion
products and mobile phones, usually lack historical data, this paper adopts uncertainty theory to
depict uncertainty in establishing the pricing model. An uncertain programming model and a series
of crisp equivalent models are proposed under the assumptions of particular uncertainty distribution.
Finally, numerical experiments are performed to show how various parameters influence the results
of the proposed model.
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1. Introduction

With the shortage of natural resources and the emergence of serious environmental problems, many
firms have paid more attention to recycling and remanufacturing. Recycling and remanufacturing are
acknowledged as an effective way to deal with the problem of resource scarcity and environmental
pollution, which, at the same time, can help firms gain benefits and reputation. According to the
analysis report of the American Iron and Steel Institute, by remanufacturing scrap steel products in the
United States, energy has been saved by 47% to 74%, air pollution, water pollution, and solid waste
have been reduced by 86%, 76%, and 97%, respectively, and water has been saved by 40%. The quality
and performance of the remanufactured products are the same as those of the new prototype products.
However, the production cost is only 50% of that of the new prototype products, and 60% of energy
and 70% of materials are saved (https://www.steel.org/).

There are two common strategies for remanufacturing recycled products. For used products in
a bad condition, a generally adopted way is to extract and reuse the useful parts for the production
of new products, as long as the reused parts reach the quality requirement of the new product.
Studies have indicated that almost 70% of end-of-life vehicles are directly reused by firms to produce
new goods [1]. Waste electrical and electronic equipment, e.g., smart phones and PCs, are also
important sources of raw materials. Through recycling and remanufacturing, sustainable development
of society can be achieved [2,3]. For the recycled products that are in relatively good condition,
firms can repair and refurbish them and put them back into the market as second-hand products.
It has been shown that demand for second-hand products exists. In China, e-commerce platforms
such as idle fish (Alibaba Group) and paipai (Jingdong Group) are active in trading second-hand
products. The two strategies above provide two ways of treating recycled products. Firms can flexibly
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adopt both remanufacturing strategies for a better trade-off between product performance and profits.
In order to gain optimal profit, an essential problem that firms need to deal with is the determination
of the prices of the products. The prices of the new products and the second-hand products will affect
the demand of different markets. However, the recycling prices of a used product can impact the
number of recycled products, which can influence the supply of second-hand products. This paper
aims to optimize pricing decisions in recycling and remanufacturing.

The pricing of products in the recycling and remanufacturing situation has been widely
investigated. Ferrer and Swaminathan [4] assume that customers have different preferences on
new products and remanufactured products, and propose the pricing decision models. Savaska and
Wassenhove [5] study the relationship between the manufacturer’s recycling channel and the
remanufactured product pricing strategy. Jun et al. [6] propose a quality-dependent optimization
model and study the optimization of end-of-life product recovery in a quantitative manner. Under the
circumstance of retailer competition, Gu et al. [7] study the recycling price, the wholesale price, and the
retail price in a closed-loop supply chain. Wei and Zhao [8] take into account remanufacturing
rate and present a model for the optimal pricing decision. In order to maximize supply-chain
revenue, Wan and Gonnuru [9] propose the use of radio frequency identification (RFID) technology to
support the dismantling strategy decision of end-of-life products. Gan et al. [10] develop an optimal
pricing model for short-life-cycle products in a supply chain that consists of the manufacturer,
retailer, and collector, and introduce two scaling factors in the model. Govindan et al. [11] study
how to improve sales of remanufactured products by analyzing consumer behavior, pricing, and brand
strategies, as well as the optimization of green transportation. Zhang and He [12] propose an optimal
pricing model, where the recycled products are repaired and resold as green remanufactured products
in the second sales period. As recycling and remanufacturing are usually embedded in a closed-loop
supply chain, there are many other works on pricing decisions in recycling and remanufacturing in
a closed-loop supply chain [13–23]. To our knowledge, in most existing papers, recycled products are
assumed as raw materials for producing new products, and different strategies for remanufacturing
recycled products in different conditions are rarely taken into account. In this paper, the problem of
optimal price is investigated in recycling and remanufacturing of used products by considering two
remanufacturing strategies.

In the real world, there exist ubiquitous uncertainties. Nondeterministic factors are usually
inevitable in making pricing decisions in management in a supply chain. There are many
researchers who have considered decision-making under uncertainty in the area of closed-loop supply
chains [24–27]. The nondeterministic parameters, whose distribution functions are estimated from
historical data, are usually assumed to be stochastic. However, many types of products, such as
digital devices, usually upgrade fast, and related innovation emerges frequently. The demand for
those products and the quantity of recycled products are often with few historical data. Therefore,
it is not appropriate to use random variables to describe the nondeterministic parameters. Experts’
degrees of belief in the nondeterministic parameters are usually employed, and subjective uncertainty
is considered. Fuzziness is widely acknowledged as a type of subjective uncertainty. In recent
studies related with supply chain, many researchers have already accepted fuzzy set theory
to depict indeterminacies in their models [28–30]. However, fuzzy set theory is not rigorous
in mathematics. Uncertainty theory is a mathematical system widely accepted to characterize
human belief degree and deal with subjective uncertainty [31,32]. By far, uncertainty theory has
been successfully adopted to deal with many uncertain decision-making problems, such as the
pricing optimization problem [33–35], facility location problem [36], entropy applications [37],
project scheduling problem [38–40], portfolio selection [41], and production control problem [42].
Recently, Chen et al. [43] studied an effort decision problem in a supply chain under uncertain
information. However, they did not consider the recycling and remanufacturing problem. There
are often few historical data on the demand of new products and second-hand products and the
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quantity of recycled products; therefore, we employ uncertainty theory to deal with the problem and
characterize the nondeterministic parameters as uncertain variables.

This paper explores a pricing problem in recycling and remanufacturing of used products in
an uncertain environment. Remanufacturing includes the process of recapturing value added to
a material during the new product manufacturing process [4,44–46]. However, Yoo and Kim [47]
focused on the study of refurbishment of returned used products for second-market sales. To
summarize, they mainly focused on recycling products as raw materials to produce new products
or directly produce second-hand products. In this study, two strategies for remanufacturing are
considered based on the quality level of the recycled product. Because the optimal pricing decision
model is proposed in an uncertain environment, the quantities of recycled products and demands
usually lack historical data; we can collect enough data, but these data may not be applicable due
to the dynamic environment. Therefore, similarly to [34,38,48,49], uncertainty theory is employed to
describe the nondeterministic parameters due to the lack of historical data.

This paper differs from the previous ones in that an uncertain programming model and a series
of crisp equivalent models are proposed under the assumptions of particular uncertainty distribution
and contributes to the remanufacturing area by considering how uncertainty distribution and quality
of recycled products influence the used product remanufacturing and pricing strategy. This research
makes an excellent complement to the current literature on remanufacturing. This paper considers
a firm that adopts two strategies for remanufacturing of used products. Some recycled products
are repaired, refurbished, and then put into the market as second-hand products, while some are
disassembled into raw materials for the production of new products. The linear price-dependent
demand functions for new and second-hand products are given, which are strictly monotonously
decreasing in the corresponding prices. In addition, a linear recycling quantity function is proposed,
in which the quantity of recycled products is increasing with the recycling price. An uncertain
programming model is formulated to describe the price model, and crisp equivalent models when
uncertain variables follow a particular distribution are proposed. A numerical experiment is presented
to show how various parameters influence the pricing decisions and the total profit.

The rest of this paper is organized as follows. We describe the problem in Section 2. In Section 3,
the uncertain programming model is formulated and crisp equivalent models are presented. In Section 4,
numerical experiments are performed to show how various parameters impact the results of the model.
Conclusions and directions for future research are provided in Section 5.

2. Problem Description

This paper assumes that used products are recycled from customers at a unified price; similarly
to Gan et al. [10] and Nikunja et al. [21], all used products are transferred to a recycling center at
price pe. It is assumed that the recycling center only collects used products that meet the required
quality level for the remanufacturing process. The recycled products are classified into two categories
according to the quality, which are respectively treated by two different remanufacturing strategies.
The recycled products that are in relatively good condition are repaired, refurbished, and sold as
second-hand products. The recycled products that are in worse condition are disassembled, and the
useful parts are reused in the production of new products. We denote by τ the proportion of the
used products that can be reconditioned and sold as second-hand products, which is a given fixed
parameter. Such used products in good condition are repaired and refurbished in the recycling center,
and then the renewed second-hand products are sold to customers directly. The products in bad
condition are dismantled in the recycling center, and useful components are sent to the production
center as the raw material for new products. In addition, new products with virgin raw materials are
also manufactured in the production center. The process of recycling and remanufacturing products is
shown in Figure 1. To better analyze the proposed model, similarly to Savaska and Wassenhove [5],
the unit remanufacturing cost is assumed to be known and constant in this paper. The unit cost for
manufacturing a new product with virgin raw materials is denoted by cn; the manufacturer produces
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the new product with unit manufacturing cost cm by using the recycled products, which covers the
cost for disassembling, transportation, and remanufacturing. It is assumed that cn > cm. The new
products are sold at a wholesale price pn. The unit cost for renewing a used product in good condition
is denoted by cr. Parameter pr is the unit price of a renewed second-hand product. Table 1 summarizes
the notations. The model considers two different remanufacturing strategies and determines both
optimal product sales and acquisition price.

Figure 1. The process of recycling and remanufacturing products.

Table 1. Notations.

pn: Unit price of a new product, which is a decision variable.
pr: Unit price of a second-hand product, which is a decision variable.
pe: Unit price of recycling a used product, which is a decision variable.
cn: Unit cost for manufacturing a new product with virgin raw materials.
cm: Unit cost for manufacturing a new product with recycled raw materials.
cr: Unit cost for renewing a used product in good condition.
τ: Proportion of the used products that are in good condition, 0 < τ < 1.

Two demand functions are given to characterize the demands for the new products and the
second-hand products, respectively. As the purchase decision of the customers usually depends on the
price of the product, a linear price-dependent demand function for new products can be expressed
as follows:

D̃n(pn) = ã− b̃pn.

In this function, the parameter ã represents the potential market size, which is the market size
when the product price pn equals 0. The parameter b̃ denotes the price elastic coefficient. For the
situations in this paper, there are usually few historical data about the market size and the price elastic
coefficient. Therefore, we set the market size ã and the price elastic coefficient b̃ as uncertain variables.
In the same way, a linear price-dependent demand function for second-hand products can be expressed
as follows:

D̃r(pr) = d̃− β̃pr,

where d̃ denotes the market base of second-hand products, and β̃ denotes the price elastic coefficient
for second-hand products. For the same reason, we assume d̃ and β̃ to be uncertain variables.

The number of recycled used products is defined as

Q̃(pe) = min{h̃ + k̃pe, M̃},
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which is a function of the unit price of recycling a used product pe. The value of Q̃(pe) is the minimum
of two parts. The first part, h̃ + k̃pe, is a linear demand function that is usually adopted in related
literature [50]. The parameter h̃ denotes the number of collected used products when even the unit
price of recycling a used product pe is 0. To some extent, it represents the environmental protection
consciousness of the society. The parameter k̃ denotes the recycling price elastic coefficient. The second
part, M̃, represents the estimated number of existing used products. Because of the lack of historical
data, h̃, k̃, and M̃ are characterized as uncertain variables in this paper. It is reasonable to assume that
the uncertain variables in the three functions above are nonnegative and independent.

Some necessary assumptions need to be made in order to make the model reasonable.
First, this paper assumes that the demand of new products D̃n(pn) is large enough compared to
the number of collected used products Q̃(pe). Second, the products manufactured with virgin raw
materials and those produced with collected raw materials are of the same quality and thus share the
same unit price pn. We suppose pn ≥ cn > cm and pr ≥ cr, which guarantee the nonnegative profit
and the incentive of remanufacturing. In addition, we assume that pe < (cn − cm)(1− τ) to describe
the fact that the unit price of recycling a used product is usually relatively small.

Based on the above assumptions, the total profit function can be formulated as follows:

π(pn, pr, pe) = (pn − cn)D̃n(pn) + (cn − cm)(1− τ)Q̃(pe) + (pr − cr) ·min
{

D̃r(pr), τQ̃(pe)
}
− peQ̃(pe).

According to Lemma A2, the independence between the uncertain variables gives the following
form of the expected total profit.

E [π(pn, pr, pe)] = E
[
(pn − cn)D̃n(pn)

]
+ E

[
((cn − cm)(1− τ)− pe) Q̃(pe)

]
+E

[
(pr − cr) ·min

{
D̃r(pr), τQ̃(pe)

}]
= (pn − cn)E

[
ã− b̃pn

]
+ ((cn − cm)(1− τ)− pe) E

[
min

{
h̃ + k̃pe, M̃

}]
+(pr − cr)E

[
min

{
d̃− β̃pr, τ min{h̃ + k̃pe, M̃}

}]
.

3. An Uncertain Programming Model

In this section, an uncertain programming model is formulated to solve the problem proposed
in this paper. Some crisp equivalents are proposed when assuming that uncertain variables have
a particular distribution.

The objective of the model is to maximize the expected total profit, given that some basic
constraints are satisfied. The model is as follows:

max
pn ,pr ,pe

E [π(pn, pr, pe)] = (pn − cn)E
[
ã− b̃pn

]
+ ((cn − cm)(1− τ)− pe) E

[
min

{
h̃ + k̃pe, M̃

}]
+(pr − cr)E

[
min

{
d̃− β̃pr, τ min{h̃ + k̃pe, M̃}

}]
s.t.

M
{

ã− b̃pn ≤ 0
}
≤ θ,

M
{

d̃− β̃pr ≤ 0
}
≤ δ,

pn ≥ cn,
pr ≥ cr,
0 ≤ pe ≤ (cn − cm)(1− τ),

where θ and δ are two numbers in the interval (0, 1) representing the predetermined confidence levels.
The first constraint ensures that the demand for new products is positive with chance that is not
less than 1− θ. The second constraint is similarly defined for the demand for second-hand products.
The last three constraints represent the assumptions mentioned in the last section.

Denote by Φ−1
a , Φ−1

b , Φ−1
d , Φ−1

β , Φ−1
h , Φ−1

k , and Φ−1
M the inverse uncertainty distributions of ã, b̃,

d̃, β̃, h̃, k̃, and M̃, respectively. According to Lemma A3, the objective function can be transformed into
a deterministic equivalent:



Sustainability 2020, 12, 3199 6 of 16

E [π(pn, pr, pe)] = (pn − cn)
∫ 1

0

(
Φ−1

a (α)−Φ−1
b (1− α)pn

)
dα

+ ((cn − cm)(1− τ)− pe)
∫ 1

0

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧Φ−1

M (α)dα

+(pr − cr)
∫ 1

0

(
Φ−1

d (α)−Φ−1
β (1− α)pr

)
∧ τ

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧ τΦ−1

M (α)dα.

By applying Lemma A4, the chance constraints M{ã− b̃pn ≤ 0} ≤ θ and M{d̃− β̃pr ≤ 0} ≤ δ

can be converted into the deterministic equivalents

pnΦ−1
b (1− θ)−Φ−1

a (θ) ≤ 0

and
prΦ−1

β (1− δ)−Φ−1
d (δ) ≤ 0,

respectively. Based on the above results, a deterministic equivalent of the uncertain programming
model can be obtained as follows:

max
pn ,pr ,pe

E [π(pn, pr, pe)] = (pn − cn)
∫ 1

0

(
Φ−1

a (α)−Φ−1
b (1− α)pn

)
dα

+ ((cn − cm)(1− τ)− pe)
∫ 1

0

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧Φ−1

M (α)dα

+(pr − cr)
∫ 1

0

(
Φ−1

d (α)−Φ−1
β (1− α)pr

)
∧ τ

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧ τΦ−1

M (α)dα

s.t.
pnΦ−1

b (1− θ)−Φ−1
a (θ) ≤ 0,

prΦ−1
β (1− δ)−Φ−1

d (δ) ≤ 0,
pn ≥ cn,
pr ≥ cr,
0 ≤ pe ≤ (cn − cm)(1− τ),

where θ and δ are two numbers in the interval (0, 1) representing the predetermined confidence levels.
For some cases where uncertain variables are of particular uncertainty distributions, there are

crisp equivalents for the model. Linear distribution is one of the most commonly adopted uncertainty
distributions, which is proposed by Liu [31]. When all of the uncertain variables are linear uncertain
variables denoted by ã ∼ L(xa, ya), b̃ ∼ L(xb, yb), h̃ ∼ L(xh, yh), k̃ ∼ L(xk, yk), d̃ ∼ L(xd, yd),
β̃ ∼ L(xβ, yβ), and M̃ ∼ L(xm, ym), the model has the following crisp equivalent:

max
pn ,pr ,pe

E [π(pn, pr, pe)] = (pn − cn)
(xa + ya)− (xb + yb)pn

2
+ ((cn − cm)(1− τ)− pe)A1 + (pr − cr)B1

s.t.
(1− θ)(xa − yb pn) + θ(ya − xb pn) ≥ 0,
(1− δ)(xd − yβ pr) + δ(yd − xβ pr) ≥ 0,
pn ≥ cn,
pr ≥ cr,
0 ≤ pe ≤ (cn − cm)(1− τ),

where

A1 :=
∫ 1

0

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧Φ−1

M (α)dα

=
∫ 1

0
((1− α)(xh + xk pe) + (yh + yk pe)α) ∧ ((1− α)xm + ymα) dα,
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B1 :=
∫ 1

0

(
Φ−1

d (α)−Φ−1
β (1− α)pr

)
∧ τ

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧ τΦ−1

M (α)dα

=
∫ 1

0

(
(1− α)(xd − yβ pr) + (yd − xβ pr)α

)
∧ τ ((1− α)(xh + xk pe) + (yh + yk pe)α)

∧τ ((1− α)xm + ymα) dα,

and θ and δ are two numbers in the interval (0, 1) representing the predetermined confidence levels.
Zigzag distribution is another widely used uncertainty distribution. Assume that all of the

uncertain variables are zigzag uncertain variables, denoted by ã ∼ Z(xa, ya, za), b̃ ∼ Z(xb, yb, zb),
h̃ ∼ Z(xh, yh, zh), k̃ ∼ Z(xk, yk, zk), d̃ ∼ Z(xd, yd, zd), β̃ ∼ Z(xβ, yβ, zβ), and M̃ ∼ Z(xm, ym, zm).
In the model we propose in this paper, θ and δ are two parameters in the interval (0, 1) representing
the predetermined confidence levels. These two parameters are introduced to control the chance of
the uncertain event that the demand is not positive; thus, they are often set as numbers close to 0,
which are usually assumed to be smaller than 0.5. Here, we consider the case where θ and δ are in the
interval (0, 0.5). Based on the definition of the zigzag uncertain variable, the crisp equivalent of the
model can be obtained as follows:

max
pn ,pr ,pe

E [π(pn, pr, pe)] = (pn − cn) ((xa + 2ya + za)/4− (xb + 2yb + zb)pn/2)

+ ((cn − cm)(1− τ)− pe)A2 + (pr − cr)B2

s.t.
pn (2θyb + (1− 2θ)zb)− (2θya + (1− 2θ)xa) ≤ 0,
pr
(
2δyβ + (1− 2δ)zβ

)
− (2δyd + (1− 2δ)xd) ≤ 0,

pn ≥ cn,
pr ≥ cr,
0 ≤ pe ≤ (cn − cm)(1− τ),

where

A2 :=
∫ 1

0

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧Φ−1

M (α)dα

=
∫ 0.5

0
((1− 2α)(xh + xk pe) + 2(yh + yk pe)α) ∧ ((1− 2α)xm + 2ymα) dα

+
∫ 1

0.5
((2− 2α)(yh + yk pe) + (zh + zk pe)(2α− 1)) ∧ ((2− 2α)ym + zm(2α− 1)) dα,

B2 :=
∫ 1

0

(
Φ−1

d (α)−Φ−1
β (1− α)pr

)
∧ τ

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧ τΦ−1

M (α)dα

=
∫ 0.5

0

(
(1− 2α)(xd + zβ pr) + 2(yd + yβ pr)α

)
∧ τ ((1− 2α)(xh + xk pe) + 2(yh + yk pe)α)

∧τ ((1− 2α)xm + 2ymα) dα +
∫ 1

0.5

(
(2− 2α)(yd + yβ pr) + (zd + xβ pr)(2α− 1)

)
∧τ ((2− 2α)(yh + yk pe) + (zh + zk pe)(2α− 1)) ∧ τ ((2− 2α)ym + zm(2α− 1)) dα,

and θ and δ are two numbers in the interval (0, 0.5) representing the predetermined confidence levels.
Normal distribution is the counterpart with the normal distribution in probability theory.

Assume that all of the uncertain variables are normal uncertain variables, denoted by ã ∼ N (ea, σa),
b̃ ∼ N (eb, σb), h̃ ∼ N (eh, σh), k̃ ∼ N (ek, σk), d̃ ∼ N (ed, σd), β̃ ∼ N (eβ, σβ), and M̃ ∼ N (em, σm).
Based on the definition of the normal uncertain variable, the crisp equivalent of the model can be
obtained as follows:
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

max
pn ,pr ,pe

E [π(pn, pr, pe)] = (pn − cn)(ea − eb pn) + ((cn − cm)(1− τ)− pe)A3 + (pr − cr)B3

s.t.

θ

(
1 + exp

(
π(ea − eb pn)√
3(σa + σb pn)

))
− 1 ≥ 0,

δ

(
1 + exp

(
π(ed − eβ pr)√
3(σd + σβ pr)

))
− 1 ≥ 0,

pn ≥ cn,
pr ≥ cr,
0 ≤ pe ≤ (cn − cm)(1− τ),

where

A3 :=
∫ 1

0

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧Φ−1

M (α)dα

=
∫ 1

0

(
(eh + ek pe) +

(σh + σk pe)
√

3
π

ln
α

1− α

)
∧
(

em +
σm
√

3
π

ln
α

1− α

)
dα,

B3 :=
∫ 1

0

(
Φ−1

d (α)−Φ−1
β (1− α)pr

)
∧ τ

(
Φ−1

h (α) + Φ−1
k (α)pe

)
∧ τΦ−1

M (α)dα

=
∫ 1

0

(
(ed − eβ pr) +

(σd + σβ pr)
√

3
π

ln
α

1− α

)
∧ τ

(
(eh + ek pe) +

(σh + σk pe)
√

3
π

ln
α

1− α

)

∧τ

(
em +

σm
√

3
π

ln
α

1− α

)
dα,

and θ and δ are two numbers in the interval (0, 1) representing the predetermined confidence levels.

4. Numerical Experiments

In this section, a numerical example is provided to show how various parameters influence
the pricing decisions and the total profit. Because the optimal pricing decision model is proposed in
an uncertain environment, in such supply chains, the quantities of recycled products and demands may
be subject to some inherent indeterministic factors, such as market sizes and price elasticity coefficients;
thus, the data on the recycled products and the data on the estimation of uncertain parameters from
experienced experts are difficult to find. Interested readers can consult Liu [51] (Chapter 16: Uncertain
Statistics) to get more details on how to collect experts’ data and how to estimate empirical distributions
of uncertain variables from the experimental data. Although, in the following, only particular data
are employed, we have actually conducted some computational experiments from which similar
observations have been obtained.

These uncertain parameters are assumed to be uncertain variables distributed as one of the
three commonly used uncertainty distributions, namely linear uncertain variables, zigzag uncertain
variables, and normal uncertain variables. In the following experiments, the unit cost for manufacturing
a new product with virgin raw materials cn = 30, the unit cost for manufacturing a new product with
recycled raw materials cm = 10, the unit cost for renewing a second-hand product in good condition
cr = 5, confidence level parameters θ = 0.1, and δ = 0.2.

In the first experiment, this paper examines how the uncertainty distribution of the parameters
influences the performance of the optimal pricing decisions. The expected value of each uncertain
parameter is fixed, and all of the parameters follow the same type of uncertainty distribution.
These parameters are assumed to be with a linear uncertainty distribution, zigzag uncertainty
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distribution, and normal uncertainty distribution, respectively. The distributions of the parameters are
shown in Table 2. When parameter τ = 0.4, the optimal prices and the expected profits are shown in
Table 3. Figures 2 and 3 illustrate the optimal prices and the expected profits as values of parameter τ

vary, respectively.

Table 2. Distributions of uncertain variables.

Parameters Linear Zigzag Normal Expected Value

ã L(5000,10000) Z(5000,8000,9000) N (7500,200) 7500

b̃ L(30,50) Z(30,40,50) N (40,8) 40

d̃ L(2500,5000) Z(2500,3000,6500) N (3750,100) 3750

β̃ L(40,60) Z(40,50,60) N (50,4) 50

h̃ L(50,100) Z(50,80,90) N (75,6) 75

k̃ L(100,200) Z(100,150,200) N (150,9) 150

M̃ L(5000,8000) Z(5000,6500,8000) N (6500,120) 6500

Table 3. The optimal prices and expected profits assuming different uncertainty distributions (τ = 0.4).

Distribution p∗
n p∗

r p∗
e E[π(p∗

n , p∗
r , p∗

e )]

Linear 108.7501 46.5202 11.9011 274,767.7100

Zigzag 108.7503 40.8848 11.2037 272,293.4025

Normal 108.7498 56.1929 11.9987 282,495.1945

��� ��� ��� ��� ��� ��� ��� ��	 ��


τ

�

��

��

��

	�

���
p *
n

p *
r
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e

������

�����
������������

Figure 2. Optimal prices for different values of parameter τ.

Figure 2 shows that the value of p∗n is almost a constant for all different values of τ and different
uncertainty distributions. Because there are two different strategies for remanufacturing products,
the firm can flexibly trade off the decisions on the prices p∗r and p∗e , and it is reasonable to maintain the
price p∗n to gain the optimal profit. It is shown that the value of p∗r is also relatively stable. With the
parameter τ increasing, the price of recycling used products p∗e first increases and then drops. For the
cases where τ is relatively small, p∗e increases as τ increases. In such situations, the increase of both
p∗e and τ can largely raise the number of the products that can be remanufactured as second-hand
products, which is the optimal way of maximizing the profit. As the value of τ exceeds some threshold,
the demand of second-hand products will not increase; thus, the firm should decrease p∗e to reduce
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the recycling cost. For the same reason, it can be observed that the total profit first increases and then
drops with increasing parameter τ in Figure 3. This shows that the profit is greater for a medium value
of τ, because the market demand of second-hand products is sufficiently satisfied.

��� ��� ��� ��� ��� ��� ��� ��	 ��


τ
���,���

���,���

���,���

���,���

���,���
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������

�����
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Figure 3. Maximum expected profits for different values of parameter τ.

In the second experiment, how uncertainty impacts the optimal prices and the expected profit
is examined. These experiments focus on the uncertainty of the three uncertain parameters b̃, h̃, and
M̃ by varying the uncertain variances of parameters b̃, h̃, and M̃ and keeping the expected values
unchanged. The optimal pricing decisions and the expected profit for different variances of b̃, h̃, and
M̃ are shown in Tables 4–6. From Tables 4 and 6, it can be observed that the uncertainty of b̃ and M̃
has little impact on the results. However, in Table 5, for all cases, the prices p∗n and p∗r and the expected
profit increase as h̃ increases. This shows that a high-level environmental protection consciousness of
the society benefits the firms who are involved in a closed-loop supply chain.

Table 4. The optimal prices and expected profits for b̃ of different variances (τ = 0.4).

Distribution b̃ V [b̃] p∗
n p∗

r p∗
e E[π(p∗

n , p∗
r , p∗

e )]

Linear L(31,49) 27.0000 108.7476 46.5347 11.8987 274,767.7138
L(30,50) 33.3333 108.7501 46.5202 11.9011 274,767.7120
L(29,51) 40.3333 108.7519 46.5380 11.9011 274,767.7115
L(28,52) 48.0000 108.7531 46.5347 11.9987 274,767.7040

Zigzag Z(31,40,49) 27.0000 108.7564 40.8623 11.1994 272,293.4822
Z(30,40,50) 33.3333 108.7503 40.8848 11.2037 272,293.4025
Z(29,40,51) 40.3333 108.7540 40.8680 11.1944 272,293.3899
Z(28,40,52) 48.0000 108.7500 40.8653 11.1960 272,293.3799

Normal N (40,7) 49.0000 108.7500 56.1966 11.8987 282,495.1944
N (40,8) 64.0000 108.7498 56.1929 11.9987 282,495.1945
N (40,9) 81.0000 108.7509 56.1928 11.9987 282,495.1978
N (40,10) 100.0000 108.7494 56.1929 12.0000 282,495.3938
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Table 5. The optimal prices and expected profits for h̃ of different variances (τ = 0.4).

Distribution h̃ V [h̃] p∗
n p∗

r p∗
e E[π(p∗

n , p∗
r , p∗

e )]

Linear L(51,99) 192.0000 108.7499 46.5122 11.9890 274,764.4382
L(50,100) 208.3333 108.7501 46.5202 11.9011 274,767.7120
L(49,101) 225.3333 108.7582 46.5330 11.9909 274,770.9045
L(48,102) 243.0000 108.7662 46.5397 11.9948 274,774.2556

Zigzag Z(51,80,89) 128.6667 108.7498 40.8604 11.1983 272,290.4050
Z(50,80,90) 141.6667 108.7503 40.8848 11.2037 272,293.4025
Z(49,80,91) 155.3333 108.7570 40.8944 11.2099 272,296.5589
Z(48,80,92) 169.6667 108.7580 40.8967 11.2102 272,299.6402

Normal N (75,5) 25.0000 108.7479 56.1877 11.8999 282,486.3327
N (75,6) 36.0000 108.7498 56.1929 11.9987 282,495.1945
N (75,7) 49.0000 108.7500 56.1980 11.9326 282,504.0573
N (75,8) 64.0000 108.7501 56.2032 11.9489 282,512.9213

Table 6. The optimal prices and expected profits for M̃ of different variances (τ = 0.4).

Distribution M̃ V [M̃] p∗
n p∗

r p∗
e E[π(p∗

n , p∗
r , p∗

e )]

Linear L(5100,7900) 653,333.3333 108.7501 46.5200 11.9009 274,767.7116

L(5000,8000) 750,000.0000 108.7501 46.5202 11.9011 274,767.7120

L(4900,8100) 853,333.3333 108.7577 46.5347 12.0000 274,767.7135

L(4800,8200) 963,333.3333 108.7740 46.5315 12.0000 274,767.7235

Zigzag Z(5600,6500,7400) 653,333.3333 108.7487 40.8631 11.1981 272,293.3926

Z(5100,6500,7900) 750,000.0000 108.7490 40.8848 11.2037 272,293.4025

Z(4900,6500,8100) 853,333.3333 108.7490 40.8626 11.2014 272,293.4838

Z(4800,6500,8200) 963,333.3333 108.7529 40.8660 11.1972 272,293.4930

Normal N (6500,110) 12,100.0000 108.7492 56.1929 11.9999 282,495.1942

N (6500,120) 14,400.0000 108.7498 56.1929 11.9987 282,495.1945

N (6500,130) 16,900.0000 108.7614 56.1928 11.9980 282,495.1981

N (6500,140) 19,600.0000 108.7500 56.1929 11.9980 282,495.1999

5. Conclusions and Future Research

This paper addresses the pricing decision problem in recycling and remanufacturing in
uncertain environments. The contribution of this paper lies mainly in investigating two strategies of
remanufacturing of products according to the quality level of recycled products. Specifically, this paper
focuses on the case where not enough samples are available, and the quantities of recycled products
and consumer demands are characterized as uncertain variables. An uncertain programming model is
proposed by using uncertainty theory; the crisp equivalents for the model under three possible
uncertainty distributions are derived from this model. Afterwards, a numerical experiment is
performed to show how various parameters influence the results of the proposed model.

This paper points out some directions for future research. First, several assumptions in the
model set can be relaxed for further study. For example, by taking into account the other factors
that affect the demand of products, the functions of demand can be redefined for generalization.
Second, multiple manufacturers and retailers can be considered, the recycling price should be based
on different quality levels for the remanufacturing process, and more convenient and multi-channel
recycling methods can be studied in future study. Third, we will consider inventory costs and
transportation costs in the decision model in the future research on the pricing problem. In addition,
future research can also consider the impacts of subsidies and relative policy tools on remanufacturing
and pricing strategies.
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Appendix A. Uncertainty Theory

In this section, we review some knowledge the in uncertainty theory that is proposed by Liu [31].
Uncertain measure is the concept at the core of uncertainty theory, which is present to describe the
belief degree of an uncertain event. Let Γ be a nonempty set and L be a σ-algebra over Γ. Each element
Λ in L is called an event. Uncertain measure M is a set function from L to [0, 1] that satisfies the
following four axioms:

Axiom 1. (Normality Axiom) M{Γ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom) M{Λ}+M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom) For every countable sequence of events Λ1, Λ2, . . ., we have

M

{
∞⋃

i=1

Λi

}
≤

∞

∑
i=1

M{Λi}.

Axiom 4. (Product Axiom Liu [32]) Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, . . .; the
product uncertain measure M is an uncertain measure satisfying

M

{
∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . ., respectively.
Furthermore, we introduce the concepts of uncertain variables, independence, uncertainty

distributions, regular distributions, and expected values.

Definition A1 (Liu [31]). An uncertain variable is a measurable function ξ from an uncertainty space
(Γ,L,M) to the set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B}

is an event.

Definition A2 (Liu [32]). The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M

{
∞⋂

i=1

(ξi ∈ Bi)

}
=

∞∧
i=1

M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn.

Definition A3 (Liu [31]). The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x.
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Definition A4 (Liu [52]). An uncertainty distribution Φ(x) is said to be regular if it is a continuous and
strictly increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

It is known that the inverse function Φ−1(α) of a regular uncertainty distribution function Φ
exists and is unique for each α ∈ [0, 1]. In this case, the inverse function Φ−1(α) is called the inverse
uncertainty distribution of ξ.

Definition A5 (Liu [31]). Let ξ be an uncertain variable. The expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ r}dr−

∫ 0

−∞
M{ξ ≤ r}dr,

provided that at least one of the above two integrals is finite.

The expected value of an uncertain variable ξ with uncertainty distribution Φ can also be written as

E[ξ] =
∫ +∞

0
(1−Φ(x))dx−

∫ 0

−∞
Φ(x)dx.

Definition A6 (Liu [31]). Let ξ be an uncertain variable with finite expected e. Then, the variance of ξ is

V[ξ] = E[(ξ − e)2].

Lemma A1 (Liu [52]). Let ξ be an uncertain variable with regular distribution Φ. If the expected
value exists, then

E[ξ] =
∫ 1

0
Φ−1(α)dα.

Example A1. The uncertainty distribution of a linear uncertain variable ξ ∼ L(a, b) is

Φ(x) =


0, if x < a

(x− a)/(b− a), if a ≤ x ≤ b
1, if x > b.

In addition, the inverse uncertainty distribution is Φ−1(α) = a + (b− a)α. Thus, the expected value is

E[ξ] =
a + b

2
,

the variance is

V[ξ] =
(b− a)2

12
.

Example A2. The uncertainty distribution of a zigzag uncertain variable ξ ∼ Z(a, b, c) is

Φ(x) =


0, if x < a

(x− a)/[2(b− a)], if a ≤ x ≤ b
(x + c− 2b)/[2(c− b)], if b < x ≤ c

1, if x > c.

The inverse uncertainty distribution is
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Φ−1(α) =

{
(1− 2α)a + 2αb, if α < 0.5

(2− 2α)b + (2α− 1)c, if α ≥ 0.5.

Thus, its expected value is

E[ξ] =
a + 2b + c

4
,

the variance is

V[ξ] =
5a2 + 4b2 + 5c2 − 4ab− 6ac− 4bc

48
.

Example A3. The uncertainty distribution of a normal uncertain variable ξ ∼ N (e, σ) is

Φ(x) =
(

1 + exp
(

π(e− x)√
3σ

))−1

, x ∈ R.

The inverse uncertainty distribution is

Φ−1(α) = e +
σ
√

3
π

ln
α

1− α
.

Thus, its expected value is
E[ξ] = e,

the variance is
V[ξ] = σ2.

Lemma A2 (Yang [53]). Let f and g be comonotonic functions. Then, for any uncertain variable ξ, we have

E[ f (ξ) + g(ξ)] = E[ f (ξ)] + E[g(ξ)].

Lemma A3 (Liu and Ha [54]). Assume ξ1, ξ2, · · · , ξn are independent uncertain variables with regular
uncertainty distributions Φ1, Φ2, · · · , Φn, respectively. If f (ξ1, ξ2, · · · , ξn) is strictly increasing with respect
to ξ1, ξ2, · · · , ξm and strictly decreasing with respect to ξm+1, ξm+2, · · · , ξn, then

ξ = f (ξ1, ξ2, · · · , ξn)

has an expected value

E[ξ] =
∫ 1

0
f
(

Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)
)

dα.

Lemma A4 (Liu [32]). Assume the constraint function g(x, ξ1, ξ2, · · · , ξn) is strictly increasing with respect
to ξ1, ξ2, · · · , ξk and strictly decreasing with respect to ξk+1, ξk+2, · · · , ξn. If ξ1, ξ2, · · · , ξn are independent
uncertain variables with uncertainty distributions Φi, i = 1, 2, . . . , n, respectively, then the chance constraint

M{g(x, ξ1, ξ2, · · · , ξn) ≤ 0} ≥ α, α ∈ [0, 1]

holds if and only if

g
(

x, Φ−1
1 (α), · · · , Φ−1

k (α), Φ−1
k+1(1− α), · · · , Φ−1

n (1− α)
)
≤ 0.
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