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Abstract: Topsoil is required to be stripped and reused to maintain land productivity in mining
and construction activities. However, as a great threat to unprotected soil, wind erosion on
topsoil replacement sites has not received enough research attention, which hinders the efficient
implementation of wind erosion control measures in the right time and place on a national scale.
This study aims to evaluate wind erosion on unprotected topsoil replacement sites (WEUTRS) in
mainland China, examining its spatiotemporal pattern and demonstrating its significance for the
relevant research and industry. The WEUTRS was calculated by the Revised Wind Erosion Equation
with meteorological data (1988–2017) and raster data of soil properties. The results showed a strong
spatiotemporal heterogeneity of WEUTRS. The highest (>300 kg m−2) and the lowest (<0.5 kg m−2)
WEUTRS appeared in Northwest and Central Southern China, respectively. The most drastic temporal
change through the year was in Northwest China (as high as 335.4 kg m−2 on the example site),
followed by Qinghai–Tibet Plateau and Shandong Province. By contrast, almost no temporal changes
happened in Central Southern China. The ratio of monthly WEUTRS to respread the topsoil mass
(Rw) in Northwest China and Mongolia Plateau reached 10% or more in specific months, and less than
0.1% in most of Southern China. The WEUTRS quantification could be applied to the wind erosion
control on topsoil replacement sites on both a national scale and a regional scale. The spatiotemporal
pattern of WEUTRS may be a scientific basis for a nationwide or regionwide differentiated policy on
the wind erosion control on topsoil replacement sites for policy makers, as well as the reference to the
proper working schedule and the control measures for local mining and construction projects for
management authorities and practitioners.
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1. Introduction

Topsoil is a precious natural resource and plays an important role in maintaining land productivity
and biodiversity. It takes centuries for topsoil to develop several centimeters of thickness; hence,
it is considered a non-renewable resource [1,2]. Nutrients, such as carbon and nitrogen, are in the
topsoil, and it may function as a long-term N pool [3,4], and it has the role of a ‘reservoir’ of seeds and
vegetative propagules [5].

In practice, topsoil is required to be stripped from the original site and then reused after construction
activities and the mining of coal, uranium, and phosphates, etc. [6–8]. It is firstly removed from
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the construction site, then transported directly to the topsoil replacement site or to storage until the
forming of the replacement site is ready [7,9], and, lastly, respread to the replacement site for the
ecological restoration of the site. During the topsoil handling process, wind erosion leads to large
soil loss and topsoil deterioration in most mining and quarry activities [10,11], railroad and highway
projects [12–14], and other infrastructure construction [15].

There are many negative impacts of erosion by wind on newly respread topsoil. The duration of
wind erosion lasts from the topsoil replacement to the establishment of post-construction cover [15],
which is normally vegetation. It could take months, or even years, for the vegetation to recover and
provide effective protection for soil from wind erosion [16]. For a bare soil surface, wind erosion is
50 times higher than that with 60% of soil surface protection (e.g., vegetation, vegetation residual,
clods, etc.) [17]. It will also significantly reduce soil thickness if the site is exposed with unprotected
topsoil [18,19]. The thickness of respread topsoil is crucial to vegetation recovery. Topsoil that is too
shallow could decrease the land productivity and biodiversity [20–22], and also cause poor-to-no
vegetative cover [18]. As a result, heavier wind erosion could occur with topsoil and even lead to the
failure of the whole topsoil handling.

Given the harmfulness of wind erosion on unprotected soil, many countries emphasize the
necessity of wind erosion control during topsoil handling in the relevant laws and regulations [23–28].
However, research that evaluates wind erosion on topsoil replacement sites is scarce in both field study
and modelling. Current studies pertaining to wind erosion and its influence on mining and construction
projects mainly focus on the impacts of dust emission to the surrounding environment [11,13,14,29],
rather than quantifying the soil loss by wind at the post-construction stage. This data gap hinders the
effective implementation of wind erosion control measures on topsoil replacement sites in different
locations at different times.

In this paper, we: (1) evaluated wind erosion on unprotected topsoil replacement sites (WEUTRS)
in mainland China; (2) examined its spatiotemporal pattern; and (3) demonstrated the significance
of WEUTRS for the relevant research and industry. Our findings can be used as a basis for future
studies on the sustainable use of topsoil in mining and construction projects. It will also provide a
scientific basis for making a relevant spatiotemporal differentiated policy, and the supervision and
management to protect topsoil from wind erosion on post-construction sites for local management
authorities and practitioners.

2. Materials and Methods

2.1. Study Area

China (Figure 1) is one of the countries that suffers the most erosion by wind in the world [30].
There are approximately 3070 km2 of disturbed soil due to natural disasters and construction projects
every year in China [31]. Given the diverse physical geography, many large construction projects
have taken place in regions across several climate zones and soil types [14]. Therefore, the situation
of topsoil replacement sites could vary according to the locations of the projects, which leads to the
complexity of soil loss by wind on the sites. It can be a good representation of the countries that need
spatiotemporal differentiated management on the relevant issues.
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Figure 1. The provinces and elevation of China.

2.2. Study Assumption

In a raster map of mainland China (spatial resolution of 1 km × 1 km), a 200 m × 200 m unprotected
topsoil replacement site was simulated inside every pixel. Each simulated site was used to estimate
wind erosion per unit area of any topsoil replacement site in its corresponding pixel. The sites were
simulated according to the relevant technical standards and specifications in China [23,32,33] the
topsoil was mixed during topsoil handling; the site was levelled before soil replacement and ploughed
after replacement; and one of the site’s sides was vertical to the dominant wind direction.

2.3. Dataset

Meteorological data was obtained from the National Meteorological Information Centre [34] from
1 January 1988 to 31 December 2017. It includes the daily wind speed (four observations per day at
2:00, 8:00, 14:00, and 20:00), daily mean temperature, daily relative humidity, and daily rainfall from
740 weather stations (Appendix A, Figure A1) across mainland China.

Soil data was obtained from the Resource and Environment Data Cloud Platform [35] and the
Cold and Arid Regions Science Data Center of China [36]. The raster dataset of soil properties was
generated by the Institute of Soil Science, Chinese Academy of Sciences, with 1 km2 spatial resolution
(the water body was removed from the raster data) [37]. The dataset of soil properties included
soil texture (clay, silt, and sand content), CaCO3 content, soil organic matter content, and soil bulk
density. Soil particle-size distribution was converted from Chinese standard to the U.S. Department of
Agriculture (USDA) scheme by a log-normal distribution method [38,39].

The soil erosion distribution in natural conditions was obtained from the Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences, according to the standards
for the classification and gradation of soil erosion [35,40].
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2.4. Method

2.4.1. Evaluation of WEUTRS

The Revised Wind Erosion Equation (RWEQ) was applied to evaluate the wind erosion on each
simulated site. It was originally used to estimate the soil loss by wind in arable land developed by
scientists of the USDA [41,42]. After decades of application and adjustment, it contains a comprehensive
modelling scheme, which is proven to be suitable for the wind erosion estimation in different climate
zones and soil types on different scales [43–47]. Moreover, the adjustable parameters of the model
make it suitable for different purposes.

According to Fryrear [41], the RWEQ calculated the soil loss at a specific point (x (m)) in the field,
as follows (where Qmax and s are constant):

soil loss =
2x
s2 Qmaxe−(

x
s )

2
(1)

where Qmax (kg m−1—width) is the maximum transport capacity and s is the critical field length (m),
at which the 63.2% maximum transport capacity Qmax is reached. In this study, the field length x was
the width of the platform, which is 200 m. The average soil loss that was used in this study is defined
as mass transport at field length x divided by distance x [41].

Qmax and s are estimated as:

Qmax = 109.8(WF× EF× SCF×K′ ×COG) (2)

s = 150.71(WF× EF× SCF×K′ ×COG)−0.3711 (3)

where EF is erodible factor; SCF—soil crust factor; K′ is soil roughness factor; COG is combined crop
factors; and WF is weather factor (kg m−1).

The WEUTRS of each site in each month was evaluated with this model. According to the
conditions of our simulated topsoil replacement sites, the model parameters were set and localized
as follows:

A) Weather Factor (WF)
The weather factor (WF) was calculated by multiplying the monthly mean value of the wind

factor (Wf ), soil wetness (SW), snow cover factor (SD) and the quotient of air density (ρ, kg m−3),
and acceleration due to gravity (g, m s−2) (Equation 4) in every weather station in Microsoft Excel.
Based on the weather station point, the Kriging method [48,49] was used to interpolate the raster of
WF for each month with the spatial resolution of 1 km × 1 km in ArcGIS® v10.5.

WF = W f ×
ρ

g
× SW × SD (4)

Wind factor (Wf ): the wind factor was calculated by Equation (5). U2 is the wind speed at 2 meters
high, which was the wind speed observation from the weather stations. Ut is the wind speed threshold
that causes soil transportation. Ut = 5 m s−1 at a height of 2 m as a threshold of the general wind speed
of transporting soil was used in this study [41,47]. N is the total wind speed observations and Nd is the
total days of one period, and a month was used as a period in this study.

W f =
∑N

i=1 U2(U2 −Ut)
2

N
×Nd (5)

Soil wetness (SW): in the RWEQ, soil wetness was the difference of evapotranspiration and rainfall
(and irrigation) in a period of time (Equation (6)). If there was no rain or irrigation over a time period,
the SW coefficient was one; if the evapotranspiration was less than the water receiving (rainfall and
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irrigation) in that period, the SW coefficient was zero. According to our assumption, no irrigation was
applied on the simulated sites; thereby, irrigation was not considered in this study.

The monthly mean temperature and monthly mean relative humidity were used to compute the
monthly mean potential relative evapotranspiration (Equation (7)). The equation was tested reliable
for the climatic erosivity of wind erosion in arid and semiarid China [50].

SW =
ETp − (R + I) × Rd

Nd

ETp
(6)

ETp = 0.19× (20 + Ti)
2
× (1− ri) (7)

where ETp is potential relative evapotranspiration (mm); Ti is monthly mean temperature (◦C); ri is
monthly mean relative humidity (%); R is rainfall (mm); I is irrigation (mm); Rd is number of rainfall
and/or irrigation days in a period (one month); Nd is number of days of a period (one month).

Snow cover factor (SD): this factor equals to 1, minus the probability of a snow depth greater than
25.4 mm. The probability is the ratio of days with a snow depth greater than 25.4 mm in a time period
(one month) and the total days in that period. Snowfall was conversed from rainfall data. According to
Chinese meteorological administration, the intensity of newly formed snow cover is one-tenth of that
of rainfall water. Therefore, the condition of daily snow cover greater than 25.4 mm could have been
considered when the daily mean rainfall was greater than 2.5 mm; meanwhile, the temperature was
below 0 ◦C [51].

B) Erodible Factor (EF) and Soil Crust Factor (SCF)
In the RWEQ model, both the erodible factor (EF) and soil crust factor (SCF) (Appendix A,

Figure A2) were calculated as follows:

EF =
29.09 + 0.31× Sa + 0.17× Si + 0.33(Sa/Cl) − 2.59×OM− 0.95×CaCO3

100
(8)

SCF =
1

1 + 0.0066(Cl)2 + 0.021(OM)2 (9)

where Sa = sand content (%); Si = silt content (%); Cl = clay content (%); Sa/Cl = sand to clay ratio;
OM = organic matter (%); CaCO3= calcium carbonate (%). The soil texture data (Sa, Si, and Cl) used
in Equations (8) and (9) was converted from Chinese standard to USDA scheme by the log-normal
distribution method [38,39].

C) Soil Roughness Factor (K’)
The soil roughness factor (K’) in the RWEQ was calculated from soil surface roughness and soil

ridge roughness [41]. In this study, the site was levelled and assumed to be flat. According to Saleh [52],
considering the soil surface roughness and soil ridge roughness, the soil roughness of the almost flat
site was 0.88. Thereby, we used 0.88 as the K’ value of the simulated topsoil replacement sites.

D) Combined Crop Factors (COG)
Under the circumstances of the topsoil handling process, the plant was removed in the first place.

Therefore, bare soil without vegetation or vegetation residual was on the simulated sites after topsoil
replacement in this study. Although some stripped topsoil contained plant seeds [5], they still needed
months to sprout and grow, which meant that there were months that the topsoil was unprotected by
vegetation or any other cover. On the basis of the RWEQ model, the COG was 1 if all the flat residual
coverage, standing residual coverage, and crop canopy coverage were 0.

The mean WEUTRS of each month from 1987 to 2017 was calculated by the RWEQ (Figure 2).
Then, the monthly means of WEUTRS from January to December were conducted in the ArcGIS model
builder using a raster calculator (e.g., the monthly mean of WEUTRS in January was obtained by
averaging all values of the WEUTRS of January from 1987 to 2017).
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Figure 2. Flowchart of Revised Wind Erosion Equation (RWEQ) for monthly mean of wind erosion on
unprotected topsoil replacement sites (WEUTRS).

2.4.2. Range of Monthly Mean WEUTRS

The range is the difference between the maximum and minimum value, and it can be used as a
measure of temporal heterogeneity. In this study, the range of the monthly mean of WEUTRS was
used to demonstrate the inter-monthly variation of WEUTRS. The maximum and minimum of the
monthly means of WEUTRS in each pixel of the raster map were obtained respectively; then, the range
of WEUTRS was calculated by subtracting the raster with the minimum value from the one with the
maximum value.

2.4.3. Ratio of WEUTRS to Respread Topsoil Mass

The ratio of WEUTRS to respread the topsoil mass in one unit area (Rw) (Equation (10)) was
calculated. It was used as the assessment of wind erosion severity on the unprotected replacement sites.

Rw =
w∑n

i=1 ρi × di
(10)

where w is the monthly mean of WEUTRS, i is the vertical soil layer number from top layer to layer n,
ρi is bulk density of layer i, and di is soil thickness of layer i.

We assumed that the area of respread topsoil was equal to the area of stripped topsoil. Thus, the
soil mass of respread topsoil equaled the soil mass of stripped topsoil (i.e., soil mass before stripping).
The soil mass of one unit area was calculated as the sum of the soil mass of each layer.

In this study, there were four soil layers with thicknesses of 0–4.5 cm, 4.5 cm–9.1 cm, 9.1 cm–16.6 cm,
and 16.6 cm–28.9 cm, respectively [37], and the thickness of 28.9 met the requirement of the average
soil thickness of different land use types [53].
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3. Results

3.1. Spatiotemporal Heterogeneity of WEUTRS

Figure 3 shows the monthly mean of WEUTRS from January to December on the simulated topsoil
replacement sites. The monthly mean of WEUTRS showed strong spatiotemporal heterogeneity.
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Figure 3. The monthly mean WEUTRS (1988–2017). Spatial-wise, overall, the provinces in Northwest
China (Xinjiang, Qinghai, and Inner Mongolia) had the most severe WEUTRS, followed by Gansu,
Tibet, and Shandong Province. The provinces in the humid area of Central Southern China had the
least severe WEUTRS.

Taking April as an example (Figure 4), Xinjiang, Inner Mongolia, and Qinghai exhibited the
highest WEUTRS (>50 kg m−2) on the national scale. The provinces with the second highest
WEUTRS were Qinghai–Tibet Plateau, Inner Mongolia Plateau (Gansu, Ningxia, and Inner Mongolia),
Northeast Plateau (Liaoning and Jilin), and Shandong Province (10–50 kg m−2). Yunnan–Guizhou
Plateau in the Southwest had a relatively high WEUTRS (2.5–10 kg m−2) compared to other Southern
provinces. Central Southern China is had the lowest WEUTRS (<0.5 kg m−2).
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Figure 4. Monthly mean WEUTRS of April.

We selected seven simulated sites (i.e., seven pixels) in different regions as examples to further
demonstrate the spatiotemporal heterogeneity (Figure 4, Table 1).

Table 1. WEUTRS and its range in seven example sites.

Site ID Natural Region
Provincial

Administrative
Region

WEUTRS
in April
(kg m−2)

Range of Monthly
Mean WEUTRS

(kg m−2)

1 Northwest China
Xinjiang Uygur
Autonomous

Region
312.98 335.40

2 Qinghai–Tibet Plateau Qinghai 49.79 68.59
3 Loess Plateau Gansu 25.21 20.19
4 North China Plain Shandong 89.30 87.74
5 Northeast Plain Jilin 15.92 15.21
6 Yunnan–Guizhou Plateau Yunnan 3.28 4.12
7 Central Southern China Hunan 0.004 0.02

For the sites in Northern China (site 1 to 5), the WEUTRS in April were all relatively high but
had great differences, from 321.98 kg m−2 to 15.92 kg m−2. For site 6 and 7 in Southern China, site 6
still had wind erosion of 3.28 kg m−2 on the unprotected topsoil surface, while wind erosion hardly
affected the replaced topsoil on site 7.

Temporal-wise, the range of the monthly mean WEUTRS (Figure 5) was calculated by subtracting
the minimum monthly mean of WEUTRS from the maximum in each pixel. This was used as a measure
of temporal variation of WEUTRS in mainland China. The most drastic variation of the monthly mean
of WEUTRS took place in Northwest China (Xinjiang, Qinghai) and part of Inner Mongolia Plateau,
which was greater than 50 kg m−2. This was followed by the relatively drastic temporal change of the
monthly mean of WEUTRS in Qinghai–Tibet Plateau and Shandong Province, which was greater than
10 kg m−2. Almost no temporal changes of the monthly mean of WEUTRS (<0.5 kg m−2) occurred in
the provinces in Central Southern China, such as Sichuan, Hubei, Anhui, and Jiangxi.
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Among the seven example sites (Table 1), site 1 had the largest temporal variation of 335.4 kg m−2.
This difference between the maximum and the minimum monthly WEUTRS on site 1 was nearly four
times larger than that of site 4 in Shandong, and five times larger than that of site 2 on the Qinghai–Tibet
Plateau. For site 6 and 7 in Southern China, the temporal variation was small. The range of site 7 was
especially close to 0 due to little WEUTRS in each month.

Regional-wise, in Northwest China, the extent of the monthly means of WEUTRS greater than 50
kg m−2 reached the largest in March, April, and May. In November, December, and January, the monthly
mean WEUTRS decreased to less than 50 kg m−2. In the Qinghai–Tibet Plateau, the monthly mean
WEUTRS stayed between 10 to 50 kg m−2 from November to May, and it reduced to less than 2.5 kg
m−2 in June, July, August, and September. In the Inner Mongolia Plateau, the highest monthly mean of
WEUTRS (>50 kg m−2) was in April and May, mainly appearing in the East and the North of the Inner
Mongolia Plateau. In July to September, the extent of the monthly mean of WEUTRS was greater than
2.5 kg m−2, shrinking to the smallest. In Southern China, the monthly mean of WEUTRS was mainly
less than 0.5 kg m−2 in every month through the year. The monthly mean of WEUTRS could increase to
a maximum of 10 kg m−2, except in January to April in Yunnan–Guizhou Plateau in Southwest China.

3.2. Ratio of WEUTRS to Respread Topsoil Mass (Rw)

The evaluation results of WEUTRS showed a strong spatiotemporal heterogeneity. With the
quantification of the WEUTRS, the soil loss ratio of WEUTRS to topsoil mass per m2 after the replacement
(Rw) (Figure 6) was estimated. This was different from the wind erosion distribution under natural
conditions (Appendix A, Figure A3). The distribution of Rw was consistent with the spatiotemporal
pattern of the WEUTRS in Figure 3. When a region had a relatively high WEUTRS (≥2.5 kg m−2),
the soil loss ratio was relatively high; hence, the topsoil replacement sites in this region suffered more
severe wind erosion.
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Figure 6. Soil loss ratio of WEUTRS to topsoil mass.

In Northwest China, Rw was greater than 10% from February to October. In Northern Xinjiang,
especially, the accumulated percentage of soil loss accounting for the soil mass could be greater than
90% if a topsoil replacement site was unprotected from wind erosion from February to October.

In the Qinghai–Tibet Plateau, a Rw greater than 5% appeared from January to April.
The accumulated soil loss percentage could be greater than 20% on the unprotected topsoil replacement
sites in some parts during these four months.

In the Inner Mongolia Plateau, Rw was greater than 5% from March to June, and was greater than
10% in some areas in April and May.

In most of Southern China, the Rw was less than 0.1% through the year.

4. Discussion

4.1. Necessity of WEUTRS Quantification

In many regions, there is a considerable amount of soil loss by wind from topsoil replacement to
the commencement of the vegetation growing season according to the accumulated Rw. This could
subsequently affect the vegetation growth on the sites [54]. The spatiotemporal pattern of the quantified
WEUTRS may be a scientific reference for wind erosion control on these sites to minimize soil loss.
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Sites in Northwest China are located inside the wind erosion region in natural conditions (Figure 6).
This region is located in an arid area with intensive wind and erodible ground surface material, and can
easily be eroded by wind when disturbed [55]. There are intensive human activities in this region—such
as large opencast coal mining projects—especially in Xinjiang and Inner Mongolia [56]. The topsoil
replacement sites on the mining dump could face severe wind erosion: the Rw could be greater than
10% per month from February to April (Figure 6)—hence, the accumulated soil loss ratio accounts
for at least 20% of the replaced topsoil mass before April. The growing season begins in April in this
area [57], and the vegetation growth on a topsoil replacement site may be affected by the soil loss by
wind before the vegetation growing season. If there are any unprotected topsoil replacement sites in
this region, the wind erosion control measures should be implemented in February to April to prevent
at least 20% of the topsoil loss on the sites.

Soil loss by wind could also occur on the sites of the regions that are not included in wind erosion
distribution in natural conditions (Figure 6). Wind erosion control in these regions could be overlooked
on the unprotected topsoil replacement sites. For example, Qinghai–Tibet Plateau is classified to the
freeze-thaw erosion region under natural conditions (Appendix A Figure A3), but the freeze–thaw cycles
could induce wind erosion due to the fragile permafrost [58,59]. With the intensified human activities on
the grass land in this region [13], if there is not any wind erosion control measures being implemented on
the site before May, which is the commencement of the growing season in this region [59], the accumulated
Rw could theoretically be 20% to 40% from January to April according to our study. In addition to its high
elevation and low average temperature [59], the vegetation growth can be greatly affected.

Loess Plateau in Northern China is not included in the wind erosion region under natural
conditions, as it is a water–wind erosion crisscross region and wind erosion mainly happens in winter
and spring (December to May) [60]. For an unprotected topsoil replacement site, the accumulated ratio
of soil loss by wind to topsoil mass can reach 3% to 15% from December to February, and greater than
15% from March to May.

In Yunnan–Guizhou Plateau, the vegetation growing season is divided into the dry season
(from December to May) and the wet season (from June to November) [61]. The relatively severe wind
erosion on topsoil replacement sites takes place in the dry season in this region. According to Figure 6,
there is 0.4–4% of the accumulated soil loss ratio by wind from January to April. The Rw could reach
1% to 5% in March in some parts. As a typical water erosion region [62], the additional wind erosion in
the dry season could aggravate a soil loss situation and affect its soil mass and land productivity [63].

4.2. Implications for Policy Makers, Local Management Authorities, and Practitioners

This study has implications for policy making, local management and supervision, and practice
on wind erosion control on topsoil replacement sites for policy makers, local management authorities,
and practitioners.

For policy makers, in the past, policy makers determined whether it was necessary to carry out
wind erosion control measures based on the technical standard of soil and water conservation for
production and construction projects in China [23].The wind erosion control areas are mainly classified
by typical erosion regions under natural conditions with different soil types (e.g., black soil zone of
Northeast China, red soil zone of Southern China, etc.), which is vaguely described and not precisely
quantified. This could cause the neglect of wind erosion control in some areas and a waste of time and
resources. The idea of spatiotemporal differentiated management is widely applied in environmental
policy making [29,64–66]. The spatiotemporal pattern of WEUTRS in this study offers a comprehensive
knowledge of the monthly WEUTRS in different locations. With the proper threshold of WEUTRS in
different regions, policy makers are able to determine whether an unprotected topsoil replacement site
needs wind erosion control or not according to the project location and local vegetation growing season.
The sites could be classified into three types: (1) must implement wind erosion control measures in
each month through the year; (2) needs wind erosion control measures in specific months of the year;
or (3) no need for wind erosion control at all. The relevant policy can optimize money, labor, and raw
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material allocation during the wind erosion control in topsoil handling in order to both conserve
topsoil and reduce the cost.

For local management authorities, the local authorities are responsible for the management and
supervision of conducting wind erosion control [23] and could give the instructions and supervision
of the proper schedule of the topsoil handling process to control wind erosion during a mining and
construction project [14]. With the help of the WEUTRS quantification results, the working schedule of
a mining and construction project can be determined according to the severity of the monthly mean of
WEUTRS. For example, the working schedule of topsoil replacement should take place after the months
with a severe WEUTRS monthly mean and before the local vegetation growing season, which needs to be
under the supervision of the local authorities so that the soil loss by wind can be minimized on these sites.

For practitioners, the construction contractors are obliged to control wind and water erosion
during the projects [23]. Combined with the relevant policy, the quantification of WEUTRS in each
month provides the explicit data support to minimize misunderstandings from construction personnel
as to what is required [29]. The practitioners of the mining and construction projects could select a
proper topsoil handling working schedule and wind erosion control measures according to the severity
of the monthly mean of WEUTRS.

4.3. Research Implications

This study has important implications for future research regarding wind erosion control on
topsoil replacement sites.

Northwest China, the North part of Inner Mongolia Plateau, and Qinghai–Tibet Plateau are the study
areas of many wind erosion researchers in China [13,45,67–69]. However, this research mainly focuses on
wind erosion in natural conditions and the measures of combating desertification [13,69,70]. The results
in our study show that the most severe WEUTRS takes place in these regions. From the perspective of
wind erosion control, more research attention should be paid to: (1) field measurements of wind erosion
on unprotected topsoil replacement sites, and (2) the evaluation of the impacts of vegetation recovery and
the subsequent influences on land productivity and biodiversity on the topsoil replacement sites.

Regions such as Loess Plateau, Shandong Province, Yunnan–Guizhou Plateau, and the Southeast
coast of mainland China have relatively high WEUTRS in specific months. They are mostly classified
as water erosion areas [62] and are not included in wind erosion distribution areas under natural
conditions. A large amount of soil is disturbed and replaced by human activities [30,63,71,72], and wind
erosion is an issue that is just as important as other types of soil erosion during or following the project
period. Research into wind erosion quantification and wind erosion control on topsoil replacement
sites is deficient in these regions. The impacts of wind erosion on vegetation recovery, biodiversity,
and land productivity is worth studying further.

The approach of evaluating the WEUTRS is suitable for simulating soil loss by wind on unprotected
topsoil replacement sites nationwide, regionwide, or on other large scales. The input data are easy to
obtain and normally have a low cost, such as soil raster data and weather station data. In addition,
a field measurement is not necessary for the simulation of WEUTRS [45]. The quantification result
can be a reliable scientific basis for the management and supervision in wind erosion control on
unprotected topsoil replacement sites on a large scale.

4.4. Limitations

Enhancements in the input data could further improve the accuracy of the RWEQ model results
in future studies [45]. The samples of the weather station are not geographically evenly distributed.
There is a lack of weather stations, especially in Tibet (Appendix A Figure A1). The increased variance
and data range of the weather data together could cause an unavoidably inaccurate interpolation of
the wind factor [73]. Moreover, in the practice of topsoil replacement, the actual establishment of the
sites may have problems of non-standard operations, such as topsoil and subsoil mixing, machinery
compaction, and the non-perpendicular angle of the ridge to the dominant wind direction, etc. [7].
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When evaluating the WEUTRS in specific topsoil handling projects, the field sampling data of local
wind velocity and direction observations, soil roughness, and vegetation factors could be considered in
the wind erosion prediction, thereby decreasing the inaccuracy caused by incomprehensive input data.

In addition, due to the different soil types and land use types in different locations, the respread
topsoil thickness on topsoil replacement sites varies [52,74]. The determination of the thickness of
respread topsoil for the estimation of soil mass is not discussed in detail in this study and can be
studied in the follow-up research.

5. Conclusions

This study evaluates how much wind erosion would occur on site if topsoil was respread without
prevention measures in each month across mainland China. This potential wind erosion shows a great
spatiotemporally heterogeneous pattern over the whole country and could cause severe soil losses on
sites in many regions. The pattern distinctly differs from that of wind erosion on natural landscapes
and highlights the necessity of spatiotemporally differentiated management for wind erosion control
on topsoil replacement sites on the national scale of China. The results can serve as a scientific basis
for the relevant policy making and help to optimize the working schedule to minimize wind erosion
for practitioners in the topsoil handling process. Moreover, this study provides directions for future
research, such as the impacts of wind erosion on vegetation recovery, land productivity, and the
biodiversity of the unprotected topsoil replacement sites, and the development of effective measures
for wind erosion prevention on these sites.
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