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Abstract: Nowadays, theoretical calculation tools have become powerful in predicting the behavior
of corrosion inhibitors on the surface of metals and, therefore, avoiding energy consumption
and the cost of experimental tests. This work aims to predict the inhibitory power of some
furan derivatives on Cu (111), Fe (110), Al (111) and Sn (111) surfaces in acidic media. For this
purpose, three furan derivatives—furan-2-carbaldehyde (FF1), 5-(hydroxymethyl)furfural (FF2) and
5-(hydroxymethyl)furoic acid (FF3)—have been selected to compare their intrinsic properties against
corrosion as well as their behavior on iron (Fe), copper (Cu), aluminum (Al) and tin (Sn) surfaces
in acid medium. Typically, the anti-corrosive properties of FF1, FF2 and FF3 were studied by using
quantum chemical calculations and Monte Carlo simulations. Density Functional Theory (DFT),
lowest unoccupied (ELUMO) and highest occupied (EHOMO) molecular orbital energies, energy gap
(∆E), chemical hardness (η), softness (σ), electronegativity (χ), electrophilicity (ω) and nucleophilicity
(ε) have been calculated and discussed. Theoretical vibrational spectra were also calculated to exhibit
the functional groups in the selected chemicals. On the other hand, the adsorption behaviors of FF1,
FF2 and FF3 were studied on the Fe(110), Cu(111), Al(111) and Sn(111) surfaces. As a result, the
adsorption energies of all molecules are ordered as Fe(110) < Cu(111) < Al(111) < Sn(111) and FF3
seems to be more effective as a corrosion inhibitor due to the existence of both carboxylic acid and
hydroxyl groups, which consist of favorable sites of adsorption into the metal surface.

Keywords: furan derivatives; corrosion; DFT; adsorption behavior; metal surface; prediction; Monte
Carlo simulations
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1. Introduction

Corrosion still has a huge economic impact in most industrial countries today, accounting for
about 3–4 percentage points of the gross domestic product (GDP) [1–3]. As fossil resources are being
depleted at a rapid rate, there is an urgent need to develop renewable energies to replace fossil fuels
derived from oil. Biomass, the only renewable resource of organic carbon in nature, is a response
to oil substitution [1,2]. However, the management of corrosion in biorefinery complexes has only
recently been identified as a potential challenge in the scientific literature [4]. From an industrial point
of view, the effects related to corrosion must be anticipated in order to apprehend an appropriate
evaluation of the possibilities of Capital Expenditure (CAPEX) and Operational Expenditure (OPEX),
return on investment and extension of the life of the installations. Indeed, the aging, maintenance
and modernization operations of biorefineries can induce new potential corrosive environments that
must be identified and reassessed regularly. Operational disruptions, extra costs, industrial risks and
environmental impacts can be effective due to the erroneous or underestimated evaluation of corrosion
issues. Several studies have evaluated the annual direct cost of corrosion to be about 3.1% of gross
national product (GNP) in industrialized countries [1–3].

As a preventive method to protect the material from corrosion [5–8], green-extracted natural
products [5,9–11] and small organic chemicals [12–16] have shown good properties. Compounds
having heterocyclic and aromatic cores, having heterogeneous atoms such as oxygen, nitrogen and
sulfur atoms, are widely used due to π and heterogeneous atom interactions with the surface of
the metal [17–22]. Among the chemicals having this structure, the biobased platform molecule
furfural [23–32] is a potential candidate for the treatment of corrosion.

Currently, computational software is becoming a much-used and trusted tool to explain the
behavior of corrosion inhibitors in several media and metal surfaces [6,33–36]. Density functional
theory (DFT) is a computational modeling method usually used to investigate the intrinsic properties
of molecules. For inhibitors, it is mainly conducted to predict chemical properties such as the
highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) energy
gap, chemical hardness, softness, electronegativity, chemical potential, proton affinity, electrophilicity
and nucleophilicity of chemical species. On the other hand, Monte Carlo simulations were used to
understand the behavior of inhibitors on the metal surfaces. Indeed, adsorption energy and binding
energy are calculated and investigated [37–45]. To the best of our knowledge, furanic derivatives
were studied using theoretical tools only for conversion [46,47], electrochemical oxidation [48] and
hydrodeoxygenation [49,50]. In our work, theoretical studies were investigated to predict the efficiency
of three selected furan derivatives: furan-2-carbaldehyde (FF1), 5-(hydroxymethyl) furfural (FF2) and
5-(hydroxymethyl)furoic acid (FF3). Firstly, the intrinsic properties such as the EHOMO–ELUMO energy
gap (∆E), chemical hardness (η), electronegativity (χ), the fraction of electrons transferred (∆N), total
negative charges and dipole moment of FF1, FF2 and FF3 were studied by using quantum chemical
calculations. On the other hand, the adsorption and binding energies of these three molecules were
examined on the surface of several metals, namely Cu(111), Fe(110), Al(111) and Sn(111) using Monte
Carlo simulations.

2. Computational Details

2.1. DFT Calculations

Employing the Gaussian 03W program package, the density functional theory (DFT) calculations
were performed on the studied furfurals derivatives FF1, FF2 and FF3 in gas and aqueous phases. All
molecules were geometrically optimized using the DFT/B3LYP method associated with 6-31G++(2d,p)
basis sets, which is widely used in the investigation of organic corrosion inhibitors [51,52]. The absence
of imaginary vibration frequencies confirmed the optimization process. Afterward, several relevant
molecular electronic structure parameters (global and local indicators) were calculated. There include
the lowest unoccupied (ELUMO) and highest occupied (EHOMO) molecular orbital energies, as well as



Sustainability 2020, 12, 3304 3 of 14

gap energy (∆E, Equation (1)), electronegativity (χ, Equation (2)), hardness (η, Equation (3)), fraction of
electrons transferred (∆N, Equation (4)), electrophilicity (ω), nucleophilicity (ε) and dipole moment
(µ) [53]. Furthermore, the frontier molecular orbitals (i.e., HOMO and LUMO) repartitions and 2D
electrostatic potential plots of each furfural derivative were calculated and figured.

∆E = ELUMO − EHOMO (1)

χ = −
1
2
(ELUMO + EHOMO) (2)

η =
1
2
(ELUMO − EHOMO) (3)

∆N =
φ− χ

2×η
(4)

where φ is the work function of metal surface (φCu = 4.94 eV, φFe = 4.82 eV, φAl = 4.26 eV and
φSn = 4.42 eV) [54–56].

2.2. Monte Carlo Simulations

In the recent years, Monte Carlo simulations have become a potent computation tool that is
employed widely to examine the possible inhibitor–metal interactions for a large number of inhibition
systems [41,57]. For this purpose, the interaction between the investigated furfural compounds
and selected metal surfaces (Cu, Fe, Al and Sn) was studied using Monte Carlo simulations, as the
temperature of the system was slowly decreased (i.e., simulated annealing algorithm [58,59]). The
organic inhibitors are wieldy used in the acidic environment, which is considered in the current
study. In such an environment, the surface of the selected substrates consists of pure metal [60]. To
predict the most adequate (h k l) Miller index of each metal surface for constructing of simulation box,
the Bravais–Friedel–Donnay–Harker (BFDH) method was utilized [53]. Five layers and a vacuum
region of 60 Å were used to model the slab of each studied metal in the current work. The Van
der Waals and electrostatic interactions were calculated via the atom-based and Ewald summation
methods, respectively. Materials Studio 6.0 software was utilized to perform these calculations with
the Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS)
force field. These simulations were carried out using five heating ramps with 50,000 steps each. The
obtained conformers were pre-geometrized and inputted with a temperature range between 100
and 105 K. To get results with excellent quality, the convergence threshold was fixed at 5 × 10−5 Å,
5 × 10−3 kcal mol−1 Å−1 and 10−4 kcal mol−1 for displacement, force and energy, respectively. The
charges used in the calculation were given by the employed force field. The adsorption energy
(Eads) of the furfural derivative on each metal surface type was calculated according to the following
expression [8]:

Eads = ET −
(
ESurf + EFurfural

ads

)
(5)

where ET denotes the total energy of the whole system, ESurf is the energy of the metal surface and
EFurfural

ads is the energy of the adsorbed furfural derivative on metal surface.
In the present work, we have limited the simulations process in the gas phase to reduce the

required time for calculations. Additionally, it was reported [61,62] that the aqueous phase can
influence the magnitude of calculated adsorption energies of inhibitor molecules, while the trend of
these energies remains the same one either with or without solvent.

3. DFT Performances

3.1. Optimized Structures

The furfural derivatives FF1, FF2 and FF3 contain several functional groups such as formyl,
hydroxyl and carboxylic groups (Table 1). The optimized structures of inhibitor molecules in aqueous
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and gas phases using the hybrid DFT functional method (i.e., B3LYP/6-31G++(2d,p)) are shown in
Figures 1 and 2, respectively.

Table 1. Chemical details of FF1, FF2 and FF3 furan derivatives.

Notation Structure/Name Function

FF1
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Figure 2. The optimized structures of inhibitor molecules in the aqueous phase using the
DFT/B3LYP/6-31++G(2d,p) method.

In order to highlight the functional groups in FF1, FF2 and FF3, the vibrational spectroscopy of all
molecules was calculated using the B3LYP/6-31++G(2d,p) method (Figure 3). The vibrational spectra
of FF1, FF2 and FF3 confirmed the existence of aldehyde, aldehyde and alcohol and carboxylic acid
and alcohol, respectively. The peaks at around 3000 cm−1 are mainly attributed to hydroxyl groups.
Moreover, the peaks at 1705, 1698 and 1745 cm−1 are attributed to carbonyl groups.

Before launching the other theoretical calculations, the structure optimization step of the
investigated molecules was done in aqueous and gas phases to determine the geometrical structure
with a local minimum on the conformational. Namely, the precise theoretical determination of the
geometry of FF1, FF2 and FF3 chemicals were studied at the minima of their potential energy [33].
Thus, it is essential to obtain optimized structures of studied inhibitors to subsequently determine the
other parameters, such as a map of electrostatic potential (ESP).
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3.2. Electrostatic Potential (ESP) 2D Maps

By using ESP maps, it is possible to visualize the electron distribution, and therefore identify
the centers or the areas of their concentration in each compound [63]. The contour maps of electron
density reveal that oxygen atoms on the studied molecule inhibitors exhibit favorable interaction sites,
taking into account the difference between the oxygen atoms in the functions and the other atom. The
oxygen atoms, in this case, exist in the formyl group of FF1, in the formyl and hydroxyl groups of
FF2 and in the hydroxyl and carboxylic groups in FF3. Interaction sites surrounded by a dark red
contour contribute to form the bonding interactions between metal surfaces and inhibitors [13]. The
dark red color in the contour map of negative potential particularly surrounds oxygen molecules
and its regions in FF1, FF2 and FF3 molecules in gas and aqueous phases, whereas the green color is
scattered in the positive potential region according to the contour representation of electrostatic at
the DFT/B3LYP/6-31++G(2d,p) calculation level (Figure 4). Similar geometries were obtained in the
aqueous phase (Figure 5).
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3.3. HOMO and LUMO Energies and Derived Parameters

The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital
(LUMO) of a chemical molecule are very important in defining its reactivity [64,65]. Figures 6 and 7
represent the HOMO and LUMO orbitals of the studied compounds in gas and aqueous phases,
respectively. The compounds FF1, FF2 and FF3 present a clear contribution of ρ-orbitals at the cyclical
level (furan ring), consisting of an aromatic ring with five atoms, including one oxygen atom.
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The quantum molecular results summarized in Tables 2 and 3 aims to describe in detail the
energetic and structural characteristics of the studied molecules. The quantum chemical parameters
calculated using the HF/6-31G++(2d,p), MP2/6-31G++(2d,p) and B3LYP/6-31G++(2d,p) methods for
the inhibitors in aqueous and gas phases are ELUMO, EHOMO, ∆E, I, A, η, χ,ω, ε and ∆N. The ELUMO

and EHOMO values are slightly different with a negligible difference for each method, which means that
these are representative results. These two elements, ELUMO and EHOMO, are the basis for calculating
all the other parameters that are estimated following the Koopmans theorem [66] to determine the
properties related to the reactivity and selectivity of the inhibitor. Starting with the energy gap ∆E
(i.e., EHOMO–ELUMO) is an essential parameter as the reactivity of the inhibitor compound, and thus
an efficient inhibitor is characterized by a small energy gap [12]. All values of ∆E determined for the
inhibitors studied by the different methods have the same order FF1 > FF2 > FF3, which shows that
FF3 has good inhibitory power compared to the other inhibitors FF2 and FF1, respectively (Tables 1
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and 2). Besides, the reactivity of the inhibitors can be also estimated by the other parameters, such as
electronegativity expressed from ELUMO and EHOMO using Equation 2, depending on the results that
show that FF3 has a small electronegativity value compared to FF2 and FF1. Therefore, concerning the
reactivity of these compounds, FF3 tends more to react as a donor of electrons [14].

Table 2. Calculated quantum chemical parameters for the molecules in the gas phase (eV).

ELUMO EHOMO ∆E Energy I A η χ ω ε ∆N

HF/6-31G++(2d,p)

FF1 1.095 −9.673 10.768 −9284.422 9.673 −1.095 5.384 4.289 1.708 0.585 0.018

FF2 1.060 −9.322 10.382 −12,382.22 9.322 −1.060 5.191 4.131 1.643 0.608 0.034

FF3 1.031 −8.680 9.711 −23,703.52 8.680 −1.031 4.855 3.824 1.506 0.664 0.067

MP2/6-31G++(2d,p)

FF1 0.976 −9.396 10.372 −9289.265 9.396 −0.976 5.186 4.210 1.709 0.585 0.026

FF2 0.950 −8.932 9.882 −12,388.66 8.932 −0.950 4.941 3.991 1.612 0.620 0.049

FF3 0.911 −8.513 9.423 −23,714.94 8.513 −0.910 4.712 3.801 1.533 0.652 0.072

B3LYP/6-31G++(2d,p)

FF1 −1.751 −6.911 5.160 −9289.608 6.911 1.751 2.580 4.331 3.635 0.275 0.029

FF2 −1.649 −6.775 5.126 −12,389.13 6.775 1.649 2.563 4.212 3.461 0.289 0.052

FF3 −1.533 −6.638 5.104 −23,715.59 6.638 1.533 2.552 4.085 3.270 0.306 0.077

Table 3. Calculated quantum chemical parameters for the molecules in the aqueous phase (eV).

ELUMO EHOMO ∆E Energy I A η χ ω ε ∆N

HF/6-31G++(2d,p)

FF1 0.983 −8.952 9.935 −9343.37 8.952 −0.983 4.967 3.984 1.598 0.626 0.050

FF2 1.006 −8.857 9.863 −12,460 8.857 −1.006 4.932 3.925 1.562 0.640 0.056

FF3 1.031 −8.680 9.711 −23,861 8.680 −1.031 4.855 3.824 1.506 0.664 0.067

MP2/6-31G++(2d,p)

FF1 0.868 −8.829 9.697 −9343.87 8.829 −0.868 4,.848 3.980 1.634 0.612 0.051

FF2 0.886 −8.680 9.567 −12,460.8 8.681 −0.886 4.783 3.897 1.588 0.630 0.061

FF3 0.910 −8.513 9.423 −23,861.9 8.513 −0.910 4.712 3.801 1.533 0.652 0.072

B3LYP/6-31G++(2d,p)

FF1 −1.704 −6.698 4.994 −9343.87 6.698 1.704 2.497 4.201 3.534 0.283 0.056

FF2 −1.852 −6.479 4.627 −12,460.8 6.479 1.852 2.314 4.165 3.749 0.267 0.068

FF3 −1.992 −6.210 4.217 −23,861.9 6.210 1.992 2.109 4.101 3.988 0.251 0.090

The global hardness (η) values were calculated using Equation 3, with softness values defined
using Equation 3; after that, the global electrophilicity index (ω) were expressed in terms of the
electronegativity and global hardness parameters according to Equation 3. All of these parameters
are essential to deeply describe the reactivity of an inhibitor in addition to the ∆N as determined
by Equation 4, which considers the most critical parameter because it combines several previous
parameters; thus it gives a global description of the reactivity of an inhibitor. It is remarkable that
the global hardness is listed in ascending order as following FF3, FF2 and FF3, and that means that
FF3 is more reactive than both FF2 and FF1 (Table 3). This is because it is demonstrated that the
chemical hardness of molecules is precisely the screened interaction energy of the electrons in the
frontier (HOMO and LUMO) orbitals, which are the resistance of an atom to a charge transfer [67].
For the electrophilicity, which describes a good electrophile, while a small value of electrophilicity
describes a good nucleophile that likes positive charges, the latter generally represent the charges of a
metallic surface; therefore according to the obtained values, FF3 > FF2 > FF1 in this order react with a
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positively charged metal surface. In addition to the number fraction of electrons transferred, ∆N for
FF3, FF2 and FF1 are in agreement with all adopted bases, as reported in Table 3, which also confirms
that FE3 has a high number of electron transfer, hence predicting that the FF3 has the highest inhibition
performance compared to the other inhibitors FF2 and FF1. The number of transferred electrons (∆N)
gives information about the number of electrons transferred to the acceptor surface [68].

4. Charge Distribution

The presence of a high negative charge in some atoms or sites in compounds gives them a higher
tendency to donate electrons to react with the metal surface. Knowing that, the reaction sites of the
FF1, FF2 and FF3 molecules are the oxygen atoms, namely that of the molecular functions aldehyde
((H-C=O) and alcohol (-OH alcohol) or (-OH acid)). For this reason, one of the most common methods
to present this property is Mulliken analysis [16]. The Mulliken partial charges on the different atoms
of the optimized molecules studied are shown in Figures 8 and 9 and summarized in Table 4. These
Mulliken charge distributions for the molecules are calculated at the B3LYP/6-31G++(2d,p) in the gas
and aqueous phase. These distribution charges on some heteroatoms such as oxygen (O) and carbon
(C) can make such groups into susceptible active centers, which explains the highest negative charges
of some heteroatoms, especially the oxygen atom (O), because it is a part of inhibitors function groups.
These groups part, react, or adsorb on a metallic surface.
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Table 4. Mulliken charge distribution for the molecules calculated at the B3LYP/6-31G++(2d,p) in gas
and aqueous phases.

Atom C1 C2 C3 C4 O5 C8 O9 C10 O13 O15

FF1
aq 0.001 −0.201 0.014 0.259 −0.170 −0.343 −0.296

gas −0.003 −0.184 −0.014 0.257 −0.139 −0.331 −0.212

FF2
aq −0.020 −0.020 −0.440 0.434 −0.177 −0.182 −0.280 −0.098 −0.517

gas −0.043 0.011 −0.418 0.383 −0.153 −0.151 −0.200 −0.128 −0.467

FF3
aq −0.125 0.042 −0.402 0.149 −0.212 0.597 −0.357 −0.075 −0.534 −0.551

gas −0.130 0.074 −0.386 0.110 −0.191 0.591 −0.296 −0.095 −0.486 −0.538
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Furthermore, all negatives atoms on the molecular skeleton can contribute to this process through
an intramolecular synergistic effect [15].

5. Morphology of Studied Metal Surfaces

The obtained BFDH morphology results for selected metal subtracts in the current study were
summarized (Table 5). It can be seen that the multiplicities of Cu(111), Fe(110), Al(111) and Sn(111)
faces are 8, 12, 8 and 8, respectively. This indicates that these faces have more contact sites to interact
with furfural molecules. Furthermore, the larger dhkl distances were obtained in the case of the Cu(111),
Fe(110), Al(111) and Sn(111) faces, which reveals that these faces are densely packed metal surfaces.
Furthermore, the higher % total facet area values are noted for the Cu(111), Fe(110), Al(111) and Sn(111)
faces, which accounts for 78%, 64%, 78% and 100% of the crystal surface, respectively; this means
there are the main faces where the adsorption process of furfural derivatives can occur. Accordingly,
the (110), (110), (111) and (111) faces were chosen as representative surface models for copper, iron,
aluminum and tin metal, respectively, during the Monte Carlo simulations.

Table 5. Bravais–Friedel–Donnay–Harker (BFDH) morphology results for selected metal subtracts in
this study.

Metal (hkl) Multiplicity dhkl (Å) % Total Facet Area

Copper (111) 8 2.1 78

(200) 6 1.8 22

Iron
(110) 12 2.0 100

(100) 6 1.4 64

Aluminum
(111) 8 2.3 25

(200) 6 2.0 22

Tin
(111) 8 3.7 100

(220) 12 2.3 0

6. Monte Carlo Simulations

The adsorption behaviors of FF1, FF2 and FF3 derivatives were conducted using Monte Carlo
simulations on the Cu(111), Fe(110), Al(111) and Sn(111) surfaces. To perceive the equilibrium
adsorption configuration of the studied molecules on the metals’ surfaces, Figures 10–12 show how
FF3, FF2 and FF1 could be adsorbed on the Fe(110), Cu(111), Al(111) and Sn(111) surfaces via two
different views. From the side view, all inhibitor molecules are found to be parallel on the Fe(110),
Cu(111) and Al(111) surfaces and quasi-parallel in the case of the Sn(111) surface. From the top view,
all molecules are flat on the metal surfaces.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 15 
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The adsorption energies of all molecules are ordered as Fe(110) < Cu(111) < Al(111) < Sn(111)
(Table 6). In the case of Fe(110), FF3 exhibits the lowest adsorption energy of −77.539 kcal mol−1. Hence,
the adsorption energies increased from −71.963 to −57.091 kcal mol−1 for FF2 and FF1, respectively. The
same order was observed in the case of Cu(111), Al(111) and Sn(111) surfaces. Indeed, the adsorption
energies values on Cu(111) surface are −41.679, −38.708 and −30.689 kcal mol−1 for FF3, FF2 and
FF1, respectively. For the Al(111) surface, the values are −38.503, −35.649 and −28.414 kcal mol−1 for
FF3, FF2 and FF1, respectively. Finally, for the Sn(111) surface, the values are −30.138, −28.179 and
−22.571 kcal mol−1 for FF3, FF2 and FF1, respectively. Moreover, FF3 was found to be more stable and
easily adsorbed on the studied surfaces. This conclusion could probably be explained by the existence
of oxygen sites (O9, O13 and O15) with negative charges of −0.628, −0.745 and −0.683, respectively. The
negative charges (i.e., the red color regions) were clearly concentrated around the oxygen atoms with
the order: O13 > O15 > O9 (Figures 4 and 5).

Table 6. The adsorption energy of furfural derivatives (FF1, FF2 and FF3) and aggressive agents on the
considered surfaces (in kcal mol−1).

Metal Surface Cu(111) Fe(110) Al(111) Sn(111)

FF1 −30.689 −57.091 −28.414 −22.571

FF2 −38.708 −71.963 −35.649 −28.179

FF3 −41.679 −77.539 −38.503 −30.138
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7. Conclusions

In summary, DFT calculation with different basis sets and Monte Carlo simulations were carried
out to compare and evaluate the corrosion inhibition efficiencies of three furan derivatives, which
are furan-2-carbaldehyde, 5-(hydroxymethyl) furfural and 5-(hydroxymethyl) furoic acid on Fe(110),
Cu(111), Al(111) and Sn(111) surfaces. The theoretical vibrational study confirmed that all of these
compounds are distinguished by the functional groups (aldehyde and carboxylic groups). The neutral
and portioned forms were optimized and investigated. Using the results of DFT calculations, it was
shown that FF3 has a small electronegativity value compared to FF2 and FF1. Therefore, concerning the
reactivity of these compounds, FF3 has a larger tendency to react as a donor of electrons. Additionally,
Monte Carlo simulations showed that the adsorption energies of all molecules are ordered as Fe(110) <

Cu(111) < Al(111) < Sn(111). In conclusion, 5-(hydroxymethyl)furoic acid could be a good candidate for
anticorrosive protection and should to be tested and studied, especially on iron surfaces in acidic media.

Author Contributions: H.B., B.B. and B.E.I. did the theoretical calculations; H.A.O., Y.A. and R.O. drafted the
manuscript; S.E.I., M.H. and L.B. revised the manuscript; H.A.O., R.O. and C.L. planned and designed the whole
study and finalized the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: There are no conflicts to declare.

References

1. King, D.; Inderwildi, O.R.; Williams, A.; Hagan, A. The future of industrial biorefineries. In Proceedings of the
World Economic Forum White Paper; World Economic Forum: Cologn/Geneva, Switzerland, 2010.

2. Koch, G.H.; Brongers, M.P.H.; Thompson, N.G.; Virmani, Y.P.; Payer, J.H. Corrosion Cost and Preventive
Strategies in the United States; Federal Highway Administration: McLean, VA, USA, 2002.

3. Shaw, B.A.; Kelly, R.G. What is corrosion? Electrochem. Soc. Interface 2006, 15, 24–27.
4. Connatser, R.M.; Frith, M.G.; Jun, J.; Lewis Sr, S.A.; Brady, M.P.; Keiser, J.R. Approaches to investigate the

role of chelation in the corrosivity of biomass-derived oils. Biomass Bioenergy 2020, 133, 105446. [CrossRef]
5. Hsissou, R.; Dagdag, O.; Abbout, S.; Benhiba, F.; Berradi, M.; El Bouchti, M.; Berisha, A.; Hajjaji, N.; Elharfi, A.

Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution.
Experimental and computational (DFT and MD simulations) methods. J. Mol. Liq. 2019, 284, 182–192.
[CrossRef]

6. Dohare, P.; Quraishi, M.A.; Lgaz, H.; Salghi, R. Electrochemical DFT and MD simulation study of substituted
imidazoles as novel corrosion inhibitors for mild steel. Port. Electrochim. Acta 2019, 37, 217–239. [CrossRef]

7. Bahlakeh, G.; Dehghani, A.; Ramezanzadeh, B.; Ramezanzadeh, M. Highly effective mild steel corrosion
inhibition in 1 M HCl solution by novel green aqueous mustard seed extract: Experimental, electronic-scale
DFT and atomic-scale MC/MD explorations. J. Mol. Liq. 2019, 293, 111559. [CrossRef]

8. El Ibrahimi, B.; El Mouaden, K.; Jmiai, A.; Baddouh, A.; El Issami, S.; Bazzi, L.; Hilali, M. Understanding the
influence of solution’s pH on the corrosion of tin in saline solution containing functional amino acids using
electrochemical techniques and molecular modeling. Surf. Interfaces 2019, 17, 100343. [CrossRef]

9. Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor
of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [CrossRef]

10. Motamedi, M.; Ramezanzadeh, B.; Mahdavian, M. Corrosion inhibition properties of a green hybrid pigment
based on Pr-Urtica Dioica plant extract. J. Ind. Eng. Chem. 2018, 66, 116–125. [CrossRef]

11. Saxena, A.; Prasad, D.; Haldhar, R.; Singh, G.; Kumar, A. Use of Sida cordifolia extract as green corrosion
inhibitor for mild steel in 0.5 M H2SO4. J. Environ. Chem. Eng. 2018, 6, 694–700. [CrossRef]

12. Ebenso, E.E.; Kabanda, M.M.; Arslan, T.; Saracoglu, M.; Kandemirli, F.; Murulana, L.C.; Singh, A.K.;
Shukla, S.K.; Hammouti, B.; Khaled, K.F.; et al. Quantum chemical investigations on quinoline derivatives as
effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci. 2012, 7, 5643–5676.

13. Iruthayaraj, A.; Chinnasamy, K.; Jha, K.K.; Munshi, P.; Pavan, M.S.; Kumaradhas, P. Topology of electron
density and electrostatic potential of HIV reverse transcriptase inhibitor zidovudine from high resolution
X-ray diffraction and charge density analysis. J. Mol. Struct. 2019, 1180, 683–697. [CrossRef]

http://dx.doi.org/10.1016/j.biombioe.2019.105446
http://dx.doi.org/10.1016/j.molliq.2019.03.180
http://dx.doi.org/10.4152/pea.201904217
http://dx.doi.org/10.1016/j.molliq.2019.111559
http://dx.doi.org/10.1016/j.surfin.2019.100343
http://dx.doi.org/10.1016/j.corsci.2018.01.008
http://dx.doi.org/10.1016/j.jiec.2018.05.021
http://dx.doi.org/10.1016/j.jece.2017.12.064
http://dx.doi.org/10.1016/j.molstruc.2018.11.098


Sustainability 2020, 12, 3304 12 of 14
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