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Abstract: Spatial population distribution is an important determinant of both drivers of regional
environmental change and exposure and vulnerability to it. Spatial projections of population must
account for changes in aggregate population, urbanization, and spatial patterns of development,
while accounting for uncertainty in each. While an increasing number of projections exist, those carried
out at relatively high resolution that account for subnational heterogeneity and can be tailored to
represent alternative scenarios of future development are rare. We draw on state-level population
projections for the US and a gravity-style spatial downscaling model to design and produce new
spatial projections for the U.S. at 1 km resolution consistent with a subset of the Shared Socioeconomic
Pathways (SSPs), scenarios of societal change widely used in integrated analyses of global and regional
change. We find that the projections successfully capture intended alternative development patterns
described in the SSPs, from sprawl to concentrated development and mixed outcomes. Our projected
spatial patterns differ more strongly across scenarios than in existing projections, capturing a
wider range of the relevant uncertainty introduced by the distinct scenarios. These projections
provide an improved basis for integrated environmental analysis that considers uncertainty in
demographic outcomes.

Keywords: population projection; spatial distribution of population; shared socioeconomic pathways;
human-environment analysis; uncertainty

1. Introduction

Projections of the spatial distribution of population are consequential for integrated
human-environment analysis. Population and its spatial distribution are drivers of land-use/land-cover
change [1,2] and greenhouse gas emissions [3], both with significant impacts on the climate, biodiversity,
and air quality. Temporal changes of population also play a significant role in determining urbanization
regimes and the extent to which human’s presence in the form of built-up areas is spatially distributed [4].
Projections of the spatial distribution of population also help identify those that are likely to be most
affected by climate change and other environmental stress, which can inform resource allocation,
adaptation, and mitigation policies in relation to environmental hazards. For example, such projections
have been used to find that the increasing likelihood of storm surge and coastal flooding ensuing
from sea level rise [5] may impact the considerable proportion of the world population that is already
living close to coastal areas [6,7]. Moreover, the combination of global warming and changes in the
spatial distribution of the population driven by urbanization will lead to more people being exposed
to severe heatwaves [8,9]. Climate change can also influence the distribution of land area capable of
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supporting vector-borne diseases [10,11], which can lead to greater human exposure [12]. In addition
to such projections that shed light on the population exposure to the detrimental effects of climate
change, studies have started to augment them with supplementary demographic attributes such as
income distribution and age structure to address challenges in vulnerability differentiation of the
population [13,14].

The use of alternative scenarios for future conditions of society and the environment is a common
approach in human-environment analysis to address uncertainty. Each scenario represents a plausible
and unique future formed by a collection of determining inputs, and the set of scenarios as a whole
addresses uncertainty by incorporating all these distinct possibilities. The production of alternative
spatial population projections, as elements of broader societal scenarios, has been an important
component of this collective perspective on uncertainty. For the U.S. region, a previous study
downscaled the U.S. population at the Census division level to 1/8◦ resolution grids consistent with
the A2 and B2 socioeconomic scenarios from the Special Report on Emissions Scenarios (SRES) [15].
Researchers in [16] used U.S. Census-based projections to derive county-level population aggregates
and downscaled them to grids in 2030 and 2050. Researchers in [17] generated a series of global
population projection grids by downscaling country level population projections under the Shared
Socioeconomic Pathways (SSPs) [18] for the 2010–2100 period. Other US projections consistent with
the SSPs have been produced at the county level [19–21] but not downscaled to the grid cell level.

SSPs are widely adopted in the human-environment analysis community as a set of qualitative
narratives describing different societal development pathways with distinct implications in the societies’
capacity for adaption to or mitigation of climate change effects [18]. The SSP narratives have been
complemented by quantitative projections of several socioeconomic attributes reflecting distinct
patterns of national-level population growth and educational composition [22], urbanization level [23]
and economic growth [24]. Combined with climate models, SSP projections offer a widely-used,
comprehensive framework to assess the mutual effects between climate change and society [25–27].
They also play a crucial role in enhancing the effectiveness of adaptation and preparedness programs
in relation to environmental hazards by identifying the most vulnerable segments of the society.

The SSPs have been defined to formulate challenges that societal conditions would present to
adaptation to climate change and mitigation of emissions. However, they are not subtle enough in
their original form to formulate future socioeconomic conditions at local or regional scales. To foster
incorporating the SSP framework across specific domains and geographic scales, their global definitions
need to be extended and encompass local or regional subtleties that are eclipsed in the global version.
Previous studies have already highlighted the importance of this topic and developed and applied
extended SSPs to specific applications such as population dynamics in coastal areas and determinants
of human vulnerability in Europe [26,28].

This study follows an ongoing research endeavor whose objective is to provide different SSP-based
demographic attributes specific to each U.S. state, by which their associated uncertainty is considered.
It generates projections of spatial population distribution for each state for the 2020–2100 period
by downscaling their population aggregates to 1 km resolution grids. The downscaling employs a
gravity-based model tailored to each state, which is documented in [29] and is based on previous work
for generating scenario-based population distributions [15,17,30]. State-level population aggregates
draw on [31], who extend national-level SSP2, SSP3, and SSP5 assumptions of fertility, mortality, and
migration to each state and project population by age and sex for each state as a whole accordingly
using a demographic cohort component model (Appendix A.1).

In the following section, we describe the SSPs and explain how we implement their corresponding
assumptions about total population, urbanization, and spatial development patterns. We then describe
our methodology for producing spatial projections for the U.S. by summarizing the gravity model
structure and detailing the approach we use to modify its parameters to produce development patterns
consistent with the SSPs. We then present our spatial population projection results according to the
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SSPs and discuss their distinguishing features. We conclude this paper by summarizing the lessons
learned through the analysis and potential areas of improvement.

2. SSPs and Their Demographic Assumptions

The SSPs consist of five alternative socioeconomic pathways that societies could follow in the
future, in terms of their demographics, human development, economy, lifestyle, policies, technology,
and environment and natural resources, which have significant implications for their climate-related
adaptation and mitigation capacities. SSP1(Sustainability) describes a development path that
emphasizes environmental protection, reduced inequality, and significant investment in education
and health. SSP2 (Middle of the Road) envisions a world whose various aspects of socioeconomic
development resemble historical trends. SSP3 (Regional Rivalry) leads to a world with a dominant
presence of nationalism and security concerns, resulting in regionalization, slow economic growth,
and low investment in human capital and education. SSP4 (Inequality) is similar to SSP3 in terms of
neglecting sustained investment in human development but differs in that it depicts a world with
a widening gap between the majority of the society and a small, well-educated, and internationally
connected elite class, within countries as well as across them. SSP5 (Fossil-fueled Development)
envisions a world with substantial focus on globalization, international competitive markets, and rapid
economic growth that produce high levels of human development. However, it relies on fossil fuels
and lacks sustainable environmental protection policies exercised in SSP1.

Three factors determine spatial population projections in each state, namely its population
aggregate, urbanization level, and spatial distribution pattern. We, therefore, employ assumptions on
these determinants conforming to three of the SSPs (SSP2, SSP3, and SSP5) to incorporate uncertainty
and inform our spatial population projections. We choose these SSPs based on the availability of
state-level population and urbanization projections for each of them, as well as the fact that they span
the full range of national population size across the SSPs and have a diversity of assumptions about
spatial development patterns. For population, we use the quantitative results of recent state-level
projections from [31], who use a demographic cohort component model to generate state-level
population aggregates based on assumptions on future fertility, mortality, domestic, and international
migration in each state that are consistent with the SSPs (Appendix A.1). In summary, at the national
level the three SSPs lead to a range of U.S. population from ~246 to 650 million by 2100 (Table A1 and
Figure A1), a range that is somewhat lower than the range in the original SSP population projections
(~451 million) [22] due primarily to updated base year data showing lower current levels of fertility
and migration ([31] and Appendix A.1).

SSP2 leads to moderate population changes reflecting historical fertility, mortality, and migration
trends. Due to the high income levels, investments in human capital, and relatively open borders that
SSP5 envisions, this scenario is associated with the highest fertility and migration and lowest mortality
projections, resulting in the highest population growth. Conversely, SSP3 is a scenario of low income
growth, relatively low investment in human capital, and limited international flows, which translate to
low fertility and migration, resulting in the slowest population growth and even population decline in
some states over the course of the projection period. The projections assume that domestic migration
between states retain the currently observed regional pattern, but the overall scale of that migration is
highest in SSP5 and lowest in SSP3. The projections lead to substantial heterogeneity in population
growth across states, ranging for example from substantial decline in some states and SSPs (e.g., the
Northeast in SSP3) to substantial growth in others (e.g., Utah and Texas in SSP5), covering uncertainty
in different pathways that the population of states might take.

For urbanization, we use SSP-based projections of the share of urban population by state from a
model based on observed trends in urbanization patterns at the national and sub-national level [32],
summarized and illustrated in Appendix A.2 (Table A2 and Figure A2). The rapid economic growth
according to SSP5 produces large urban employment opportunities and high migration rates. Therefore,
urbanization grows rapidly in this scenario, and large numbers of people move to cities. In contrast,
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the economic uncertainty associated with SSP3 manifests itself in a paucity of employment opportunities
in urban areas and low migration rates. These two features contribute to slow urbanization in this
scenario. SSP2, as a moderate scenario that is situated in the middle of the spectrum, envisions
moderate urbanization.

Regarding spatial development patterns, we adopt the qualitative assumptions in the SSP
narratives to support our modeling choices [17]. SSP5 leads to rapid economic and urbanization
growth. However, sustainable planning in this scenario is not prioritized as opposed to SSP1. Thus,
urban planning cannot keep up with the large influx of population, leading to a sprawling spatial
distribution of population extending from cities. On the other hand, urban areas fail to attract
population as strongly in SSP3. Combined with the lack of planning in this scenario, this results in
a spatial distribution of population which is neither consolidated nor sprawling but rather a mixed
pattern. SSP2 conforms to the historical spatial distribution of population and depending on the area,
it can follow consolidation, sprawl or mixed.

3. Methodology

Our projection model downscales state-level rural/urban SSP-based population aggregates to
1-km resolution grids to produce total population grids from 2020 to 2100 at 10-year intervals, with a
2010 base year. We use a gravity-based population downscaling model described elsewhere [15,17,29]
to generate population grids according to the three SSPs. In addition to the input data, the model relies
on two parameters that govern the importance to the projected distribution of population of current
population centers and distance. These two parameters can be used to reflect the assumed features of
the spatial distribution patterns for each scenario. In the following sections, we first briefly describe
the model and then explain how we derived parameter values for each scenario. The input data and
outputs of the model can be found at [33], and the code for generating the results is available from [34].

3.1. Gravity-based Population Downscaling Model

The gravity-based model downscales state-level population in the next projection year to its
constituent grid cells by allocating the aggregate population change between the current and projection
years to each cell proportional to its suitability value (or to the inverse of its suitability value in case of
population decline). Its foundational mathematical equation is as follows:

vi = li
n∑

j=1

Pαj × e−βdi j (1)

In Equation 1, vi is the suitability value estimated for the focal cell, i, li is the mask value modifying
the suitability of the focal cell, depending on its topographic and land-use/land-cover characteristics,
Pj is the total population of the neighboring cell, j, and dij is the distance between the focal cell and its
neighboring cell. The summation over j is performed for n cells contained in the neighborhood within
100 km of the focal cell, representing a distance estimate over which existing amenities are influential
in attracting population in the U.S. [35]. The α and β parameters govern the importance of existing
surrounding population concentrations (within the neighborhood defined by n) and their accessibility
(a function of distance) in determining the suitability value, respectively. The suitability calculation is
carried out separately for the urban and rural population within each cell (a distinction not represented
here), with separate parameter values for each although the population Pj in Equation 1 represents the
total population in both cases.

Figure 1 demonstrates how the model works. For each state, the population grid in the first
year, aggregate population in the second year, as well as α and β parameters are specific to each
scenario (except when the first year is the base year 2010, when all scenarios share the same starting
distribution). Notably, the process is stepwise, i.e., creating population grids in 2020 requires them in
2010 and so on. Therefore, the downscaling process under each scenario starts at 2010 and finishes in
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2100. We projected urban and rural population separately in each step and then added their grids to
create total population grids. We utilized state-level urban/rural population grids at 1-km resolution in
2010 generated from its urban/rural census blocks and a spatial mask created by state-level topographic
and land-use/land-cover layers [29].Sustainability 2020, 12, x FOR PEER REVIEW 5 of 29 

 

Figure 1. High-level illustration of the gravity-based model. 

The model has been calibrated and evaluated against historical data for the 1990–2000 and 2000–
2100 periods and shown to perform reasonably well against recent experience [29]. It performs better 
in simulating observed changes in the distribution of urban than rural populations, and estimated 
urban population parameters are more stable over time. It is well suited for the production of 
alternative future scenarios, including those that diverge from historical patterns of development, 
due to its ability to control spatial patterns in a relatively straightforward manner with two 
parameters and to interpret those parameters clearly in terms of the patterns of development they 
produce. 

3.2. Modification of Parameters According to SSPs 

The modification of the α and β parameters to conform to SSP assumptions about spatial 
development is based on the semantic framework in [29], which interprets different parts of the two-
dimensional parameter space in terms of their qualitative implications for spatial development 
patterns (Figure 2). 

The α parameter indicates the degree to which the population size of surrounding cells translates 
into the suitability of a focal cell. A positive value indicates that the larger the population that is 
located within the 100 km neighborhood, the more suitable the focal cell is (while a negative value of 
alpha would imply a less suitable focal cell). The β parameter reflects the significance of distance to 
surrounding cells on the suitability of a focal cell. Within 100 km, β determines how distance modifies 
the effect on suitability. Because the exponent in Equation 1 is the negative of β, the higher the positive 
value of the parameter, the greater the deterrent effect of distance. In contrast, negative values of the 
parameter imply a lower friction of distance. When β is 0, it means distance does not matter, and each 
cell contributes to the suitability of the focal cell proportional to its population raised to α. Figure 2 
summarizes these interpretations. 

 

Figure 1. High-level illustration of the gravity-based model.

The model has been calibrated and evaluated against historical data for the 1990–2000 and
2000–2100 periods and shown to perform reasonably well against recent experience [29]. It performs
better in simulating observed changes in the distribution of urban than rural populations, and estimated
urban population parameters are more stable over time. It is well suited for the production of alternative
future scenarios, including those that diverge from historical patterns of development, due to its ability
to control spatial patterns in a relatively straightforward manner with two parameters and to interpret
those parameters clearly in terms of the patterns of development they produce.

3.2. Modification of Parameters According to SSPs

The modification of the α and β parameters to conform to SSP assumptions about spatial
development is based on the semantic framework in [29], which interprets different parts of the
two-dimensional parameter space in terms of their qualitative implications for spatial development
patterns (Figure 2).

The α parameter indicates the degree to which the population size of surrounding cells translates
into the suitability of a focal cell. A positive value indicates that the larger the population that is
located within the 100 km neighborhood, the more suitable the focal cell is (while a negative value of
alpha would imply a less suitable focal cell). The β parameter reflects the significance of distance to
surrounding cells on the suitability of a focal cell. Within 100 km, β determines how distance modifies
the effect on suitability. Because the exponent in Equation 1 is the negative of β, the higher the positive
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value of the parameter, the greater the deterrent effect of distance. In contrast, negative values of the
parameter imply a lower friction of distance. When β is 0, it means distance does not matter, and each
cell contributes to the suitability of the focal cell proportional to its population raised to α. Figure 2
summarizes these interpretations.Sustainability 2020, 12, x FOR PEER REVIEW 6 of 29 
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Table A3 in Appendix A.3 includes estimated state-level rural and urban parameters [29]. We used
the semantic framework along with historical parameters to determine parameters for SSP2, SSP3, and
SSP5. Employing the semantic framework facilitates mapping parameters to the spatial change pattern
prescribed by each SSP, while considering historical parameters ensures that new parameters will not
diverge too quickly from their current values.

Because the SSP2 scenario is intended to resemble historical trends, we used parameter values
for each state in this scenario as estimated from historical data for the 2000–2010 decade and kept
them constant over time. The process for estimating these parameters is shown in Figure A3. These
historical values imply consolidated urban population patterns since the parameters for nearly all
states fall in the first quadrant of the parameter space (Figure A4). For most states, rural population
parameters also fall in this quadrant (Figure A5), although some fall within the second and fourth
quadrants, favoring low density growth near small towns (and consolidation-oriented pattern in case
of population decline) and sprawl pattern, respectively.

SSP3 envisions a mixed spatial change pattern, in which populous agglomerations are not attractive
due to economic stagnation, population distribution planning is not prevalent and investment in
infrastructure is limited. All these factors guided our decision to change current parameters over time
toward the second quadrant in Figure 2, which represents a development pattern favoring low density
population growth (or disfavoring population sprawl around large cities in case of population decline).
This pattern is distinct from sprawl in that growth does not occur near high population centers (cities)
but rather near smaller towns. We linearly changed rural parameters for each state to begin at their
recent values and reach alpha, beta values of (−2, 2) in the year 2050, as a representative point of
the second quadrant. The choice of the year 2050 for the time at which scenario-specific parameter
values are reached was made in order to avoid parameter changes that represented sudden changes
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in patterns (which are not indicated by the SSP storylines, which emphasize more gradual change),
while still occurring early enough in the century to produce distinguishable population outcomes
across the different SSPs.

However, there was no instance of historical urban parameters in the second quadrant except for
Michigan, where special circumstances (the depopulation of Detroit) occurred. Therefore, we instead
used the top left location in the first quadrant (0, 2) (Figure A4), into which all other recent historical
experience has fallen, as the target values for urban parameters reached by all states in 2050. This choice
therefore adopts the parameter values closest to the low-density development pattern of the SSP
narrative that is still informed by historical experience (Figure A4).

SSP5’s assumption of a sprawling spatial population change pattern with attractive populous
areas is implemented by assuming that parameters move toward the fourth quadrant, representing
a sprawling pattern of development. For rural parameters, we chose (1, −0.5) because it represents
the pattern associated with the fourth quadrant and does not diverge too substantially from historical
rural parameters in that quadrant (Figure A5). However, because there was no historical precedent for
an urban parameter in the fourth quadrant, we chose the bottom right location of the first quadrant
(2, 0), where nearly all historical values fall, as the values that are closest to the sprawling pattern of
development while still being informed by historical experience (Figure A4).

4. Results and Discussion

In this section we present spatial population projection results based on SSP2, SSP3, and SSP5
that are consistent with state-level population totals for those scenarios [31]. We analyze population
grids for the contiguous U.S. and for selected states and evaluate the differences in spatial population
distribution across scenarios. We also compare the resulting grids with those from the global spatial
projections developed previously [17].

4.1. SSP Projections

4.1.1. National SSP Projections

Figure 3 shows population projections for the contiguous U.S. consistent with SSP2, SSP3,
and SSP5 in 2050 and 2100. Results are consistent with expectations based on the SSP narrative
descriptions of spatial development patterns and our implementation of them in model parameter
values. The discrepancy in results stems from the inherent uncertainty about population aggregates
in states, their urbanization levels and spatial development patterns mandated by each scenario.
For example, Figure 3 demonstrates the dominant urbanization and sprawl pattern in SSP5, especially
in 2100, resulting from rapid population growth, the importance of current populous centers (high α)
and the insignificance of distance to population location within their 100 km surroundings (low β).
The relatively circular development patterns around most large cities result from the gravity model’s
approach of estimating suitability values from population within a commonly defined neighborhood,
combined with a lack of features around these cities that would lead to spatial mask values discouraging
development in particular directions. For places surrounded with physical obstacles and topographic
constraints, such as coastal cities in the Northeast, the Bay Area, Seattle, Los Angeles, Phoenix, or Denver,
the expansive urban development is asymmetric, excluding areas that are deemed uninhabitable by the
spatial mask layer. SSP3 shows dispersed distributions with less population in urban areas, a result of
low population growth (even decline in some states) and lack of attractiveness of such areas to absorb
population, combined with parameter values that favor growth in areas of low population density.

The SSP2 pattern is in between the others in terms of population in or near urban areas given its
moderate population growth and urbanization, with these areas clearly less populated than SSP5 while
they host more people than SSP3. In addition, SSP2 exhibits a more concentrated development pattern
due to parameter values consistent with recent historical experience, which tends toward concentrated
development and allows less dispersal.
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Results confirm that between SSP5 and SSP2, growing positive population differences around
urban agglomerations point to the strong sprawl effect in SSP5 contrasted with the concentrated
development pattern in SSP2. Negative population differences in rural areas reflect the stronger
urbanization trends in SSP5 that lead to more significant movements away from such areas as compared
to SSP2. Comparing SSP3 with SSP2 confirms that urban areas have substantially smaller populations
in SSP3. In 2050, there are patches of positive population difference in rural areas, which are no longer
evident in 2100 due to the overall population decline at the national level according to SSP3.

4.1.2. State level SSP Projections

In addition to the national level results, this section describes population projection results at
the state level. We chose California as an example for this section as a large state with a diversity of
development patterns. Appendix A.4 presents similar results (Figures A6 and A7) and interpretations
for New York as an example of a state with more frequent population decline in its projections.
According to state-level population projection results in [31], the total population of California increases
under SSP2 (moderately) and SSP5 (rapidly), whereas in SSP3 it first increases gradually until 2050 and
then declines over the 2050–2100 period such that its population in 2100 (~27 million) is projected to be
lower than its current population (~37 million).

Figure 5 compares SSP3- and SSP5-based population grids of California with its SSP2-based
grids in 2050 and 2100. To control for the effect of differences in total state population across SSPs,
we also normalized SSP3- and SSP5-based population grids to match the SSP2 total state population by
adjusting the population of all cells by the same proportion. This allows us to assess the specific effect
of differences in spatial model parameters across scenarios on the resulting distributions of population.

By 2050, SSP3 leads to lower population in urban areas compared to SSP2 while SSP5 results in
higher population in these areas, also spread over a larger suburban area. The same pattern, but to a
lesser extent, exists after normalization, indicating that both differences in spatial parameters and total
population contribute in a similar way to overall differences in outcomes.

By 2100, the raw (non-normalized) differences across scenarios are larger and of the same
nature. SSP3 results in substantially lower population in urban areas and their surroundings (and
in fact declining population over time in an absolute sense as well), whereas SSP5 results in much
higher populations in these areas. However, the normalized results indicate some differences in the
contribution of the spatial development pattern per se to these overall outcomes. In SSP3, the lower
population outcomes (compared to SSP2) are distributed away from urban centers, consistent with
this scenario’s development pattern in which population loss preferentially occurs in suburban areas
(Figure 2). This pattern is more evident in 2100 than it is in 2050 because spatial model parameters
only reach their scenario-specific values in 2050, and so by 2100 the parameters have had 50 years to
fully affect the spatial distribution outcomes. Normalization of the SSP5 projection, on the other hand,
demonstrates that positive population differences under this scenario are larger in the surroundings of
urban agglomerations and are actually negative in the city centers. This reflects the full expression of
the differences between SSP5 as a sprawling scenario and SSP2 that has concentrated development.

4.2. Comparison to the Current National Model

This section compares population grids from the global spatial population projection model
described in [17] to the grids projected here. The primary differences between these two models are
summarized as follows:

1. The global model downscales SSP-based national population aggregates of each country [22] to its
constituent grid cells whereas the state-level model downscales each U.S. state’s population [31] to
its grid cells. The most important difference between these projections is that the state-level model
produces redistribution of the population across states through differences in fertility, mortality,
and (especially) migration at the state level while the global model does not (Appendix A.5 and
Figure A8 in Appendix A as well as [36]).
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2. The global model uses a single set of spatial parameters that is estimated from data for the whole
country, and are applied to the entire country while the state-level model estimates and applies
parameters specific to each state (except for after 2050 in SSPs 3 and 5 when all states have the
same parameters).

3. The initial spatial resolution of the global model is 1/8◦ that has been downscaled to 1 km
resolution grids [37]. The resolution of the state-level model is 1 km, and therefore we used the
1 km version of the global model for the comparison.

4. The global model uses datasets that are globally available while the state-level model leverages
datasets that are specific to the U.S.

5. The base year of the global model is 2000, and it generates projections from 2010 to 2100 at 10-year
intervals while the base year of the state-level model is 2010 and it creates population projection
grids from 2020 to 2100 at the same interval.
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Figure 6 compares population projection grids consistent with SSP2, SSP3, and SSP5 from the
state-level model in 2100 with the corresponding grids from the global model. Because the global
model is based on higher fertility and international migration assumptions, it leads to higher national
population totals in 2100 compared to the state-level model (Figure A1 in Appendix A). Therefore,
we also normalized grids derived from the global model to ensure their aggregates are equal to
those from the state-level model. Figure 6 shows that differences after normalization are too subtle
to notice at the national scale, and there are differences between the projections that are robust to
whether normalization is applied or not. First, the SSP2 grid from the state-level model leads to a
more concentrated population distribution pattern, consistent with our parameters that are estimated
separately for each state and reflect recent experience of consolidation, especially for urban populations.
Population allocated to remote rural areas is lower in the state-level model while positive population
differences are observed in urban areas. Second, the SSP5 grid from the state-level model leads to
a much stronger sprawl pattern around urban centers compared to the global model, depicted by
its dominantly positive differences in such areas. Third, overall differences in the population of
some regions are evident across all SSPs, especially SSP2 and SSP3. In the state-level population
projection model, areas such as New England and California (and to some extent the Great Lakes region)
experience substantial negative net domestic migration and low fertility, resulting in lower regional
populations compared to the global model, which cannot capture well these regional re-distributions
of population (Figure A8 in Appendix A).Sustainability 2020, 12, x FOR PEER REVIEW 12 of 29 
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To explore the regional differentiation in the state-level model further, we also present projected
population differences for two sample states, one with smaller population in the state-level model
because of its lower projected fertility and higher domestic out-migration (Massachusetts) and the
other with higher population as a result of its higher projected fertility and domestic in-migration
(Utah). For the global model values, the corresponding grids were upscaled to the state boundaries
(Table A4 in Appendix A.6).

Figure 7 shows that the difference grids for Massachusetts are dominantly negative partly as a
result of the lower projected population in 2100 in the state-level model to begin the downscaling
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process with. However, there are also substantial differences between the normalized projections.
In SSP2 and especially SSP3, the state-level model produces generally lower population in suburban
and rural areas, while in SSP5 suburban populations are larger and populations nearer to city centers
are smaller. This suggests that the state-specific parameters, and the choices of parameter values for
the different SSPs produce a wider range of spatial patterns in the state-level model compared to the
global model.
Sustainability 2020, 12, x FOR PEER REVIEW 13 of 29 
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In contrast, Figure 8 shows that the state-level model produces an overall higher population than
the global model; the normalized differences show that spatial patterns differ as well. Across all SSPs,
the state-level model allocates more population to areas around populated centers, and less to areas in
or near the center. SSP5 also shows a much more pronounced sprawl pattern in the state-level model.Sustainability 2020, 12, x FOR PEER REVIEW 14 of 29 
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5. Conclusions

In this paper, we downscaled U.S. state level population aggregates to their constituent grid
cells. To demonstrate uncertainty in projections of the spatial distribution of population, we produced
them based on three alternative scenarios, namely SSP2, SSP3, and SSP5, that are widely used in
human-environment dynamics analysis. Each scenario envisions an alternative socioeconomic path
that societies might follow with distinct implications for their capacity to respond to climate change.
In addition to differences in population aggregates and urbanization levels that these scenarios entail,
each leads to an alternative spatial pattern of population distribution. We used a semantic framework
that interprets quantitative values of spatial population model parameters in qualitative terms to
design spatial projections that are consistent with the narrative descriptions of intended development
patterns in the SSPs.

We presented population projection grids consistent with the three SSPs at both national and
state levels in 2050 and 2100. These grids depict spatial distributions of population that align with our
expectation from each SSP. SSP5 leads to the most dominant population sprawl pattern, whereas SSP3
results in the most dispersed distribution with the lowest growth in populous urban areas. SSP2, as a
moderate scenario, leads to distributions in the middle of the divide in terms of overall urbanization
but that emphasizes concentrated growth. Comparing projections normalized for different total
populations at the national and state levels showed that our SSP-based projections differences are
driven to a substantial extent by differences in spatial patterns of development within states.

Finally, we compared our spatial population projections with the projections from a global model
that downscaled national (as opposed to state-level) population totals [17]. The differences show that
spatial patterns consistent with each SSP are more pronounced in the state-level model used in this
paper, thereby providing a wider coverage of uncertainty. There are also disparities in outcomes for
population across broad regions, due to the ability of the state-level model to account for migration
between states and heterogeneity in other demographic rates. Population is generally smaller in our
projections compared to the global model in New England and California, where regional fertility and
domestic migration are projected to be low.

Global spatial projections such as those from [17] are valuable because they use a methodology
and are based on data that can be applied consistently across all countries of the world. We believe
that projections such as ours offer improved country-specific results because they can take advantage
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of more and higher resolution data for a specific country that may not be available elsewhere, draw
on subnational aggregate projections (such as for states) that can capture demographic heterogeneity,
and estimate parameters that vary across subnational units.

However, future work could improve on this projection and others like it. Regarding the spatial
model itself, obtaining a longer time series of past spatial population data would allow for parameter
estimation over a longer period, more consistent with the long-term projections to which the model is
applied. Although parameters are estimated separately for states and urban and rural populations,
further differentiation would likely improve model performance and its flexibility for projecting
future patterns, including distinguishing spatial patterns around larger and smaller cities and towns,
and differentiating within rural areas between very low density areas and rural areas that are closer
to suburban developments. Regarding scenario definition, testing the robustness or projections
of alternative but equally plausible specifications of parameter values consistent with qualitative
storylines, including their changes over time, would be valuable.

Our future work will complete the SSP projections for SSP1 and SSP4 to generate a series of
state-level population distributions consistent with all five SSPs. We also plan to incorporate age
structure into our spatial projections [13]. These developments, combined with integration with
alternative climate projections, will enable more effective analysis of questions about the exposure and
vulnerability of the U.S. population to environmental hazards such as sea level rise and heat waves in
the future.
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Appendix A.

This appendix contains additional text, tables, and figures on six topics:

1. State-level population projections
2. State-level urbanization projections
3. Estimated parameters of the population downscaling model
4. SSP projections for New York
5. Regional redistribution in state-level projections
6. Population summary of Massachusetts and Utah

Appendix A.1. State-Level Population Projections

The state-level population projection model is fully described in [31]; we provide a brief overview
here. The study uses a demographic cohort component model to project the population of each state
disaggregated by age and gender at 1-year intervals from 2010 to 2100. The model uses inputs from the
2010 U.S. Census, the American Community Survey (ACS) and the U.S. Centers for Disease Control
(CDC) Wonder database to create historical records of fertility, mortality, domestic migration and
international migration for each state. It then uses both historical records and SSP-based demographic
projections for the U.S. derived from [22] to construct SSP-based projections of the aforementioned
variables at the state level and eventually of the total population.

To make assumptions for each state on future changes in fertility, mortality, and international
migration, their methodology assumes that the changes in these rates at the national level apply equally
(in proportional terms) to all states. Given the heterogeneity in age structures and demographic rates
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across states, this application of uniform proportional changes in future rates will not result in uniform
changes in growth rates or age structures across states, thereby introducing regional population
variation across states according to their demographic profile. They produce state-level projections
consistent with SSP2, SSP3 and SSP5. To make assumptions on changes in domestic migration, they
assume that trends in domestic migration would be qualitatively similar to those in international
migration; that is, in a scenario like SSP5 with high international migration, domestic migration would
also be high. This extends the concept in SSP5 of a globalizing world with low barriers to people’s
movement to the domestic level. The same concept is applied to the low migration SSP3 scenario.

The state-level total population projections when aggregated to the national level diverge from
the original national level SSP projections by [22] (Figure A1) mainly because they are based on
more recent data for current conditions with lower fertility and migration compared to the original
SSP projections, and they make alternative assumptions about international migration beyond 2050
(relaxing the assumption in the original projections that international migration converges to zero in
the long run). In addition, in the state-level projections, shifts in the composition of the population
across states can change national growth rates as compared to a national model.
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Table A1 presents state-level population projections consistent with SSP2, SSP3 and SSP5 in 2050
and 2100 as well as their values in 2010.
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Table A1. State-level population projections consistent with SSP2, SSP3 and SSP5 (divided by 1000) [31].

State
SSP2 SSP3 SSP5

2010 2050 2100 2050 2100 2050 2100

Alabama 4780 5920 6980 5121 3918 6943 11,083
Alaska 710 488 526 422 299 495 726

Arizona 6249 9266 11,244 7967 6360 10,885 17,082
Arkansas 2916 3784 4607 3273 2595 4470 7339
California 37,235 44,103 46,730 38,852 27,360 48,540 68,917
Colorado 5027 7522 9208 6475 5187 8790 13,976

Connecticut 3574 3670 3625 3243 2133 4011 5360
Delaware 898 1268 1474 1084 824 1481 2204

D.C. 602 753 826 647 463 776 1108
Florida 18,801 23,010 26,004 19,684 14,105 27,256 40,716
Georgia 9688 13,109 15,454 11,321 8701 15,222 23,847
Hawaii 1360 1748 2019 1492 1132 1930 2855
Idaho 1568 2378 3018 2037 1729 2768 4498
Illinois 12,830 13,338 13,484 11,781 7854 14,366 19,769
Indiana 6425 7933 8981 6897 5209 8867 13,146

Iowa 3046 3924 4770 3427 2840 4457 7057
Kansas 2853 3872 4770 3336 2751 4395 7015

Kentucky 4339 5450 6425 4736 3661 6374 10,116
Louisiana 4533 5249 5950 4574 3364 5947 9248

Maine 1328 1373 1433 1197 809 1599 2287
Maryland 5774 7047 7869 6087 4409 7973 11,708

Massachusetts 6548 7455 7816 6488 4444 8270 11,434
Michigan 9884 10,298 10,696 9048 6340 11,043 15,114
Minnesota 5304 6443 7312 5648 4356 7168 10,676
Mississippi 2967 3514 4022 3046 2262 4013 6255

Missouri 5989 7665 9159 6593 5138 8812 13,840
Montana 989 1266 1543 1095 868 1500 2424
Nebraska 1826 2497 3170 2170 1905 2813 4544
Nevada 2701 3779 4420 3259 2475 4406 6729

New Hampshire 1316 1526 1630 1331 951 1720 2427
New Jersey 8792 8313 7637 7343 4460 8757 10,824

New Mexico 2059 2710 3275 2335 1871 3072 4829
New York 19,376 19,478 18,695 17,210 10,952 20,492 26,174

North Carolina 9535 13,485 16,259 11,510 8935 15,963 25,170
North Dakota 673 1047 1345 916 820 1194 1944

Ohio 11,537 12,834 14,024 11,214 8120 14,404 21,145
Oklahoma 3751 4954 6105 4310 3486 5843 9735

Oregon 3831 5303 6375 4554 3498 6356 10,109
Pennsylvania 12,702 14,403 15,503 12,542 8880 16,267 23,213
Rhode Island 1053 1199 1278 1046 746 1321 1846

South Carolina 4625 6661 8244 5687 4551 8015 12,984
South Dakota 814 1057 1295 928 775 1200 1924

Tennessee 6346 8110 9599 7006 5385 9537 15,157
Texas 25,146 36,665 45,331 31,800 25,939 42,781 70,405
Utah 2764 4765 6449 4140 3957 5314 8870

Vermont 626 642 662 564 379 724 1011
Virginia 8001 10,850 12,704 9287 7041 12,412 18,859

Washington 6725 9513 11,524 8161 6395 11,176 17,738
West Virginia 1853 1861 1996 1637 1129 2165 3259

Wisconsin 5687 6460 6883 5679 4031 7224 10,317
Wyoming 564 696 839 606 483 795 1260
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Appendix A.2. State-Level Urbanization Projections

The state-level urbanization projection model is fully documented elsewhere [32]; we provide a
brief overview here. This state-level model tailors the global model described in [23] to the subnational
level and projects urbanization under different scenarios for the 2010-2100 period. The model first
constructs a database of historical records of the total population and urbanization levels (percent of
the population defined as urban) of world countries, U.S. states, China provinces and India states. For
each U.S. state, the model first identifies the current urbanization level and trend of that state, and
then searches all historical records to find instances in which other regions had similar urbanization
conditions. It finally categorizes those regions into “slow”, “central” and “fast” groups based on the
urbanization growth rate they experienced after that point in time and uses them to construct three
alternative projection pathways for the U.S. state being projected. As an example, if a U.S. state is
currently 60% urban with an increasing urbanization level, the model finds all regions that at some
point in the past were 60% urban and uses their subsequent urbanization trajectories to inform the
projections for the U.S. state.

The model repeats this process in 2040, starting with projected urbanization conditions of U.S.
states at that time, so that projections are carried out in two stages. This allows the model to project a
total of nine alternative pathways of urbanization for each target region, characterized by its pace of
urbanization in the near term (through 2040) and the longer term (beyond 2040), namely “slow-slow”,
“slow-central”, “slow-fast”, “central-slow”, “central-central”, “central-fast”, “fast-slow”, “fast-central”
and “fast-fast”. Figure A2 shows different urbanization projection pathways for Alabama.

The next step is to map the nine pathways to the different SSP scenarios. Because SSP3 and SSP5
envision slow and fast urbanization growth, respectively, and SSP2 points to a middle-of-the-road
scenario, we assigned the “central-central”, “slow-slow”, and “fast-fast” projections to the SSP2, SSP3
and SSP5 scenarios, respectively. Table A2 presents state-level urbanization projections consistent with
SSP2, SSP3 and SSP5 in 2050 and 2100 as well as their values in 2010.Sustainability 2020, 12, x FOR PEER REVIEW 19 of 29 
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Table A2. State-level urbanization projections consistent with SSP2, SSP3 and SSP5 [32].

State
SSP2 SSP3 SSP5

2010 2050 2100 2050 2100 2050 2100

Alabama 59.0 74.9 86.3 61.0 65.0 87.4 95.7
Alaska 66.0 79.7 89.2 67.7 70.9 88.6 96.1

Arizona 89.6 94.4 97.9 89.0 87.7 97.7 99.7
Arkansas 56.2 73.1 83.1 58.1 62.9 88.2 98.4
California 95.0 97.0 98.5 90.8 87.9 99.0 99.6
Colorado 86.2 92.9 96.2 86.6 86.8 97.1 99.0

Connecticut 88.0 93.9 97.3 88.4 88.7 97.1 98.8
Delaware 83.3 90.6 95.1 84.9 87.0 95.6 98.7

D.C. 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Florida 91.2 95.0 98.8 89.4 86.9 98.3 99.8
Georgia 75.1 85.5 91.7 78.1 81.5 94.3 99.1
Hawaii 91.9 96.3 98.7 90.0 87.5 98.0 99.2
Idaho 70.6 82.4 91.3 72.3 75.4 94.6 99.4
Illinois 88.5 94.3 97.9 88.2 88.0 97.8 99.3
Indiana 72.3 84.4 93.0 74.7 78.8 95.6 99.5

Iowa 64.0 77.0 87.1 65.6 68.7 87.1 95.0
Kansas 74.2 85.1 91.8 76.7 80.0 94.6 98.9

Kentucky 58.4 74.7 85.8 60.3 64.0 87.9 98.0
Louisiana 73.2 84.6 93.1 75.8 79.1 94.5 99.1

Maine 38.7 60.2 76.0 39.8 43.4 78.1 92.7
Maryland 87.2 93.3 97.2 87.1 87.1 97.4 98.9

Massachusetts 92.0 96.4 98.9 89.6 86.7 98.6 99.8
Michigan 74.6 85.7 92.0 77.8 82.1 94.5 98.7
Minnesota 73.3 84.4 93.3 75.3 78.5 94.6 99.1
Mississippi 49.4 68.0 82.3 51.0 58.0 83.9 96.2

Missouri 70.4 83.2 91.1 71.4 74.4 95.2 99.6
Montana 55.9 72.4 82.8 57.9 62.8 87.2 97.7
Nebraska 73.1 84.2 93.0 75.5 78.6 94.6 99.4
Nevada 94.2 97.2 99.3 90.7 86.8 98.9 99.7

New Hampshire 60.3 74.9 86.7 62.2 65.6 87.7 95.7
New Jersey 94.7 96.7 97.9 90.1 87.3 98.9 99.7

New Mexico 77.4 87.3 93.0 79.9 83.6 94.7 99.1
New York 87.9 93.7 97.2 88.4 89.2 97.0 98.7

North Carolina 66.1 78.8 88.4 68.3 71.6 88.4 96.2
North Dakota 59.9 75.1 86.6 62.1 65.9 87.7 96.2

Ohio 77.9 87.6 93.2 81.1 85.2 94.6 99.2
Oklahoma 66.2 79.8 89.2 68.0 71.4 88.8 96.3

Oregon 81.0 89.3 94.7 83.1 85.0 96.0 99.0
Pennsylvania 78.7 87.9 93.0 80.7 85.1 95.3 99.3
Rhode Island 90.7 95.1 98.4 89.5 87.8 98.3 99.8

South Carolina 66.3 78.9 88.3 68.6 72.1 88.5 96.1
South Dakota 56.7 73.2 83.3 59.0 64.4 86.0 96.4

Tennessee 66.4 79.5 89.1 68.0 71.4 89.1 96.6
Texas 84.7 91.2 95.0 86.2 87.6 96.4 99.0
Utah 90.6 94.7 98.2 90.2 88.6 97.3 99.0

Vermont 38.9 60.2 76.0 39.6 41.8 79.2 94.0
Virginia 75.5 86.0 91.8 78.1 81.7 94.4 99.4

Washington 84.1 91.1 95.0 85.9 87.4 96.1 98.8
West Virginia 48.7 66.2 81.4 50.1 57.0 83.7 96.0

Wisconsin 70.2 82.4 91.1 71.7 75.2 94.7 99.4
Wyoming 64.8 78.0 88.0 66.6 69.7 88.1 96.1
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Appendix A.3. Estimated Parameters of The Population Downscaling Model

The calibration and validation component of the spatial downscaling model is fully documented
in [29]; we summarize key features here and provide the estimated parameter values. The model is
grounded in historical population grids in 2000 and 2010 and estimates urban and rural parameters
for each state that minimize the difference between the projected population grids in 2010 and their
corresponding census block-based grids. Figure A3 demonstrates the calibration process, leading to
the parameters that are used in the spatial downscaling model in the base year of all SSPs and that are
kept constant over time in SSP2. Figures A4 and A5 plot the estimated urban and rural parameters,
and Table A3 summarizes them for all states.
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Table A3. Estimated rural and urban alpha and beta parameters for all states [29].

State Alpha (Rural) Beta (Rural) Alpha (Urban) Beta (Urban)

Alabama 1.03 0.06 1.47 2.00
Alaska 0.60 1.03 1.36 2.00

Arizona 0.25 2.00 0.84 2.00
Arkansas 0.52 0.17 1.69 1.39
California −1.79 2.00 0.81 2.00
Colorado 0.77 0.02 1.13 1.66

Connecticut −0.33 0.50 1.20 2.00
Delaware −1.33 2.00 0.73 2.00

D.C. - - 2.00 1.50
Florida −1.54 2.00 0.78 1.95
Georgia 1.53 −0.07 1.17 1.40
Hawaii 0.18 2.00 1.00 2.00
Idaho 0.40 1.82 1.48 1.52
Illinois −1.18 2.00 1.03 2.00
Indiana −0.19 2.00 1.37 1.76

Iowa 0.59 0.03 1.81 1.50
Kansas −0.41 2.00 1.52 1.81

Kentucky 1.20 −0.06 1.46 2.00
Louisiana 1.54 0.62 1.14 2.00

Maine 1.17 0.09 2.00 2.00
Maryland −0.28 2.00 1.04 2.00

Massachusetts −2.00 2.00 1.06 1.07
Michigan −2.00 2.00 −2.00 2.00
Minnesota −0.87 0.02 1.25 1.94
Mississippi 0.74 0.07 2.00 1.06

Missouri 0.17 0.74 1.28 2.00
Montana 0.78 0.30 1.58 2.00
Nebraska −0.65 2.00 1.84 0.95
Nevada −0.75 2.00 1.50 0.20

New Hampshire 0.99 −0.20 1.48 0.90
New Jersey −1.85 2.00 0.85 2.00

New Mexico 0.46 0.79 1.33 2.00
New York −1.82 2.00 1.39 2.00

North Carolina −0.13 2.00 1.75 0.39
North Dakota −0.44 2.00 2.00 1.03

Ohio −1.91 2.00 1.26 1.07
Oklahoma 0.72 0.06 1.66 2.00

Oregon 0.44 0.43 1.40 2.00
Pennsylvania −1.49 2.00 1.26 2.00
Rhode Island −0.34 1.00 2.00 0.46

South Carolina −2.00 2.00 1.46 1.13
South Dakota −0.47 2.00 2.00 1.12

Tennessee 0.79 −0.01 1.33 1.71
Texas 0.74 −0.01 1.21 0.96
Utah 2.00 0.08 0.87 2.00

Vermont 0.08 1.42 2.00 1.78
Virginia −0.09 0.20 1.35 2.00

Washington 2.00 −0.06 1.13 2.00
West Virginia −0.76 2.00 1.85 1.13

Wisconsin 2.00 −0.02 1.27 2.00
Wyoming 0.54 1.22 1.81 2.00

Appendix A.4. SSP Projections for New York

According to the state-level population projection model, the total population of the state of New
York consistent with SSP2 increases gradually until 2050 and then decreases such that its population in
2100 is lower than its current value (Table A1). Under SSP5, the population of the state is projected
to grow gradually to the point that it reaches ~26 million in 2100 whereas it continuously decreases
consistent with SSP3 until it reaches ~11 million in 2100, significantly smaller than its current population.
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Figures A6 and A7 compare SSP3 and SSP5-based population grids of the state with its SSP2-based
grids, with and without normalization, in 2050 and 2100, respectively. According to Figure A6, SSP3
leads to lower population than SSP2 broadly in urban areas (and in fact population decline in an
absolute sense as well) whereas SSP5 results in higher population in suburban regions. Normalization
reveals some specific effects of differences in spatial development patterns between scenarios. The
lower urban population under SSP3 is concentrated in suburban areas, and population is actually
higher in city centers. This is consistent with the SSP3 parameter values that preference population
loss away from city centers, similar to the case for California in SSP3 described in the main text.
Normalization also highlights the suburban population growth consistent with SSP5, pointing to the
impact of its parameters consistent with sprawling development. However, the positive suburban
population difference is limited to the surroundings of New York City, emphasizing New York City as
the dominant socioeconomic hub of the state, reflected in the model as the highest suitability values
are determined by nearby population concentrations. These effects are accentuated in 2100 according
to Figure A7, where urban population decline under SSP3 is especially prominent (except for the
central areas of New York City after normalization), and in SSP5 the rapid suburban population growth
around New York City is noticeable (accentuated further in the normalized results, which in contrast
to the suburbs show lower populations than SSP2 in the city center).Sustainability 2020, 12, x FOR PEER REVIEW 25 of 29 
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Appendix A.5. Regional Redistribution in State-Level Projections

The state-level projections produce a broad regional redistribution of population within the
U.S. that is not easily captured in spatial downscaling models that downscale national level totals
directly to grids. To illustrate the importance of representing the demographic processes that cause
this redistribution (state-to-state migration as well as heterogeneity across states in other demographic
rates), Figure A8 compares changes in state population from the state-level model [31] with those
resulting from a model that downscales national totals directly to grid cells [17]. State level totals for
this model are produced by aggregating projected grid cell outcomes to state boundaries [36]. This
figure shows that in SSP2, the state-level model anticipates substantial regional variation in population
growth across states, with some states declining in population. In contrast, downscaling national
population totals directly to grid cells produces much less variation, without any states declining.
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Appendix A.6. Population Summary of Massachusetts and Utah

Table A4 presents population values of Massachusetts and Utah according to the global model (by
aggregating the grids to their boundaries) [36] and state-level model [31] consistent with SSP2, SSP3
and SSP5 in 2100.

Table A4. Projected population aggregates of Massachusetts and Utah consistent with SSP2, SSP3 and
SSP5 from the global and state-level models in 2100.

State
Global Model State-Level Model

SSP2 SSP3 SSP5 SSP2 SSP3 SSP5

Massachusetts 10684414 6252805 16190552 7771613 4426074 11353269
Utah 3672869 2134776 5609918 6449132 3955916 8862053

References

1. Meiyappan, P.; Dalton, M.; O’Neill, B.C.; Jain, A.K. Spatial modeling of agricultural land use change at global
scale. Ecol. Modell. 2014, 291, 152–174. [CrossRef]

2. Güneralp, B.; Seto, K.C. Futures of global urban expansion: Uncertainties and implications for biodiversity
conservation. Environ. Res. Lett. 2013, 8, 014025. [CrossRef]

http://dx.doi.org/10.1016/j.ecolmodel.2014.07.027
http://dx.doi.org/10.1088/1748-9326/8/1/014025


Sustainability 2020, 12, 3374 25 of 26

3. Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP
8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [CrossRef]

4. Gao, J.; O’Neill, B.C. Data-driven spatial modeling of global long-term urban land development: The SELECT
model. Environ. Model. Softw. 2019, 119, 458–471. [CrossRef]

5. Shepard, C.C.; Agostini, V.N.; Gilmer, B.; Allen, T.; Stone, J.; Brooks, W.; Beck, M.W. Assessing future risk:
Quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York.
Nat. Hazards 2012, 60, 727–745. [CrossRef]

6. McGranahan, G.; Balk, D.; Anderson, B. The rising tide: assessing the risks of climate change and human
settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [CrossRef]

7. Xingong, L.; Rowley, R.J.; Kostelnick, J.C.; Braaten, D.; Meisel, J.; Hulbutta, K. GIS analysis of global impacts
from sea level rise. Photogramm. Eng. Remote Sens. 2009, 75, 807–818.

8. Jones, B.; O’Neill, B.C.; Mcdaniel, L.; Mcginnis, S.; Mearns, L.O.; Tebaldi, C. Future population exposure to
US heat extremes. Nat. Clim. Chang. 2015, 5, 652–655. [CrossRef]

9. Luber, G.; McGeehin, M. Climate Change and Extreme Heat Events. Am. J. Prev. Med. 2008, 35, 429–435.
[CrossRef]

10. Caminade, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.P.; Colón-González, F.J.; Stenlund, H.;
Martens, P.; Lloyd, S.J. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA
2014, 111, 3286–3291. [CrossRef]

11. Hales, S.; De Wet, N.; Maindonald, J.; Woodward, A. Potential effect of population and climate changes on
global distribution of dengue fever: An empirical model. Lancet 2002, 360, 830–834. [CrossRef]

12. Monaghan, A.J.; Sampson, K.M.; Steinhoff, D.F.; Ernst, K.C.; Ebi, K.L.; Jones, B.; Hayden, M.H. The potential
impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito
Aedes aegypti. Clim. Chang. 2018, 146, 487–500. [CrossRef]

13. Striessnig, E.; Gao, J.; O’Neill, B.; Jiang, L. Empirically-based spatial projections of U.S. population age
structure consistent with the shared socioeconomic pathways. Environ. Res. Lett. 2019, 14, 114038. [CrossRef]

14. Byers, E.; Gidden, M.; Leclere, D.; Balkovic, J.; Burek, P.; Ebi, K.; Greve, P.; Grey, D.; Havlik, P.; Hillers, A.;
et al. Global exposure and vulnerability to multi-sector development and climate change hotspots. Environ.
Res. Lett. 2018, 13, 055012. [CrossRef]

15. Jones, B.; O’Neill, B.C. Historically grounded spatial population projections for the continental United States.
Environ. Res. Lett. 2013, 8, 044021. [CrossRef]

16. McKee, J.J.; Rose, A.N.; Bright, E.A.; Huynh, T.; Bhaduri, B.L. Locally adaptive, spatially explicit projection
of US population for 2030 and 2050. Proc. Natl. Acad. Sci. USA 2015, 112, 1344–1349. [CrossRef]

17. Jones, B.; O’Neill, B.C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic
Pathways. Environ. Res. Lett. 2016, 11, 084003. [CrossRef]

18. O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van
Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways
describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [CrossRef]

19. EPA. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use
Scenarios (ICLUS) (Final Report, Version 2); US EPA: Washington, DC, USA, 2017.

20. Bierwagen, B.G.; Theobald, D.M.; Pyke, C.R.; Choate, A.; Groth, P.; Thomas, J.V.; Morefield, P. National
housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci.
USA 2010, 107, 20887–20892. [CrossRef]

21. Hauer, M.E. Population projections for U.S. counties by age, sex, and race controlled to shared socioeconomic
pathway. Sci. Data 2019, 6, 190005. [CrossRef]

22. KC, S.; Lutz, W. The human core of the shared socioeconomic pathways: Population scenarios by age, sex
and level of education for all countries to 2100. Glob. Environ. Chang. 2017, 42, 181–192. [CrossRef] [PubMed]

23. Jiang, L.; O’Neill, B.C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ.
Chang. 2017, 42, 193–199. [CrossRef]

24. Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-term economic growth projections in the Shared
Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 200–214. [CrossRef]

25. Hasegawa, T.; Fujimori, S.; Takahashi, K.; Masui, T. Scenarios for the risk of hunger in the twenty-first century
using Shared Socioeconomic Pathways. Environ. Res. Lett. 2015, 10, 014010. [CrossRef]

http://dx.doi.org/10.1007/s10584-011-0149-y
http://dx.doi.org/10.1016/j.envsoft.2019.06.015
http://dx.doi.org/10.1007/s11069-011-0046-8
http://dx.doi.org/10.1177/0956247807076960
http://dx.doi.org/10.1038/nclimate2631
http://dx.doi.org/10.1016/j.amepre.2008.08.021
http://dx.doi.org/10.1073/pnas.1302089111
http://dx.doi.org/10.1016/S0140-6736(02)09964-6
http://dx.doi.org/10.1007/s10584-016-1679-0
http://dx.doi.org/10.1088/1748-9326/ab4a3a
http://dx.doi.org/10.1088/1748-9326/aabf45
http://dx.doi.org/10.1088/1748-9326/8/4/044021
http://dx.doi.org/10.1073/pnas.1405713112
http://dx.doi.org/10.1088/1748-9326/11/8/084003
http://dx.doi.org/10.1016/j.gloenvcha.2015.01.004
http://dx.doi.org/10.1073/pnas.1002096107
http://dx.doi.org/10.1038/sdata.2019.5
http://dx.doi.org/10.1016/j.gloenvcha.2014.06.004
http://www.ncbi.nlm.nih.gov/pubmed/28239237
http://dx.doi.org/10.1016/j.gloenvcha.2015.03.008
http://dx.doi.org/10.1016/j.gloenvcha.2015.06.004
http://dx.doi.org/10.1088/1748-9326/10/1/014010


Sustainability 2020, 12, 3374 26 of 26

26. Merkens, J.L.; Reimann, L.; Hinkel, J.; Vafeidis, A.T. Gridded population projections for the coastal zone
under the Shared Socioeconomic Pathways. Glob. Planet. Chang. 2016, 145, 57–66. [CrossRef]

27. Nauels, A.; Rogelj, J.; Schleussner, C.F.; Meinshausen, M.; Mengel, M. Linking sea level rise and socioeconomic
indicators under the Shared Socioeconomic Pathways. Environ. Res. Lett. 2017, 12, 114002. [CrossRef]

28. Rohat, G. Projecting drivers of human vulnerability under the shared socioeconomic pathways. Int. J.
Environ. Res. Public Health 2018, 15, 554. [CrossRef]

29. Zoraghein, H.; O’Neill, B.C. The methodological foundation of a gravity-based model to downscale U.S.
state-level populations to high-resolution distributions for integrated human-environment analysis. Demogr.
Res. under review.

30. Grübler, A.; O’Neill, B.; Riahi, K.; Chirkov, V.; Goujon, A.; Kolp, P.; Prommer, I.; Scherbov, S.; Slentoe, E.
Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES.
Technol. Forecast. Soc. Chang. 2007, 74, 980–1029.

31. Jiang, L.; O’Neill, B.; Zoraghein, H.; Dahlke, S. Population scenarios for U.S. states consistent with Shared
Socioeconomic Pathways. Environ. Res. Lett.. under review.

32. Zoraghein, H.; Jiang, L. The Improved Urbanization Projections of the NCAR Community Demographic
Model (CDM). NCAR Tech. Notes 2018. [CrossRef]

33. Zoraghein, H.; O’Neill, B. Data Supplement: U.S. State-Level Projections of the Spatial Distribution of
Population Consistent with Shared Socioeconomic Pathways. (Version v0.1.0) [Data set]. Available online:
https://doi.org/10.5281/zenodo.3756179 (accessed on 19 April 2020).

34. Zoraghein, H.; O’Neill, B.C.; Vernon, C. Population Gravity Model (Version v0.1.0). Available online:
https://github.com/IMMM-SFA/population_gravity. (accessed on 19 April 2020).

35. Santos, A.; McGuckin, N.; Nakamoto, H.Y.; Gray, D.; Liss, S. Summary of Travel Trends: 2009 National Household
Travel Survey; U.S. Department of Transportation: Washington, DC, USA, 2011.

36. Jiang, L.; Zoraghein, H.; O’Neill, B.C. Population projections for US states under the Shared Socioeconomic
Pathways based on global gridded population projections. NCAR Tech. 2018. [CrossRef]

37. Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells. NCAR Tech.
Notes 2017. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.gloplacha.2016.08.009
http://dx.doi.org/10.1088/1748-9326/aa92b6
http://dx.doi.org/10.3390/ijerph15030554
http://dx.doi.org/10.5065/D6WS8S2C
https://doi.org/10.5281/zenodo.3756179
https://github.com/IMMM-SFA/population_gravity.
http://dx.doi.org/10.5065/D6930RXZ
http://dx.doi.org/10.5065/D60Z721H
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	SSPs and Their Demographic Assumptions 
	Methodology 
	Gravity-based Population Downscaling Model 
	Modification of Parameters According to SSPs 

	Results and Discussion 
	SSP Projections 
	National SSP Projections 
	State level SSP Projections 

	Comparison to the Current National Model 

	Conclusions 
	
	State-Level Population Projections 
	State-Level Urbanization Projections 
	Estimated Parameters of The Population Downscaling Model 
	SSP Projections for New York 
	Regional Redistribution in State-Level Projections 
	Population Summary of Massachusetts and Utah 

	References

