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Abstract: The dynamics of land surface temperature (LST) and its correlation with vegetation are
crucial to understanding the effects of global climate change. This study intended to retrieve the LST of
China, based on the NOAA-AVHRR images, by using a split-window algorithm. The spatiotemporal
variation of LST, Normalized difference vegetation index (NDVI), and the correlation between
the two was investigated in China from 1982–2016. Moreover, eight scenarios were established
to explore the driving forces in vegetation variation. Results indicated that the LST increased by
0.06 ◦C/year in nearly 81.1% of the study areas. The NDVI with an increasing rate of 0.1%/year and
occupied 58.6% of the study areas. By contrast, 41.4% of the study areas with a decreasing rate
of 0.7 × 10−3/year, was mainly observed in northern China. The correlation coefficients between
NDVI and LST were higher than that between NDVI and precipitation, and the increase in LST
could stimulate vegetation growth. Most regions of China have experienced significant warming
over the past decades, specifically, desertification happens in northern China, because it is getting
drier. The synergy of LST and precipitation is the primary cause of vegetation dynamics. Therefore,
long-term monitoring of LST and NDVI is necessary to better understand the adaptation of the
terrestrial ecosystem to global climate change.

Keywords: land surface temperature; split-window algorithm; advanced very high-resolution
radiometer; remote sensing

1. Introduction

Land surface temperature (LST) and its spatiotemporal variations are crucial in studying land
surface energy and water balance on the regional and global scale [1–7] and are key parameters in
the International Geosphere and Biosphere Program (IGBP) [8]. The information provided by LST is
widely used in vegetation monitoring, as well as in evapotranspiration, aridity, soil moisture condition,
urban climate, and environmental studies [5,9–12].

The NOAA polar-orbiting series satellite has been successfully used to observe the earth for over
30 years; several algorithms have been developed to retrieve LST based on the NOAA-Advanced
Very High-Resolution Radiometer (AVHRR) [13–17]. Other remote sensing technologies include
the split-window algorithm for moderate-resolution imaging spectroradiometer [18,19], Advanced
Spaceborne Thermal Emission and Reflection Radiometer [20], Landsat Thermal Infrared Sensor [21],
the mono-window algorithm for Landsat Thematic Mapper [19,22], and Enhanced Thematic Mapper
Plus [23]. The LST changes rapidly on earth because of the strong heterogeneity of land surface
characteristics of the natural material coupled with time variation. An adequate characterization of
LST distribution and its temporal evolution requires measurements with detailed spatial and temporal
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sampling. The AVHRR data are highly advantageous in data acquisition characterized by an extended
period as well as continuous and sufficiently high temporal resolution, especially in the untraversed
regions without a meteorological station.

NDVI, as one of the most important parameters that reflect vegetation growth and
nutrition information, has been successfully applied in vegetation productivity simulation [24–27],
carbon balance [28,29], vegetation fraction [30], land surface emissivity (LSE) [31], evapotranspiration [32–34],
and land cover classification [35]. Several studies have analyzed the relationship between LST and
NDVI [1,36–39], in which MODIS LST and NDVI data have positive roles. However, long-term,
continuous observation of LST on the regional and global scales by remote sensing technology is
lacking, especially between 1980 and 2000, because of limited satellite data. NOAA-AVHRR is the
most suitable satellite data source that can be applied to observe global LST and NDVI in this period,
with appropriate temporal and spatial resolution.

To date, the earth has experienced significant global warming [40,41]. However, the spatial
distribution, variation of warming, and the relationship with vegetation in China remained unclear.
China is a country that covers a vast territory, with many unique geographical units that are sensitive
to temperature changes (e.g., the Qinghai–Tibet Plateau (QTP)). With growing concern about global
warming, this study aims to verify the locations where China’s terrestrial ecosystems are warming,
the degree to which LST has increased, and the effects of the LST increase on vegetation. Therefore,
we analyzed the temporal variation, spatial distribution, and the interrelationships of LST and NDVI
based on the NOAA-AVHRR and Global Inventory Modeling and Mapping Studies (GIMMS)-NDVI
data from 1982 to 2016, to better understand the spatiotemporal variation of LST and the effect of LST
on NDVI. The results are expected to promote countermeasures against global warming, as well as
carbon and water balance in the ecological ecosystem of China.

2. Materials and Methods

2.1. Dataset Collection and Processing

2.1.1. Remote Sensing Data

NOAA-AVHRR images were provided by the Land Long Term Data Record project (LTDR), which
produces, validates, and distributes global land surface climate data records using a combination
of mature and tested algorithms and the best available polar-orbiting satellite data from the past to
the present. AVHRR is the sensor on NOAA’s series of weather satellites, which has experienced
three generations. The service time of each satellite is illustrated in brackets. AVHRR/1 is mounted
on NOAA-6 (1979–1986), 8 (1983–1985), 10 (1986–2000) and 12 (1991–2007), with four original bands
(channels 0.63, 0.86, 3.7, and 11 µm). AVHRR/2 adds a thermal infrared band (11.5~12.5 µm) based
on AVHRR/1 to facilitate the inversion of land surface temperature, which is mounted on NOAA-7
(1981–1986), 9 (1984–1994), 11 (1988–1994) and 14 (1994–2001). AVHRR/3 is mounted on NOAA-15
(1998–present), 16 (2000–2014), 17 (2002–2013), and 18 (2005–present), with an additional mid-infrared
band [42]. To maintain consistency, the AVHRR images were utilized to retrieve LST from 1982 to
2016. These images had a dimension of 7200 × 3600 to cover the globe at 0.05◦ spatial resolution and a
temporal scale of 1 day. Each image dataset contains surface reflectance for channels 1 (0.5–0.7 µm),
channel 2 (0.7–1.0 µm) and channel 3 (~3.55–3.93 µm); TOA brightness temperature for channel 3
(~3.55–3.93 µm), channel 4 (~10.3–11.3 µm) and channel 5 (~11.5–12.5 µm); while the rest of the
channels indicate solar zenith angle, view zenith angle, relative azimuth, and quality assessment
field. The clouds were masked by the quality assessment field on all image datasets. Then, we fused
the daily LST data to the yearly data using the average composite method to avoid data missing
data caused by clouds and abnormal value masks. The data were obtained from the LTDR website
(http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi).

The NDVI includes the GIMMS-NDVI data of the NASA GIMMS Research Team with a spatial
resolution of 8 km and temporal resolution of half-month from 1982 to 2016. The maximum value

http://ltdr.nascom.nasa.gov/cgi-bin/ltdr/ltdrPage.cgi


Sustainability 2020, 12, 3601 3 of 16

composite is a simple method that can decrease the noise in the NDVI data [43]. We utilized the
maximum and average value composite method to obtain the monthly and yearly NDVI, respectively.
The NDVI data images were resampled with 0.05◦ resolution.

2.1.2. Meteorological Data

Meteorological data include average monthly LST and precipitation data from nearly 582
meteorological stations from 1982 to 2016. These data were collected from the China Meteorological
Data Sharing Service System (http://data.cma.cn/). The LST data were composited to annual for
validation, whereas the precipitation data were interpolated by using the ordinary Kriging interpolation
method to generate annual raster data with a spatial resolution of 0.05◦. The validation process was
conducted in four parts, northeastern China, southern China, the QTP and the whole of China.
The extent of each part as shown in Figure 1.
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Figure 1. Distribution of the meteorological stations over China.

2.2. Methodology

2.2.1. LST Computation

The split-window algorithm, developed by Sobrino [20], was applied to calculate LST. This
algorithm describes a simple linear relationship between brightness temperatures, emissivity,
and atmospheric water vapor, which can be expressed as follows:

LST = T4 + 1.40(T4 − T5) + 0.32(T4 − T5)
2 + 0.83 + (57− 5W)(1− ε)

−(161− 30W)∆ε
(1)

where T4 and T5 are the brightness temperatures measured in AVHRR Channels 4 and 5, respectively;
ε = ε4 + ε5/2 and ∆ε = (ε4 − ε5) are the average effective emissivity in both channels and the spectral
variation of emissivity, respectively; W is the total amount of atmospheric water vapor in g/cm2.

http://data.cma.cn/
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2.2.2. Estimation of LSE

NDVI based method was used to estimate LSE. This method was proposed by Valor and
Caselles [31] and was further developed through given NDVI threshold criteria to derive LSE from the
image. Before LSE, the calculation of NDVI and vegetation fraction is as follows:

NDVI = (ρNir − ρRed)/(ρNir + ρRed) (2)

Pv = (NDVI−NDVIS)/(NDVIV −NDVIS) (3)

where Pv is the vegetation fraction; ρNir and ρRed are the reflectivity in the near-infrared and red
channels; NDVIs and NDVIv are corresponding to bare soil and vegetation, respectively. The NDVIs

and NDVIv are set to 0.2 and 0.5 according to [44].

ελ =


aλ + bλρRed NDVI < NDVIS,

εvλPv + εsλ(1− Pv) + Ci NDVIS ≤ NDVI ≤ NDVIv

εvλ + Ci NDVIv < NDVI.

(4)

where aλ and bλ are the channel-dependent regression coefficients; εv and εs are the emissivity of
vegetation and soil for AVHRR in Channel i (i = 4 or 5) at wavelength λ; Ci is the mean cavity effect
caused by surface roughness. According to Sobrino [45], the formula can rewrite as:

ε4 =


0.979 + 0.057ρRed NDVI < NDVIS,

0.968 + 0.021Pv NDVIS ≤ NDVI ≤ NDVIv

0.99 NDVIv < NDVI.

(5)

ε5 =


0.982 + 0.028ρRed NDVI < NDVIS,

0.974 + 0.015Pv NDVIS ≤ NDVI ≤ NDVIv

0.99 NDVIv < NDVI.

(6)

2.2.3. Calculating Water Vapor

We utilized the Split-Window Covariance-Variance Ratio (SWCVR) method [14,46,47] to estimate
the atmospheric water vapor; this method assumes that the state of the atmosphere will not change
with the variation of LST and emissivity [46]. The formula can describe as following:

W = 0.26− 14.253(cos θlnR54) − 11.649(cos θlnR54)
2 (7)

R54 =

∑N
i = 1

(
T4i − T4)(T5i − T5

)
∑N

i = 1

(
T4i − T4

)2 (8)

where θ is the solar view zenith, R54 is the ratio of the spatial covariance and the variance of brightness
temperatures of Channels 4 and 5 in an image, N is the pixel number, T4i and T5i are the brightness
temperature of pixel i in Channels 4 and 5, T4 and T5 are the average brightness temperature in
each channel.

2.2.4. Dynamics and Significance Test

Simple linear regression was employed to analyze the interannual variation of LST and NDVI in
China from 1982 to 2016. The slope of the trend line in the multi-year regression equation for a single
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pixel represents the interannual variation rate, which is solved by the ordinary least-squares method.
The formula is described as follows:

Slope =
n×

∑n
i = 1(i ×Vari ) −

(∑n
i = 1 i

)(∑n
n = 1 Vari

)
n×

(∑n
i = 1 i2

)
−

(∑n
i = 1 i

)2 (9)

where Slope is the variation rate, n is the number of years, and i is 1 for the year of 1982, and 35 for the
year 2016. Vari represents the average annual LST and NDVI in the year i. A negative slope value
indicates a decreasing trend, whereas a positive slope value indicates an increasing trend.

The significance of variation tendency was determined by an F-test to represent the confidence
level of variation. The calculation for statistics is expressed as follows:

F = U×
n− 2

Q
(10)

U =
n∑

i = 1

(ŷi − y)2 (11)

Q =
n∑

i = 1

(yi − ŷi)
2 (12)

ŷi = Slope× i + b, (13)

b = y− Slope× i (14)

where U is the residual sum of the squares, Q is the regression sum, ŷi is regression value, which can be
calculated by Formulas (13) and (14); yi is the average LST of the year i, y is the mean LST over n years;
and b is the intercept of the regression formula, which can be calculated with the least-squares method.

The variation tendency was classified to the following six levels based on the F-test: Extremely
Significant Decrease (ESD, Slope < 0, P < 0.01); Significant Decrease (SD, Slope < 0, 0.01 < P < 0.05);
Not Significant Decrease (NSD, Slope < 0, P > 0.05); Not Change (NC, Slope = 0); Not Significant
Increase (NSI, Slope > 0, P > 0.05); Significant Increase (SI, Slope > 0, 0.01 < P < 0.05); Extremely
Significant Increase (ESI, Slope > 0, P < 0.01). P denotes the significance levels.

2.2.5. Correlation Analysis

The Pearson correlation coefficient was used to predict the variations. It is a correlation coefficient
between the LST and NDVI at a given time n (Equation (15)).

r =
n×

∑n
i = 1(xi × yi) −

(∑n
i = 1 xi

)(∑n
n = 1 yi

)
√

n×
(∑n

i = 1 xi
2
)
−

(∑n
i = 1 xi

)2
√

n×
(∑n

i = 1 yi
2
)
−

(∑n
i = 1 yi

)2
(15)

where n is the sequential year, xi and yi represent LST and NDVI in the year i. If the grassland
NDVI coefficient passes the significance test, then an “extremely significant” (P < 0.01), “significant”
(0.01 < P < 0.05) or “weak” (0.05 < P < 0.1) relation is indicated.

2.2.6. Establishing of Scenarios

We designed eight scenarios based on three kinds of slope (Table 1). In each scenario,
we hypothesize the decrease in precipitation and temperature will have negative effect on the
vegetation growth, by contrast, the opposite trend of precipitation and temperature will benefit
vegetation growth. NDVI has been proved can reflect the growth condition of vegetation [39], then the
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SLST, SPre, and SNDVI indicate the dynamic trend of LST, precipitation, and vegetation, a positive slope
value suggests an increasing trend, whereas a negative slope value suggests that decrease occurs.

Table 1. The scenarios of the determinant factor on NDVI variation.

Scenarios SLST SPre Determinant Factors

SNDVI > 0

Scenario 1 >0 <0 LST
Scenario 2 <0 >0 Precipitation
Scenario 3 >0 >0 Combined the two factors
Scenario 4 <0 <0 Other factors

SNDVI < 0

Scenario 5 >0 <0 Combined the two factors
Scenario 6 <0 >0 LST
Scenario 7 >0 >0 Other factors
Scenario 8 <0 <0 Precipitation

Scenario 1 (SLST > 0, SPre < 0) and scenario 5 (SLST > 0, SPre < 0) both denote that the LST and
precipitation present an increasing and a decreasing trend, respectively. Under SNDVI > 0 situations,
we can consider the increased NDVI is mainly attributed to LST increasing. However, under SNDVI < 0
situations, the decreased NDVI most likely due to the synergy of the two factors.

Scenario 2 (SLST < 0, SPre > 0) and scenario 6 (SLST < 0, SPre > 0) both denote LST decreasing while
precipitation increases. However, under SNDVI > 0 situations, we can consider the increased NDVI
mostly attributed to precipitation increasing. By contrast, under SNDVI < 0 situations, the decreased
NDVI due to insufficient accumulated temperature for vegetation growth.

Scenario 3 (SLST > 0, SPre > 0) and scenario 7 (SLST > 0, SPre > 0) denote both LST and precipitation
are increasing. Under SNDVI > 0 situations, the increased NDVI mainly attributed to both of the factors.
However, under SNDVI < 0 situations, the decreased NDVI might attribute to other impacting factors
besides LST and precipitation.

Scenario 4 (SLST < 0, SPre < 0) and scenario 8 (SLST < 0, SPre < 0) denote both LST and precipitation
exhibiting a decreasing trend. Therefore, under SNDVI > 0 situations, the increased NDVI most due to
the other factors besides LST and precipitation. By contrast, under SNDVI < 0 situations, the decreased
NDVI mainly because of decreasing precipitation.

3. Results

3.1. Validating LST

The mean annual LST (MAT) of 582 meteorological stations was used to validate the LST simulated
by the AVHRR images. We validated the result by using the MAT from 1982 to 2016 (0). The R2 of the
four regions is over 0.85 (0A,C,E,G). However, the validation of the MAT trends is not as good as MAT.
The value of R2 is around 0.6 in the QTP, southern and northeastern China, and even lower than 0.45 in
the whole of China (0B,D,F,H) but reached the significance level of 0.05. The P-value is infinitely close
to 0, therefore, the specific value is not listed in Figure 2.

3.2. Dynamics of LST and Precipitation

Figure 3 represents a map of (A) LST trends and (B) their significance tests over China from 1982
to 2016. The identified areas that exhibited an increasing trend reached 9.5 million km2, occupying
81.1% of the total land area, with an annual increase of 0.06 ◦C (Figure 3A). The regions that exhibited
extreme and moderate increases were mainly found in northeastern and southern China, as well
as in northwestern China, with areas of 4.1 and 1.3 million km2, accounting for 42.8% and 13.9%
of the total increased area. The regions that exhibited a slight increase accounted for an area of
4.1 million km2 (43.3% of the total increased areas); such trends were scattered throughout China.
Meanwhile, 2.2 million km2, accounting for 9.0% of the total land area, exhibited a decreasing trend
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by 0.04 ◦C/year. Extremely and moderately decreased regions were distributed evidently in the QTP
and the northeastern Inner Mongolia plateau, with areas of 0.1 million km2 and 0.4 million km2,
occupying 4.3% and 19.8% of the total decreased area, respectively. Slightly decreased regions were
mostly observed in the QTP, and a part of southwestern, eastern and northeastern China, with an area
of 1.7 million km2 and occupying 75.9% of the total decreased area.Sustainability 2020, 11, x FOR PEER REVIEW 7 of 16 
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The significance test is presented in Figure 3B. The area of ESI (0.8 million km2) and SI (1.5
million km2) occupied 20.0% of the total land areas; moreover, the NSI (7.2 million km2) and NSD (2.1
million km2) areas accounted for 78.9% of the total land area. Moreover, the ESD (0.05 million km2)
and SD (0.07 million km2) areas accounted for only 1.1% of the total land area.

Figure 4 represents a map of (A) precipitation trends and (B) their significance tests over China
from 1982 to 2016. The regions with increasing trends of precipitation accounted for 53.2% of the
study areas, which were mainly found in western and southwestern China (Figure 4A). By contrast,
the regions with decreasing trends of precipitation were occupying 46.7% of the study areas, which
were distributed in northeastern, central China and a part of southern China. The significance test of
precipitation trends is presented in Figure 4B. The ESI and SI regions were accounted for 4.7% and
5.8% of the study areas, which were mainly located in the QTP, and scattered in the northwestern and
southwestern China. The ESD and SD regions were only accounted for 3.5%, which were mainly found
in northeastern China.
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to 2016.

3.3. NDVI Dynamics and Significance Test

Figure 5 represents a map of (A) NDVI trends and (B) their significance tests over China from 1982
to 2016. The NDVI exhibited an increasing trend in most regions of China (Figure 5A). The identified
increasing areas were 7.0 million km2, occupying 58.6% of the total area. The annual average, maximum
and minimum increase rate of NDVI was 0.1%, 0.01%, and 4.2%, respectively. The extremely increased
regions were 0.9 million km2, occupying 13.6% of the total increased area and were distributed evidently
in central and eastern China. The moderately increased regions were shown a more fragmented pattern
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of variation; the area was 1.8 million km2, accounting for 25.4% of the total increased area mainly in
central and eastern China, as well as being scattered in southern China. The slightly increased regions
were 4.3 million km2, accounting for 35.8% of the total increased area that was widespread in China,
particularly in the Qinghai–Tibet and Inner Mongolia plateaus.
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By contrast, there were 4.9 million km2 exhibited a decreasing rate of 0.07%/year, which was
observed in northwestern and northeastern China, occupying 41.4% of the total areas. The extremely
decreased regions were 0.1 million km2, occupying 2.6% of the total decreased area, which was observed
in the Yangtze and Pearl River deltas as well as in metropolises such as Shanghai and Guangzhou
in these regions, and rapidly expanded over the past years. Moderately decreased regions were
0.5 million km2, accounting for 11.0% of the total decreased area, which was mostly distributed in
northeastern China. The slightly decreased regions were mainly found in northwestern China with
land types characterized by desert; the area covered 4.3 million km2, occupying 86.3% of the total
decreased area.

According to the significance test of NDVI variation (Figure 5B), the areas of ESI (2.5 million km2)
and SI (1.0 million km2) accounted for 21.1% and 8.4% of the total land areas; the areas of ESD
(1.8 million km2) and SD (0.5 million km2) accounted for 15.5% and 4.2% of the total land areas, and the
areas of NSI and NSD occupied 50.7% of the total land area.

3.4. Spatiotemporal Relationship between LST and NDVI

The LST and NDVI with the highest average correlation coefficient of 0.27 (Figure 6 A-1, A-2).
Positive correlation areas were mostly in southern China and occupied 57.8% of the study areas.
The sum of the extremely significant (ESPC) and significant positive correlation (SPC) areas accounted
for 16.9%. Only 5.7% of the study areas exhibited weak positive correlations. Positive correlation
(PC) regions were up to 35.2%. By contrast, the negative correlation regions (NC) in the behavior of
NDVI and LST were occupying 42.2% of the study areas. The extremely significant (ESNC), significant
(SNC) and weak (WNC) negative correlation areas accounted for 2.9%, 4.7%, and 3.7% of the study
areas, respectively. The average correlation coefficients between precipitation and NDVI is 0.20
(Figure 6 B-1,B-2). The regions exhibiting positive correlations were larger than those which exhibited
negative correlations (60.1% vs. 39.9%). The ESPC, SPC, and WPC were occupying 4.5%, 5.5% and
4.7% of the study areas, respectively. The LST and precipitation have the lowest average correlation
coefficients (r = 0.18), and not significant regularity was observed in the study areas (Figure 6 C-1,C-2).
The negatively related regions accounted for 60.7% of the study areas.
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3.5. The Influencing Factors on NDVI Dynamics

The spatial distribution of the principal climate factors on vegetation dynamics is shown in
Figure 7. The largest areas were the synergy of LST and precipitation dominated factors for NDVI
increasing (SDI), accounting for 31.0% of the study areas, whereas the LST dominated factors for
NDVI increasing (TDI) occupied 21.8% of the study areas. The precipitation factors (PDI) and other
factors dominated for NDVI increasing (OFDI) only accounted for 2.0% and 3.7% of the study areas.
Nearly 21.4% of the study areas were other factors dominated for NDVI decreasing (OFDD). This
region mainly observed in northwestern China which characterized as the desert. In total, 14.1%
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of the study regions were attributed to the synergy of LST and precipitation dominated factors for
NDVI decreasing (SDD), whereas the LST (TDD) and precipitation (PDD) dominated factors for NDVI
decreasing occupied 4.7% and 1.3% of the study areas.
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Figure 7. The spatial distribution of principal influence factors on NDVI dynamics over China from
1982 to 2016. (OFDI: other factors dominated for NDVI increasing; SDI: synergy of LST and precipitation
dominated factors for NDVI increasing; PDI: precipitation dominated factors for NDVI increasing; TDI:
LST dominated factors for NDVI increasing. OFDD: other factors dominated for NDVI decreasing;
SDD: synergy of LST and precipitation dominated factors for NDVI decreasing; PDD: precipitation
dominated factors for NDVI decreasing; TDD: LST dominated factors for NDVI decreasing).

In summary, the increased LST and precipitation were the principal climate factor for NDVI
increasing. It is noteworthy that decreased NDVI mainly attributed to increased LST and decreased
precipitation in northeastern China.

4. Discussion

4.1. LST Retrieval Method

We detected the LST changes in China by remote sensing technology over a long study period. We
found that the LST significantly increased in an environment characterized by global climate warming,
with nearly 81.1% of the regions in the country experiencing an increasing trend. These regions reached
significant levels, including the majority of northeastern and a part of northwestern, southeastern
and southwestern China, accounting for 16.9% of the total land area; the LST increased by 0.06 ◦C
/year. NOAA-AVHRR, as one of the suitable remote sensing images, makes it possible to monitor
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environmental changes over time using remote sensing. However, retrieving LST from daily to yearly
data is a major challenge because of massive amounts of data and several uncertainties.

The uncertainty may be attributed to clouds and abnormal values. Although the clouds were
eliminated by the QA band, erroneous cloud detection and sub-pixel clouds affected the results
considerably. In this study, obtaining an entire map of the month without any missing value is different
because the detected clouds mask a large part of the land surface features, especially the months from
June to August. Therefore, we used a year composite method to obtain accurate data to reflect the
yearly variation of LST. LSE is another uncertain factor. We employed NDVI as a basis to simulate LSE;
however, the spectral behavior of natural surfaces observed from space are usually heterogeneous [48],
and using NDVI causes confusion on the emissivity other than vegetation, which leads to errors in the
LST simulation. Measuring the emissivity remotely is a major technical challenge that needs further
study. In this study, the estimations of emissivity ranged from 0.979 to 0.99 in Channel 4 and from
0.982 to 0.99 in Channel 5.

4.2. The Scenarios and Climate Factors

This study was established eight scenarios and applied them to explore the spatial distribution of
the main driving forces for the vegetation variation in China. The increase in LST certainly will benefit
vegetation growth, but the extremely high-LST also could induce drought. The extreme low-LST will
lead to less energy input, the effect of these conditions on vegetation might be neglect because the
annual mean LST was used in the scenarios. Moreover, the annual data might ignore the seasonal
mismatch in LST and precipitation.

Global warming accelerates the water cycle. The increased water vapor transports from the
Arabian Sea to northwestern China because the increasing sea temperature in the South Indian Ocean
enhances its water evaporation [49]. Another reason is likely due to the melting of glaciers leading to
an increase in river runoff, which in turn causes an increase in precipitation [50].

Over arid regions, characterized by limited cloud cover, regional climate warming might be
the main factor causing increasing LST trends. Over other regions, characterized by significant
cloudiness, an increase in LST could be caused by decreasing trends in cloud cover. The NDVI was
decreased significantly in northwestern China, which characterized as the desert or sparse desert
vegetation. Although the precipitation was increased, however, the soil could not hold the water with
the increasing temperature.

The regions with significantly decreased NDVI include northwestern and northeastern China,
which matched with the findings of Xu [51], the NDVI decrease in northeastern China may be attributed
to agricultural reclamation. However, this study identified increased LST and decreased precipitation
in northeastern China from 1982 to 2016. Therefore, the drought-induced by LST and precipitation
might be the primary cause of the decrease in NDVI in northeastern China.

4.3. The Human Activities

Human activities might be the determinant factor when climate factors to the disadvantage of the
vegetation growing. Human activities like artificial irrigation, fencing enclosure, and other grassland
management would benefit the growth of vegetation. The total area of the agricultural land was
increased by 64.9% from 3.42 × 108 ha in 1960 to 5.28 × 108 ha in 2015 [52]. More importantly is that
the government launched large-scale ecosystem restoration programs (e.g., the Three-North Forest
Shelterbelt Program, the Grain for Green Project, and the Natural Forest Conservation Program) during
the late 1990s and early 2000s, especially in northern China, to combat environmental deterioration,
and forest cover has increased dramatically from 8% in 1949 to 18.2% in 2005 [53].

Human activities are also the crucial factor when city expansion (e.g., the Pearl River Delta and
the Yangtze River Delta) led to decreases in NDVI. Because of human activities, an urban heat island
effect is an urban area or metropolitan area that is significantly warmer than its surrounding rural
areas. As the urban population in China significantly increased during this study period (1982–2016).
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China’s population reached 1 billion in 1982 and it reached ~1.4 billion in 2016; this led to increasing
LST trends over highly-populated areas.

Overall, the effects of human activities are usually difficult to identify, which might be
underestimated in vegetation degradation or restoration. Notably, northwestern and northeastern
China has become more dryer because of the synergy of LST and precipitation or the desertification
in vegetation decreasing. The vegetation has a positive correlation with LST in southern China,
which demonstrated that increasing LST stimulates the growth of vegetation. However, whether the
increase in NDVI will suppress the increase in LST remains unclear in this study and needs clear
evidence to prove.

5. Conclusions

• The results of the LST simulation indicated that up to 81.1% of the total land areas exhibited with
an annual increase rate of 0.06 ◦C/year, and 58.6% of the study areas were shown that NDVI with
an average increasing rate of 0.1%/year from 1982 to 2016.

• NDVI has a higher average correlation coefficient with LST than precipitation, and the increase in
LST could stimulate vegetation growth, but it is not clear that the inhibitory effect of vegetation
in LST increases in this study. Northern China will become dryer because of desertification
(northwestern) or climate factors (northeastern). The synergy of LST and precipitation might be
the primary cause of vegetation decrease.

• The LST retrieving algorithm can be improved further. Simulating the LSE through a more
precise method and improving the detection accuracy of clouds and abnormal pixels are crucial.
Introducing additional parameters is also necessary to determine the discrepancy of LST in latitude
and altitude.
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