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Abstract: Large volumes of pavement de-icing and anti-icing fluids, collectively termed de-icing
agents, are used at airports to facilitate wintertime safe air travel. After use, most of the them
get typically mixed with storm water runoff and may enter soil and waters near the airports.
Wastewater resulting from airports’ winter operations is contaminated mainly with nitrogen and
carbon compounds. Previous research results have shown that the use of biofilters filled with
lightweight aggregates prepared from fly ash from sewage sludge thermal treatment (FASST LWA)
could be an effective method for removing nitrogen and organic compounds at low temperatures,
i.e., 0–8 ◦C. For this to be possible, it is necessary to maintain a proper ratio between the amounts of
carbon and nitrogen in the treated wastewater, through the simultaneous application of de-icing agents
containing urea and carbon compounds. Biofilter technology is part of the concept of sustainable
development. Their filling is made of waste materials and one of the pollutants (organic compounds)
present in the wastewater is used to remove other pollutants (nitrogen compounds). In this study,
technological systems for the treatment of wastewater containing airport runway de-icing agents
with biofilters were proposed, which allow for the treated wastewater to be discharged into natural
waters, soil, and sewerage network.

Keywords: airport pavement de-icing agents; contaminated rainwater management; biofilters

1. Introduction

Large volumes of pavement de-icing agents are used at airports to facilitate wintertime safe air
travel. Chemicals commonly used in this respect include: urea, acetate, and sodium formate in the
solid form, as well as acetate and potassium formate in the liquid form [1,2]. After use, most of the
de-icing agents get typically mixed with storm water runoff and enter grounds and waters near the
airfield pavements. The wastewater resulting from airports’ winter operations is contaminated mainly
with nitrogen and carbon compounds, while the average total phosphorus levels do not exceed the
limit values. Airport runway wastewater is characterized by chemical oxygen demand (COD) of up to
630,000 mg O2/L, total nitrogen concentration from 0 to 600 mg/L, and total phosphorus concentration
below 1 mg/L [2–4]. According to the Environmental Protection Agency, COD and total nitrogen (TN)
are indicators of the quality of wastewater containing de-icing agents [5].

Airports strongly affect the natural environment [6]. Apart from domestic sewage [7], a significant
problem is posed by wastewater from de-icing airport runway. The nitrogen and carbon compounds
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used in deicing operations are related to a number of adverse environmental and ecological effects,
e.g., fertility of water environment, resulting in the accelerated eutrophication of surface waters,
formation of oxygen deficits, and loss in both the biodiversity and the economic value of waters,
including recreational use. Because of the scale of surface water eutrophication problem, the removal
of nitrogen is the priority [8].

The issue of the treatment of wastewater containing de-icing agents remains unresolved [9],
which results in the penetration of most of these substances into the ground and water near airports [10].
Most airports are not equipped with a wastewater treatment system. Only a few airports in the
world have wetlands [11], which effectively remove pollution from wastewater. However, wetlands
create favorable environmental conditions for birds [12], which may endanger airport operations.
Other solutions include filters with zeolite and perlite [3], media made of crushed clay and granular
activated carbon [1], a mixture of granular activated alumina and porous concrete, granular activated
lignite, half-burnt dolomite, and granular ferric hydroxides [13].

Considering sustainable development principles, the best solution would be to use the filling made
of waste materials, e.g., light weight aggregates prepared from fly ash from sewage sludge thermal
treatment (FASST LWA) [14]. It is characterized by a large specific surface, is resistant to physicochemical
factors, exhibits low heat conductivity [15] and good phosphorus-sorption properties [16], and facilitates
the deammonification process [17]. These attributes provide good conditions for biofilm growth even
at low temperatures [18].

The previous authors’ research has shown that the use of biofilters with lightweight aggregates
prepared from fly ash from sewage sludge thermal treatment (FASST LWA) filling could be an effective
method for removing nitrogen and organic compounds from wastewater containing airfield deicing
fluids. The nitrogen compounds were removed as a result of the simultaneous process of nitrification
and denitrification, where the organic compounds present in the treated wastewater served as a carbon
source [14,19].

Temperature, C/N ratio, and the hydraulic loading of biofilter (HL)—these are the factors which
influence carbon and nitrogen removal efficiency in biofilters. When designing a sewage treatment
plant for airport runway wastewater, it should be borne in mind that the vast area of airports and
significant fluctuations in atmospheric precipitation contribute to huge differences in wastewater flows
discharged to treatment systems. During exploration at airports, in technical conditions, the volume of
de-icing wastewater flowing into the biofilters can change drastically.

The use of FASST LWA granules for airport runway wastewater treatment in biofilters has an
additional ecological effect resulting from the management of solid wastes (fly ash from sewage sludge
thermal treatment), which is usually stored. Besides, the expected technological effect, i.e., the effective
removal of pollutants at low temperatures, requires a specific way of winter airport operation through
the simultaneous application of de-icing agents containing urea and easily biodegradable carbon
compounds. As a consequence, no additional materials and raw materials are consumed in the
treatment process; moreover, the removal of nitrogen in the denitrification process is not associated
with the extra cost of purchasing an external carbon source, because one of the pollutants (organic
compounds) present in the wastewater is used to remove other pollutants (nitrogen compounds).

The advantages of granulate confirmed in tests on a laboratory scale have led to considerations
on the possibility of its application on a technical scale. The synthesis of the results of both cited
investigations [14,19] is a part of this paper. Based on the results of laboratory studies, technological
systems of wastewater treatment plants for wastewater containing airport runway de-icing agents
with the use of biofilters were proposed, which enable the treated wastewater to be discharged into
natural waters, soil, and the sewerage network (common, sanitary, storm water sewers). We hope that
the results of our study will help engineers responsible for environmental protection at airports and
provide a technological solution to treat wastewater containing de-icing agents from airport pavements.
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2. Polish Regulations Concerning the Quality of Wastewater Discharged from Impervious
Surfaces of Airport Areas

There are no specific provisions in Polish regulations regarding the removal of nitrogen and
carbon compounds from wastewater generated upon the use of de-icing agents for airport runways.
The current Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019
on the conditions to be met when discharging wastewater into water or into the ground, and on
substances particularly harmful to the aquatic environment [20], stipulates general requirements for
rainwater and snowmelt discharged from built-up areas, including airports. Pursuant to § 21 of the
Regulation, “rainwater and snowmelt discharged to open or closed sewage systems that originate from
a contaminated impervious surface of industrial areas, storage areas, transport bases, ports, airports,
cities of railway constructions, roads classified as national, voivodship and local roads of class G, as well
as parking lots with an area of over 0.1 ha, in the amount resulting from precipitation with the intensity
of at least 15 L per second per 1 ha . . . . . . released into waters or into the ground should not contain
pollutants in quantities exceeding 100 mg/L of total suspended solids and 15 mg/L hydrocarbons of
petroleum origin”. This record necessitates the use of only separators of petroleum-based substances
and settling tanks.

Therefore, the need to remove carbon and nitrogen compounds from rainwater and snowmelt
from the impervious surfaces of airports is primarily due to the environmental hazards posed by this
type of outflow to the natural environment. The severity of these hazards stems from the concentration
of nitrogen and carbon compounds in rainwater and snowmelt from airports and from their volume,
which is a consequence of the size of airport runways and the frequency of using de-icing agents.
It needs to be emphasized that the composition of the wastewater from de-icing airport surfaces is
very variable and depends primarily on meteorological phenomena. Secondly, it depends on the
anti-freezing and de-icing methods applied, types of chemicals used, and their amounts.

Values of the maximum wastewater concentrations (COD and total Kjeldahl nitrogen: 630,000 mg
O2/L and 600 mg/L, respectively [4]), prove that when using large doses of de-icing agents, rainwater
should not be discharged directly into the storm water drainage system nor to natural receivers. This,
obviously, prompts the need to design a ‘flexible’ rainwater management system at the airport, i.e.,
the one in which, during the period when de-icing agents are not used, rainwater will be discharged
into the storm water drainage system, water, or soil. In turn, after using de-icing agents, rainwater in
the form of wastewater should be, where possible, discharged into the sanitary sewage system or the
general sewage system of a given city the airport is located in.

The operator of the sewage network at the airport should take into account the provisions of the
Regulation of the Minister of Construction of 14 July 2006 on the manner of fulfilling the obligations of
industrial suppliers and conditions for introducing sewage to sewage facilities and the Regulation of the
Minister of Infrastructure and Development of 23 September 2015 [21,22]. Pursuant to these documents,
the water supply and sewage company determines the maximum volume of sewage and acceptable
values of pollution indicators in wastewater discharged by the industrial wastewater supplier, based
on the balance of quantity and quality of municipal wastewater discharged to wastewater treatment
plants, the actual capacity of the treatment plant, and the removal efficiency achieved.

In the case of wastewater from airport de-icing, pollution indicators whose values should be taken
into account are COD and ammonia nitrogen. In accordance with the Regulation, the acceptable COD
concentration of wastewater from de-icing will be determined on the basis of the permissible load of
the wastewater treatment plant with organic compounds expressed as the COD index. In contrast,
also pursuant to this Regulation, the maximum concentration of ammonia nitrogen (the prevailing
form of nitrogen in de-icing wastewater after the use of urea) should not exceed 100 or 200 mg NNH4/L
depending on the population equivalent (PE) of the wastewater treatment plant. Based on the specified
allowable wastewater flow and COD concentration in the wastewater supplied to the sewage systems,
and the known concentration of this indicator in the wastewater generated when using airport de-icing
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agents, the required removed load can be calculated, which must be achieved in the pretreatment
facilities before wastewater is discharged to the sewage systems.

In turn, due to the scale of potential environmental hazards, the Regulation of the Minister of
Maritime Economy and Inland Navigation of 12 July 2019 [22] shall apply considering discharge of
wastewater from airport de-icing to the natural environment (water or ground). Pursuant to this
Regulation, the COD concentration of wastewater discharged to waters or into the ground must not be
higher than 150 or 125 mg O2/L and the total nitrogen concentration should range from 10 to 40 mg O2/L
(depending on the type of a receiver and PE of the wastewater treatment plant). The collation of the
maximum values of wastewater pollutants discharged from the airport runway and the requirements
for treated wastewater indicate the severe threat posed to the natural environment by the use of
de-icing agents. In addition, they prove that the current regulations take no account of this hazard.

Airport operators in Europe are also under scrutiny to cope with the regulations focusing on
the environmental impacts of de-icing practices. The Water Framework Directive (2000/60/EC) [23]
and Soil Directive (2004/35/EC) [24] have put de-icing practices under the microscope. The focus
of managing waters containing de-icing chemicals has been put on source reduction, containment,
stormwater treatment, and/or safe disposal.

In this case, it is necessary to design a system with a wastewater treatment plant which, according
to the authors of this article, would operate based on biofilters filled with lightweight aggregates
prepared from fly ash from sewage sludge thermal treatment (FASST LWA). The results of earlier
studies [14,19], described below, have proved it to be a very promising technological solution.

3. Materials and Methods

3.1. Experimental Stand and Organization

The study was performed in biofilters with FASST LWA filling [14]. FASST LWA had the structure
of extended-clay aggregate (with a diameter d60 = 8.2 mm) that was prepared from fly ash from
sewage sludge thermal treatment in the “Dębogórze” Wastewater Treatment Plant in Gdynia (Poland).
The granulate was prepared according to the method of mechanical plasticization and fragmentation
of the raw material, followed by firing of small balls (average diameter d60 of 8.2 mm) in a rotary kiln
at 1200 ◦C [16,19,25].

It was performed in laboratory scale models of biofilters, and accomplished in two experiments.
The technical parameters of the reactor were: surface area 95 cm2 (diameter—11 cm), volume 2500 cm3

(total height—24 cm), and active volume 1552 cm3 (height of filling—19 cm). The first experiment was
divided into three series differing in organic carbon biofilters loading (Figure 1).

Experiment 1 was performed at a hydraulic loading of 5 L/m2
·d, which facilitated nitrification and

a hydraulic retention time of 4 d, which corresponded to 4-day dosing frequency of de-icing agents at
airports. In each series, carried out at the same hydraulic retention time, biofilters were operated at 25,
8, 4, or 0 ◦C. The reactor operated at the temperature of 25 ◦C was the control reactor. The applied
filling and properly selected operating parameters of the reactors resulted in effective simultaneous
nitrification and denitrification.

The purpose of the second experiment [19] was to determine the effectiveness and stability of
contaminants removal processes in the biofilter with a filling made of FASST LWA treating wastewater
containing pavement de-icing agents (urea and readily biodegradable organic compounds), assuming
that maintaining a proper C:N ratio can ensure the effective removal of pollutants at low temperatures,
independently from biofilter hydraulic loading.

Experiment 2 (Figure 2) was based on the conclusion of Experiment 1—good efficiency of removing
pollutants from wastewater at low temperatures was achieved, both in the case of nitrogen compounds
and COD, when the value of C/N was equal to 0.5 gC/gN [14].
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The goal of the second experiment was to determine the influence of the hydraulic loading on
nitrogen and organic compounds (COD) removal depending on the temperature. The experiment was
divided into four series differing in the hydraulic loading (1.0, 3.0, 5.0, and 10.0 L/m2

·d). In each series,
biofilters were operated at the temperature of 0, 4, 8, and 25 ◦C.

3.2. Characteristics of Wastewater Used in the Experiments

Synthetic wastewater, prepared from sample weight, which included commonly used agents for
de-icing airport pavements and tap water, was the substrate for the experiments (Table 1).

Table 1. Composition of synthetic wastewater [19].

Parameter Value

CH4N2O [mg/L] 150.00 ± 0.10
HCOONa [mg/L] 136.00 ± 0.10

CH3COOK [mg/L] 49.00 ± 0.10

Series 1, 2, and 3 of Experiment 1 were carried out at the same hydraulic retention time.
The concentration of organic compounds in the wastewater was increased to obtain a higher organic
loading in the following biofilters. The indicators of raw wastewater in Experiment 1 are presented in
Table 2.

Table 2. Average (± SD) concentrations of raw wastewater indicators in the subsequent research series
of Experiment 1 [14].

Parameter Series 1 Series 2 Series 3

C/N [gC/gN] 0.5 2.5 5.0
Ntot. [mg N /L] 71.56 ± 2.20
NKjeldahl [mg/L] 70.80 ± 3.02
TOC [mg C/L] 56.96 ± 1.98 200.80 ± 4.79 375.71 ± 6.97

COD [mg O2/L] 100.66 ± 1.34 386.80 ± 1.94 765.50 ± 2.90
Dissolved oxygen [mg O2/L] 6.64 ± 0.71

Redox potential [mV] 189.33 ± 12.23
pH 7.75 ± 0.28

The organic compounds loading in the series of the first experiment are presented in Table 3.

Table 3. The average (± SD) reactor pollutant loading in the subsequent research series of
Experiment 1 [14].

Parameter Series 1 Series 2 Series 3

C/N [gC/gN] 0.5 2.5 5.0
Ntot. [mg N/m2

·d] 357.8 ± 11.00
NKjeldahl [mg N/m2

·d] 354.00 ± 15.10
N-NH4 [mg N/m2

·d] 0.00
COD [mg O2/m2

·d] 503.30 ± 7.19 1934.00 ± 9.47 3827.50 ± 14.50

The indicators of raw wastewater used in the second experiment are presented in Table 4.
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Table 4. Average (± SD) concentrations of raw wastewater indicators in Experiment 2 [19].

Parameter Value

Ntot. [mg N/L] 71.56 ± 2.20
NKjeldahl [mg/Ll] 70.80 ± 3.02

TOC [mg C/L] 56.96 ± 1.98
COD [mg O2/L] 100.66 ± 1.34

Dissolved oxygen [mg O2/L] 6.64 ± 0.71
Redox potential [mV] 189.33 ± 12.23

pH 7.47–8.03

The organic compounds and nitrogen loadings in the research series of the second experiment are
presented in Table 5.

Table 5. The average (± SD) reactor pollutant loading in the subsequent research series of
Experiment 2 [19].

Parameter
Hydraulic Loading of Biofilters [L/m2

·d]

1 3 5 10

Ntot. [mg N/m2
·d] 71.56 ± 2.20 214.68 ± 8.27 350.74 ± 12.27 696.70 ± 30.63

NKjeldahl [mg N/m2
·d] 70.80 ± 3.02 212.4 ± 5.11 348.50 ± 10.11 695.18 ± 23.51

N-NH4 [mg N/m2
·d] 0.00 0.00 0.00 0.00

COD [mg O2/m2
·d] 109.48 ± 5.00 328.45 ± 7.51 547.42 ± 17.01 1094.83 ± 25.02

3.3. Analytical Procedures

Physicochemical analyses of raw and treated wastewater included: nitrate concentration and
nitrite concentration—with the colorimetric method using a VWR UV-3100PC Spectrophotometer
(China); ammonium nitrogen and Kjeldahl total nitrogen—with the distillation and titration method
using a Buchi SpeedDigester K-436 (Switzerland) and a Buchi KjelFlex K-360 (Switzerland); organic
compound concentration (COD)—with the titrimetric method using a laboratory heater Gerhardt KI 16
(Germany) according to APHA (APHA, 2012); concentration of total nitrogen (TN)—with the method
of oxidative combustion—chemiluminescence using a Shimadzu Corporation TNM-L analyzer (Japan);
and dissolved oxygen, pH, redox potential, and temperature—using a HACH HQ440d multi analyzer
(U.S.A.).

4. Results and Discussion

The first experiment showed the significant influence of the temperature of biofilter operation and
the C/N ratio in the wastewater on the efficiency of nitrogen removal from wastewater. The highest
efficiency of nitrogen removal at 0 ◦C (34.57% ± 4.54%) was obtained at the C/N ratio of 0.5 gC/gN.
Similar tendencies were observed for operation temperatures of 4 and 8 ◦C. The study results also
showed a decrease in the efficiency of nitrogen removal with an increase in the C/N ratio at the
low temperature of biofilter operation (an opposite tendency was observed in the control reactors).
The efficiency of denitrification (the lowest at the temperature of 0 ◦C) increased as the temperature
and C/N ratio increased in the wastewater (Figure 3).
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The study showed that the effective removal of nitrogen compounds in biofilters occurred across
a very wide temperature range. FASST LWA filling and properly selected operating parameters of
the reactors resulted in the effective nitrification and reduction of oxidized nitrogen forms to gaseous
nitrogen. Nitrogen compounds removal was possible due to the simultaneous nitrification and
denitrification [26], in which organic compounds contained in the wastewater (in the result of acetate or
potassium formate application as de-icing agents) serves as carbon sources. A prerequisite to ensure the
effective removal of pollutants at low temperatures is to maintain a proper ratio between the amount
of carbon and nitrogen in the treated wastewater, through the simultaneous application of de-icing
agents containing urea and easily biodegradable carbon compounds. It is feasible by controlling the
amount of de-icing agents, containing urea and simple organic compounds, applied at airports [14].

The second experiment showed that either increasing or decreasing biofilter HL relative to the
value of 5.0 L/m2
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At temperatures tested, an increase in biofilter HL value from 1.0 to 5.0 L·m−2
·d−1 caused the

increase in the efficiency of nitrogen removal. Whereas, increasing HL to 10.0 L·m−2
·d−1 caused nitrogen

removal efficiency to decrease. An exception was observed for the control biofilter (temperature 25 ◦C)
and the biofilter operating at 4 ◦C, in the case of which the efficiency achieved at HL 10.0 L·m−2

·d−1 did
not change significantly compared to that determined at HL 5.0 L·m−2

·d−1. These results are consistent
with literature data. Nguyen et al. [27] presented similar changes in nitrogen removal efficiency, as
affected by hydraulic loading. In addition, Wang et al. [28] failed to demonstrate a linear correlation
between nitrogen removal efficiency and HL values (from 0.5 to 3.0 m3

·m−2
·d−1). Experiment 2 showed

also that the decrease in wastewater treatment efficiency was smaller upon HL increase than upon
HL decrease. The research results showed that in the period of intense surface runoffs resulting
from more intense atmospheric precipitation and the necessity of using higher amounts of de-icing
agents at temperatures of 0–8 ◦C, it is feasible to increase biofilter HL. It means that there is no risk
of compromising the quality of the effluent in respect of nitrogen concentration. Simultaneously, the
concentration of organic compounds in treated wastewater will be lower because the increase in HL of
the biofilter will boost the efficiency of COD removal [19].

Both experiments have shown that the use of biofilters with FASST LWA filling can be an effective
method for removing first of all nitrogen compounds from wastewater containing airfield de-icing
fluids. It may be an effective and sustainable method for the removal of nitrogen at low temperatures,
i.e., 0–8 ◦C. What is worth emphasizing is that the nitrogen compounds were removed as a result of
the simultaneous process of nitrification and denitrification, where the organic compounds present in
the treated wastewater served as a carbon source [14,19].

5. The Concept of Biofilters Application in Airport De-Icing Wastewater Management System

The proposed solution will enable the services responsible for winter maintenance of airport
surfaces using a wide spectrum of de-icing agents and, at the same time, will ensure a high level of
pollutants neutralization. Most airports use de-icing agents based either on simple easy-biodegradable
carbon compounds or urea (nitrogen compounds) Not too many airports in the world are equipped
with a wastewater treatment system. Technological solutions applied, like aerobic retention ponds,
lagoons, fluidized bed biological reactors or wetlands, are not suitable for nitrogen removal. However,
they are suitable to remove carbon compounds.

Our technological solution must go hand in hand with a specific way of using de-icing
agents. We recommend airport operators the simultaneous use of de-icing agents such as urea
and easily-degradable organic compounds, such as acetate or potassium formate, at the airport. This
procedure can contribute to the effective nitrification and denitrification processes (consequently to the
removal of nitrogen) as well as the effective removal of organic compounds in biofilters with FASST
LWA filling. This combination of logistic treatments with a “friendly technology” (characterized by the
minimum amount of generated wastewater and by-products) will be an example of a solution inscribing
into the idea of sustainable development. One of the pollutants (organic compounds) present in the
wastewater will be used to remove other pollutants (nitrogen compounds). In addition, investment
costs (airports very often have retention tanks for rainwater and snowmelt) and especially operational
costs of the proposed solution will be low, compared to the other biological and physicochemical
processes. Easiness of exploitation resulting from uncomplicated operations (mixing wastewater,
dosing wastewater to biofilters) as well as technological and technical reliability of the system are also
important in its implementation at airports, especially those located far from large population centers
and without access to technologically-qualified staff.

When designing the management strategy for rainwater containing de-icing agents,
a multi-chamber retention and equalization tank should be provided at the end of the sewage
system collecting rainwater and snowmelt from the airport area, whose task will be to equalize
wastewater composition and to evenly distribute in time the stream of wastewater supplied to
pre-treatment facilities and discharges to the municipal sewage network (Figure 5) [29]. It can be
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expected that, in certain situations, such a tank will provide ammonia nitrogen concentration in the
outflow below the permissible values (100 or 200 mg NNH4/L, respectively) due to the equalization of
wastewater composition.
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Figure 5. Scheme of a system for managing rainwater and snowmelt water containing de-icing agents
from airport surfaces.

Regardless of receiver type (surface water, soil, or sewage system), the technological system of the
proposed treatment plant (pre-treatment plant) should consist of a set of biofilters and a pump system
enabling the control of the frequency and volume of wastewater doses fed to the biofilters (Figure 3).
A single biofilter—a bioreactor in the form of a trickling/flooded filter with vertical wastewater
flow—will be equipped with sprinklers responsible for even distribution of wastewater, ensuring the
proper loading of biofilter surface with pollutants and the proper hydraulic loading. The sprinkler
pump will be run periodically. Wastewater flowing through the bed’s filling will undergo a treatment
process and then will reach the bottom zone, where under drains and bottom of the biofilter there
will be a collecting drainage, which will drain the wastewater to a control well and then to a natural
receiver or to the sewage system.

Biofilter surface, frequency of wastewater supply to biofilters, C/N value, and wastewater dose
will be established based on the surface of areas where de-icing agents are or will be used, their
chemical composition, and accepted practices of using such substances resulting, inter alia, from
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meteorological conditions and industry regulations regarding the taxiway and runway maintenance
and airport standards. The starting point for adjusting biofilter operating parameters is the assumption
that it is possible to effectively remove pollutants from wastewater at low temperatures, with specified
parameters of crude wastewater, at a C/N ratio of 0.5 gC/gN [14]. The laboratory investigation results
show that the hydraulic loading could be up to 5.0 L/m2

·d [19].
The proposed method for the treatment of wastewater generated during airport de-icing, consisting

of its treatment in biofilters, is a promising solution for airports located in these climate zones, where
their operation at low temperatures depends on the use of de-icing agents. The condition conducive to
the effective operation of biofilters in relation to ammonia nitrogen, whose presence in wastewater
results from the use of urea as a means for winter maintenance of airport surfaces, is the use of
agents containing organic compounds, such as sodium acetate and formate in a solid or liquid form.
The inclusion in the wastewater treatment system of a multi-chamber retention and expansion tank
equipped with agitators and pumps, enabling sewage to be pumped between chambers, will ensure
the possibility of mixing wastewater of varying quality due to the use of various de-icing agents. As a
consequence, it will facilitate controlling the composition of wastewater fed to biofilters. The tank
should contain chambers for collecting wastewater containing organic compounds, chambers for
wastewater generated during the use of urea, chambers for collecting wastewater resulting from the
simultaneous use of urea and organic compounds for de-icing, and at least one chamber in which
wastewater from individual chambers will be mixed to obtain the appropriate ratio between carbon
and nitrogen compounds (C/N ratio).

This system can also be used to treat wastewater from de-icing airport surfaces containing only
organic compounds. Those that are commonly used for de-icing are highly biodegradable. They will
be removed and used by heterotrophic organisms, but they will not be a source of carbon in the
heterotrophic denitrification process, because this process will not take place in the biofilter due to the
small amounts of nitrogen in the wastewater being treated. In this situation, it is necessary to equip the
chambers not only with agitators but also with aeration devices.

At airports generating wastewater with a lower concentration of pollutants, it is possible to reduce
investment costs by using a simplified system—without a retention tank. Then, the construction of
ground filters with a subsurface mixed flow of wastewater around airports—directly at the border of
concrete surfaces, can be a solution that will allow a further reduction in investment costs due to no
need for establishing systems to collect polluted waters and discharging them to the treatment site.
The initial vertical flow will allow achieving good conditions for the oxidation of organic matter, because
the diffusion of atmospheric oxygen to deeper layers will be high [3,26]. Then, the horizontal flow
(wastewater retention) will provide conditions appropriate for the denitrification process. Finally, the
subsurface flow will prevent development of conditions promoting the nesting of birds, whose presence
at airports is undesirable.

6. Conclusions

The need for wastewater treatment arising from the use of agents for de-icing airport surfaces is
due to the severity of environmental hazards posed by its discharge into surface waters, soil, and ground
waters. Based on results of a previous author’s research, the treatment system for wastewater was
proposed. It consists of a retention and equalization multi-chamber tank equipped with stirrers and
aerating devices, a pumping station, and biofilters filled with FASST LWA granulate. It is an example
of a ‘flexible’ rainwater management system, i.e., the one in which, during the period when de-icing
agents are not used, rainwater is discharged into the storm water drainage system, water, or soil. In
turn, after de-icing agent application, rainwater in the form of wastewater should be, where possible,
discharged into the sanitary sewage system or the general sewage system of a city the airport is located
in. In the case, when it is necessary to design a system with a wastewater treatment plant, it should
operate based on biofilters filled with FASST LWA. The basic assumption for biofilter dimensioning is
that it is possible to effectively remove pollutants from wastewater at low temperatures, with specified
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parameters of treated wastewater. A properly equipped (agitators, pumps) multi-chamber retention
tank enables sewage to be pumped between chambers and ensures the possibility of mixing wastewater
of varying quality due to the use of various de-icing agents. As a consequence, it will facilitate
controlling the composition of wastewater fed to biofilters and the contaminant removal efficiency of
the final system. This system can be used to treat wastewater from de-icing airport surfaces containing
urea and organic compounds or only the last ones.

The treatment of wastewater containing runway de-icing agents in biofilters is an example of
good practice in airport environment management.
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