
sustainability

Article

First Report of the Dinoflagellate Genus Effrenium
in the East Sea of Korea: Morphological, Genetic,
and Fatty Acid Characteristics
Nam Seon Kang 1, Eun Song Kim 1, Jung A Lee 1, Kyeong Mi Kim 1, Min Seok Kwak 1,
Moongeun Yoon 1 and Ji Won Hong 2,*

1 Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon 33662,
Korea; kang3610@mabik.re.kr (N.S.K.); kes2523@mabik.re.kr (E.S.K.); jung@mabik.re.kr (J.A.L.);
kmkim@mabik.re.kr (K.M.K.); poohaxx@mabik.re.kr (M.S.K.); mgyoon@mabik.re.kr (M.Y.)

2 Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Korea
* Correspondence: jwhong@knu.ac.kr; Tel.: +82-(0)53-950-4578; Fax: +82-(0)53-950-3889

Received: 22 March 2020; Accepted: 7 May 2020; Published: 11 May 2020
����������
�������

Abstract: Most species in the family Symbiodiniaceae are symbiotic partners to invertebrate and
protist hosts, but a few live freely in water columns. Here, a free-living dinoflagellate was isolated
from the waters off the Dokdo Islands in the East Sea of Korea. Morphological and molecular analyses
show this isolate belongs to Effrenium voratum. Prior to the present study, E. voratum had been
reported to live in the waters in the temperate latitudes in the western North Pacific, the southwest
Western Pacific, the eastern North Pacific, the eastern Atlantic, and the Mediterranean Sea. To our
knowledge, this is the highest latitude in the western North Pacific, where E. voratum has been
reported. This report extends the known range of this dinoflagellate to the temperate waters of the
western North Pacific Ocean. The sequence of the D1/D2 region of the large subunit ribosomal DNA
(LSU rDNA) was identical to E. voratum found in Jeju Island, Korea, Tsushima Island, Japan, and Cook
Strait, New Zealand, suggesting this species is cosmopolitan. However, it was different by 1 bp from
those found in Blanes, Spain and Santa Barbara, USA. In the phylogenetic tree built on the basis of
the LSU (D1-D2) rDNA region sequences, this dinoflagellate was clustered within a clade, including
all the other E. voratum strains. Morphological characteristics were like those of strains found in the
waters of Jeju Island. This is the first report conducted on the fatty acid profile of fully characterized
E. voratum. Importantly, the isolate possessed a high ratio of long-chain omega-3 polyunsaturated
fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) relative to
total lipid. This dinoflagellate could be a candidate for commercial applications, such as aquaculture
feed and essential omega-3 PUFA productions.
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1. Introduction

Dinoflagellates are ubiquitous protists that can be found in almost every conceivable marine
environment [1]. Recently, they have drawn increasing attention from both the scientific and public
communities because of the following reasons: Some dinoflagellates form red tides and/or harmful
algal blooms, which often cause large-scale mortality of fish [2], they play indispensable ecological
roles in marine plankton communities, serving as prey for a variety of predators and as a predator on
diverse microorganisms [3], some dinoflagellates are used as various biological resources and they are
also treated as one of the most promising bio-resources for new high-value products [4–6]. In particular,
dinoflagellates are known to be rich in long-chain omega-3 PUFAs, such as EPA (C20:5 n-3) and DHA
(C22:6 n-3) [7–9]. Thus, the amount and composition of omega-3 PUFAs from dinoflagellates in the
phytoplankton community are strongly intertwined with higher trophic levels, eventually affecting
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the nutritional values of higher-order consumers [7,10,11]. Therefore, to better understand the role of
dinoflagellates in the marine ecosystems and their potential commercial applications, the establishment
of a clonal culture is a critical first step for accurate identification of an isolate of interest.

The family Symbiodiniaceae (Order Suessiales) comprises symbiotic dinoflagellates, most of
which are symbiotic with invertebrate and protist hosts [12–17], even though some species exist
as free-living forms [18]. These dinoflagellates are vital components of the coral reef ecosystems,
and they are promising resources in the production of valuable pigments [19] and toxin compounds,
such as zooxanthella toxins [20]. Despite their ecological and economic importance in the marine
ecosystems and biotechnology, little information is available on their taxonomy. This is due to, in part,
the difficulties in culturing and making morphological observations, which must be done by scanning
electron and transmission electron microscopy (SEM and TEM). Therefore, their roles as essential
components of the marine ecosystems and their potential for biotechnology are often overlooked.
Accurate identification and establishment of a clonal culture of these dinoflagellates are essential for
further research and commercial application.

The systematics of Symbiodiniaceae was revised, and distinct clades within the family were
reassigned into seven genera in 2018 [21]. Symbiodinium voratum was first described and named
by Jeong et al. [18], it was renamed as Effrenium voratum by LaJeunesse et al. [21]. This is the only
taxonomically accepted species in the genus Effrenium [21]. E. voratum is found in the Pacific and
Atlantic Oceans, and it grows at sub-tropical and temperate latitudes [18,21–24]. Jeong et al. [18]
reported the Korean E. voratum strains that had been isolated from waters off Jeju Island. However, no
additional documentation of E. voratum colonies in Korean water have been reported.

In this study, we isolated and identified a unicellular dinoflagellate E. voratum from seawater off

the Dokdo Islands, Dokdo-ri, Ulleung-eup, Ulleung-gun, Gyeongsangbuk-do, Korea. The present
report provides information about the morphological, molecular, and chemotaxonomic features on the
first record of this species living in the East Sea of Korea.

2. Materials and Methods

2.1. Sample Collection and Isolation

Plankton samples from the Dokdo Islands in the East Sea of Korea (37.240486 N, 131.870853 E),
were collected using a water sampler during September 2016, when the water conditions were 24 ◦C
and 35 practical salinity unit (PSU), respectively (Table 1, Figure 1). The samples were gently filtered
through a 154 µm Nitex mesh and placed in six-well tissue culture plates. A clonal culture of E. voratum
was established by using two serial single-cell isolations. Polycarbonate (PC) bottles containing f/2
medium (AusAqua, Wallaroo, SA, Australia) and isolated E. voratum cells were filled with filtered
seawater, capped, and incubated at 20 ◦C, under illumination by cool white fluorescent lights at
approximately 20 µmol photons m−2 s−1 in a 14:10 h light-dark cycle. As the concentration of E. voratum
increased, the cells were transferred to 50, 125, and 500 mL PC bottles containing fresh f/2 media. Once
dense cultures of E. voratum were obtained, they were transferred approximately every four weeks to
new 500 mL PC bottles filled with fresh f/2 media. When sufficient volumes of E. voratum culture were
available, genomic DNA was extracted, and the DNA sequence of the cultured cells was analyzed.
After genetic identification, the morphology and cellular fatty acid composition of the dinoflagellate
were examined. For morphological and fatty acid analyses, cells were collected in the exponential
growth phase.

Table 1. Strain, location of the collection (LC), water temperature (T, ◦C), salinity (S, PSU), and GenBank
accession number (GBAN) for rDNA sequences of E. voratum MABIKLP88 isolated from the Dokdo
Islands, in the East Sea of Korea.

Species Strain LC Date T S GBAN

E. voratum MABIKLP88 Dokdo Islands September 2016 24 35 MN904916
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Figure 1. Location of the sampling site in the coastal area of the Dokdo Islands, Korea. The large map
template was taken from the Ocean Data View, and the small map was generated from Google Earth.

2.2. Morphological Identification

An inverted microscope was used to examine the morphology of photosynthetically grown
living cells. The length and width of the live cells were measured with the aid of a digital camera
(Zeiss AxioCam MRc5; Carl Zeiss, Göttingen, Germany). For SEM, 10 mL aliquots of cultures at
~1000 cells mL−1 were fixed for 10 min in osmium tetroxide (OsO4; Electron Microscopy Sciences,
EMS hereafter, Hatfield, PA, USA) at a final concentration of 2% (v/v) in seawater. Fixed cells were
collected on a 3 µm pore-sized PC membrane filter without additional pressure and rinsed three
times with distilled water to remove residual salts. Cells were dehydrated in an ethanol series (Merck,
Darmstadt, Germany) and dried using a critical point dryer (CPD 300, Bal-Tec, Balzers, Liechtenstein).
The dried filters were mounted on a stub and coated with gold-palladium in a sputter coater (SCD 005;
Bal-Tec). Cells were viewed with an FE-SEM (S-4800; Hitachi, Hitachinaka, Japan). For TEM, cells from a
dense culture were transferred to a 10 mL tube and fixed in 2.5% (v/v) glutaraldehyde (final concentration,
EMS) in a culture medium. After 1.5–2 h, the contents of the tube were placed in a 10 mL centrifuge
tube and concentrated at 1610× g for 10 min in a Vision Centrifuge VS-5500 (Vision Scientific, Bucheon,
Korea). The pellet was transferred to a 1.5 mL tube and rinsed in 0.2 M sodium cacodylate buffer
(EMS) at pH 7.4. After several rinses in the buffer, cells were post-fixed for 1.5 h in 1% (w/v) OsO4 in
deionized water. The pellet was embedded in agar (EMS) and dehydrated in a graded ethanol series
(50%, 60%, 70%, 80%, 90%, and 100% ethanol, followed by two changes in 100% ethanol). The material
was embedded in Spurr’s low-viscosity resin (Low Viscosity Embedding Media Spurr’s Kit; EMS).
Sections were prepared on an RMC MT-XL ultramicrotome (Boeckeler Instruments, Tucson, AZ, USA)
and stained using 3% (w/v) aqueous uranyl acetate (EMS) followed by lead citrate (EMS). The sections
were viewed using a JEOL-1010 TEM (Tokyo, Japan).

2.3. Molecular Identification

For molecular analysis, approximately 10 mL of a dense E. voratum culture was concentrated by
centrifugation at 2190× g for 15 min at room temperature, and the pellet was used for genomic DNA
extraction. The DNA extraction, including the amplification of the LSU rDNA, PCR reaction, sequencing,
and alignment of DNA sequences, were performed as previously reported by Kang et al. [25]. The
primers that were used to amplify the LSU region of rDNA are reported in Table 2.
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Table 2. Oligonucleotide primers and sequences used in this study to amplify the LSU region of rDNA
of E. voratum.

Primer Name Amplifies Sequence (5′-3′) Reference

Forward primer D1R LSU rDNA ACC CGC TGA ATT TAA GCA TA [26]

Reverse primer LSUB LSU rDNA ACG AAC GAT TTG CAC GTC AG [27]

Alignments, phylogenetic, and molecular evolutionary analyses of the D1-D2 LSU rDNA sequences
were performed using MEGA v.4 [28] and Clustal X2 [29], with diverse assemblages using available
data in the National Center for Biotechnology Information (NCBI) GenBank database, for other species.
Bayesian analyses were performed using MrBayes v.3.1 [30,31] with the default GTR + G + I model,
to determine the best model for the data in each region. For all sequence regions, four independent
Markov Chain Monte Carlo (MCMC) runs were performed, as described by Kang et al. [32]. Maximum
likelihood (ML) analyses were conducted using the RAxML 7.0.3 program [33]. We allowed for
200 independent free inferences and used the -# option to identify the best tree. Bootstrap values were
calculated using 1000 replicates under the same substitution model.

2.4. Fatty acid Composition Analysis

Lipid extraction was carried out using the modified Bligh-Dyer method developed by
Breuer et al. [34]. Fatty acid methyl ester (FAME) composition was analyzed using a 7890A gas
chromatograph, equipped with a 5975C mass selective detector (Agilent, Santa Clara, CA, USA), based
on our previous publication [35]. Compound identification was completed by matching the mass
spectra with those in the Wiley/NBS registry of mass spectral data, searches with a match value higher
than 90% were valid.

3. Results

Mastigote, coccoid, and doublet cells occurred in all cultures examined under light microscopy,
and they appeared to be like one another (Figure 2A–C). Motile cells of E. voratum were
mushroomed-shaped with the hemispherical episome slightly larger than the hemispherical hyposome
(Figure 2A). The nucleus was in the episome (Figure 2A). The ranges (mean ± standard error, n = 30) of
the living cell length and width were 9.42–15.6 µm (12 ± 0.2) and 7.08–11.9 µm (9.7 ± 0.2), respectively
(Table 3). The ratios of the cell length to the width (mean ± standard error, n = 30) ranged from 1.12 to
1.4 (1.2 ± 0.01). When observed under SEM, fixed cells were slightly smaller than unfixed cells. The cell
length under SEM had a range of 7.3–12.7 µm (9.6 ± 0.2) and the width had a range of 5.52–11.4 µm
(7.7 ± 0.2), respectively (Table 3). The ratio of the length to the width under SEM had a range of
0.83–1.4 µm (1.2 ± 0.02) (Table 3).

Figure 2. Light micrographs of the mastigote (motile), coccoid (spherical), and doublet (dividing) cells
from E. voratum. (A) E. voratum mastigote, nucleus (N). (B) E. voratum coccoid. (C) E. voratum doublet.
Scale bars: A–C = 10 µm.
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Table 3. Morphological comparisons of mastigotes from strains MABIKLP88, SvFL 1, and CCMP421.

Mastigote Character Traits MABIKLP88 SvFL 1 CCMP421

Strain locality Dokdo Islands, Korea Jeju Island, Korea Cook Strait,
New Zealand

Shape in ventral view Mushroom Mushroom Mushroom
AP length (µm; living cells) 9.42–15.6 (12) 10.8–16.2 (13.1) 10.1–17.1 (12.8)
Cell width (µm; living cells) 7.08–11.9 (9.7) 7.8–11.5 (9.5) 8.1–14.4 (10.3)
Ratio of length to width (living cells) 1.12–1.4 (1.2) 1.1–1.8 (1.4) 1.2–1.3 (1.2)
AP length (µm; SEM) 7.3–12.7 (9.6) 8.5–12.4 (10.5) 7.0–13.0 (11.7)
Cell width (µm; SEM) 5.52–11.4 (7.7) 6.4–9.8 (8.2) 5.8–10.9 (9.2)
Ratio of length to width (SEM) 0.83–1.4 (1.2) 1.2–1.4 (1.3) 1.2–1.4 (1.3)
EAV length (µm) 1.71–2.72 (2.25) 1.75–3.09 (2.45) 1.98–3.19 (2.64)
EAV width (µm) 0.15–0.26 (0.21) 0.15–0.27 (0.2) 0.18–0.29 (0.22)
Numbers of aligned knobs on EAV 11–12 9–13 9–13
Cingulum displaced by cell length 0.11–0.26 (0.18) 0.13–0.21 (0.15) 0.10–0.19 (0.15)
Cingulum displaced by cell width 0.49–0.80 (0.62) 0.48–0.85 (0.65) 0.55–1.10 (0.78)
Numbers of cingular plates 17–20 17–20 17–20
Numbers of sulcal plates 9 9 9
Numbers of apical plates 5 5 5
Numbers of intercalary plates 5 5 5
Numbers of precingular plates 8 8 8
Numbers of postcingular plates 6 6 6
Numbers of antapical plates 2 2 2
Existence of eyespot type E Yes Yes Yes

Plate formula x, EAV, 5′, 5a, 8′′, 9s,
17–20c, 6′′′, 2′′′′, PE

x, EAV, 5′, 5a, 8′′, 9s,
17–20c, 6′′′, 2′′′′, PE

x, EAV, 5′, 5a, 8′′, 9s,
17–20c, 6′′′, 2′′′′, PE

Reference This study [18] [18]

Mean values are shown in parentheses. AP = anteroposterior; EAV = elongated amphiesmal vesicle, PE = peduncle.

Mastigote, coccoid, and doublet cells were present in all cultures under SEM observation (Figures 3
and 4). Mastigotes possessed a well-formed peduncle (PE) extending near the base of the longitudinal
(LF) and transverse flagella (TF) (Figure 3B). The Kofoidian plate formula of E. voratum cells was x,
elongated amphiesmal vesicle (EAV), 5′, 5a, 8′′, 9s, two cingulum rows 17-20c, 6′′′, and 2′′′′ (Table 3,
Figure 4). At the cell’s apex, the EAV possessed 11–12 aligned knobs, and the length had a range of
1.71–2.72µm (2.25± 0.11) and the width had a range of 0.15–0.26µm (0.21± 0.01) (Table 3). This structure
was bordered ventrally, by the x plate and surrounded by four apical amphiesmal plates (2′, 3′, 4′,
and 5′ plates; Figure 4E,F). The rhomboid-shaped 1′ plate was relatively large and the quadrangular 2′

plate was relatively small (Figure 4E). The pentagonal 3′ plate touched the 2′, 4′, 1a, and 2a plates and
the pentagonal 4′ plate touched the 3′, 5′, 2a, 3a, and 4a (Figure 4C,E,F). The pentagonal 5′ plate touched
the x, 4′, 4a, and 5a plates (Figure 4C,E,F). Eight pre-cingular plates were present (Figure 4A–E). The 1′′,
4′′, and 6′′ plates were quadrangular, while the 2′′, 3′′, 5′′, 7′′, and 8′′ were pentagonal. In addition, five
intercalary plates were observed (Figure 4A–F). Cells of E. voratum had a wide cingulum comprising
of two rows of pentagonal amphiesmal plates (Figure 4A–D). Cells contained 17–20 cingular plates
(Table 3). The cingulum of E. voratum was displaced by ~0.1–0.3 times the cell length and by ~0.5–0.8
times the cingular width (Table 3, Figure 4A). The cells of E. voratum contained six post-cingular plates
(Figure 4G). Except for the pentagonal 3”′ plate, all post-cingular plates were quadrangular (Figure 4G).
Two antapical plates were present in the cells of E. voratum (Figure 4G). The 2′′′′ plates in most cells
were hexagonal, and they touched the 3′′′, 4′′′, 5′′′, 6′′′, and 1′′′′ plates and the posterior sulcal plate
(S.p.) (Figure 4A,G).
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Figure 3. Scanning electron micrographs of E. voratum cells. (A) Various shapes and sizes of E. voratum.
(B) Ventral view showing the rounded conical episome and the ellipsoid hyposome, and longitudinal
flagellum (LF), peduncle (PE), and transverse flagellum (TF). Scale bars: A = 50 µm, B = 2 µm.

Figure 4. Scanning electron micrographs of E. voratum. (A) Ventral view showing the episome, cingulum
(C), sulcal plates (s) and hyposome. (B) Ventral-left lateral view showing the episome, cingulum (C),
and hyposome. (C) Dorsal view showing the episome, cingulum (C) and hyposome. (D) Ventral-right
lateral view showing the episome, cingulum (C) and hyposome. (E) Apical view showing the episome
and elongated amphiesmal vesicle (EAV) plate. (F)Apical view showing the EAV plate with small
knobs (arrows). (G) Antapical view showing the hyposome. (H) E. voratum coccoid. (I) E. voratum
doublet. Scale bars: A–I = 1 µm.

Mastigote, coccoid, and doublet cells were observed in all cultures under TEM (Figure 5).
Thin sections for TEM showed the main features of the cell, including the chloroplasts (C), eyespot (ES),
lipids (L), mitochondria (M), nucleus (N), pyrenoids (PY), and starch (S) (Figure 5). Many chloroplasts
were observed along the cell periphery (Figure 5A,B). A single pyrenoid located toward the central
part of each cell was connected by two stalks to the adjacent chloroplast, and surrounded by a
distinct polysaccharide cap (Figure 5A,B). Eyespots composed of several flattened vesicles or cisternae
containing electron translucent brick-shaped structures were observed near the surface of the cell
(Figure 5B,C). An eyespot (type E), composed of multiple layers of rectangular electron-translucent
vesicles or crystalline deposits, was observed in sectioned mastigote cells (Figure 5B,C).

When properly aligned, the sequence of LSU rDNA of E. voratum MABIKLP88 (NCBI GenBank
accession number MN904916, Dokdo Island, Korea), was identical to E. voratum strains SVFL 1
(Jeju Island, Korea), TSP-C2-Sy (Tsushima Island, Japan), and CCMP 421 (Cook Strait, New Zealand);
while E. voratum strains RCC 1521 (Blanes, Spain) and rt-383 (Santa Barbara, CA, USA) have a
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single-base substitution in LSU compared to strain MABIKLP88 (Table 4). In the phylogenetic tree
based on the LSU rDNA sequences, the phylogenetic diversity was presently divided into seven
distinct monophyletic groups (clades A-G). The Effrenium clade E was phylogenetically basal of clade B,
C, D, F, and G (Figure 6). In addition, E. voratum strain MABIKLP88 formed a big clade (i.e., Effrenium
clade E) with strains SVIC1, SVFL1-6, TSP-C2-Sy, CCMP 421, RCC 1521, and rt-383 (Figure 6).

The major FAME profile of the isolate was C16:0 (22.1%), C18:4 n-3 (15.2%), C20:5 n-3 (10.9%),
and C22:6 n-3 (25.4%) (Table 5). Trace amounts of saturated fatty acids (SFAs, C12:0, 0.6%; C14:0, 3.5%;
C15:0, 0.3%; C18:0, 0.7%), unsaturated fatty acids (C16:1 n-7, 9.3%; C16:2 n-4, 0.4%; C18:1 n-9, 3.3%; C18:2

n-6, 0.6%; C18:3 n-6, 0.9%; C18:3 n-3, 0.3%), and unidentified fatty acids (6.5%), were detected (Table 5).

Table 4. Comparison of LSU rDNA sequence of E. voratum MABIKLP88 isolated from the Dokdo
Islands, in the East Sea of Korea and other strains. The numbers indicate the number of base pairs that
differ between strains. The numbers in parentheses indicate dissimilarity (%), including gaps.

Collection Location Strain GenBank Accession No. E. voratum MABIKLP88

Jeju Island, Korea

SVIC1 HE653239 0 (0)
SVFL1 HF568830 0 (0)
SVFL2 HF568831 0 (0)
SVFL3 HF568832 0 (0)
SVFL4 HF568833 0 (0)
SVFL5 HF568834 0 (0)
SVFL6 HF568835 0 (0)

Tsushima Island, Japan TSP-C2-Sy KF364604 0 (0)
Cook Strait, New Zealand CCMP421 KF364603 0 (0)

Blanes, Spain RCC1521 KF364606 1 (0.2)
Santa Barbara, CA, USA rt-383 KF364605 1 (0.2)

Table 5. Lipid profile of strain MABIKLP88.

Component Content (%) Note

Lauric acid (C12:0) 0.6
Myristic acid (C14:0) 3.5
Pentadecanoic acid (C15:0) 0.3
Palmitic acid (C16:0) 22.1 SFA (major)
Palmitoleic acid (C16:1 n-7) 9.3
Hexadecadienoic acid (C16:2 n-4) 0.4
Stearic acid (C18:0) 0.7
Oleic acid (C18:1 n-9) 3.3
Linoleic acid (C18:2 n-6) 0.6
g-linolenic acid (C18:3 n-6) 0.9
α-linolenic acid (C18:3 n-3) 0.3
Stearidonic acid (C18:4 n-3) 15.2 Omega-3 PFUA (major)
Eicosapentaenoic acid (C20:5 n-3) 10.9 Omega-3 PFUA (major)
Docosahexaenoic acid (C22:6 n-3) 25.4 Omega-3 PFUA (major)

Unidentified 6.5
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Figure 5. Transmission electron micrographs of E. voratum cells. (A) A transverse section of a mastigote
cell from E. voratum showing the position of the pyrenoid (PY) in the middle of the cell, the chloroplasts
(C), lipid globules (L), mitochondria (M), nucleus (N), and starch (S). (B) A magnified view of the type
E eyespot (ES) composed of multiple layers of rectangular electron-translucent vesicles, or crystalline
deposits. (C) TEM figure enlarged from Figure B, showing the type E eyespot. (D) E. voratum coccoid.
Micrograph showing a chloroplast (C), lipid globules (L), and starch (S). (E) E. voratum doublet.
Micrograph showing a chloroplast (C) and nucleus (N). Scale bars: A, B, D, E = 2 µm, C = 0.5 µm.



Sustainability 2020, 12, 3928 9 of 16

Figure 6. Consensus Bayesian tree based on 558 aligned positions of the D1/D2 region of the nuclear LSU rDNA using the GTR + G + I model with Pelagodinium bei as
an outgroup. The parameters were: Assumed equal nucleotide frequency; substitution rate matrix with A–C substitutions = 0.0542, A–G = 0.2259, A–T = 0.0676,
C–G = 0.0381, C–T = 0.5258, G–T = 0.0881, proportion of sites assumed to be invariable = 0.2495 and rates for variable sites assumed to follow a Gamma distribution
with shape parameter = 1.5860. The branch lengths are proportional to the amount of character changes. The numbers above the branches show the Bayesian posterior
probability (left) and ML bootstrap values (right). Posterior probabilities ≥ 0.5 are shown.
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4. Discussion

The key for differentiating families in the order Suessiales [36] is the morphology of the apical
furrow: Species in the family Tovelliaceae have an apical line of narrow plates (ALP), species in
the family Borghiellaceae have a pair of elongated anterior vesicles (PEV), and species in the family
Symbiodinaceae have a single EAV [37]. All Symbiodinaceae contain a type E eyespot next to the
sulcus groove of the motile cell. The motile stage (mastigote) has only seven latitudinal series of
amphiesmal vesicles [21]. Strain MABIKLP88 had the EAV, type E eyespot, and seven latitudinal series
of amphiesmal vesicles, these morphologies fit the criteria for the family Symbiodinaceae.

The morphological features of this isolate resembled those of the strain SvFL 1 and CCMP421
because it had a type E eyespot, a peduncle, two-stalked pyrenoid, peripheral chloroplasts, and a
Kofoidian series of the small plate (x), the EAV, 5′, 5a, 8′′, 9s, 17-20c, 6′′′, and 2′′′′ (Table 3). The length
and the width of living E. voratum MABIKLP88 cells were 9.42–15.6 µm and 7.08–11.9 µm, respectively.
The sequence of the D1/D2 region of LSU rDNA was also identical to those of strains SvFL 1 and
CCMP421 (Table 4). Although these E. voratum strains were isolated from distinct sites (the Dokdo
Islands in Korea, Jeju Island in Korea, and Cook Strait in New Zealand), they all share the typical
morphologies of E. voratum and identical LSU rDNA sequences. Thus, this newly isolated Korean
strain could serve as a good example of a cosmopolite species found in different oceans. The length
and width of living cells of the E. voratum MABIKLP88 (9.42-15.6 µm and 7.08-11.9 µm, respectively)
were comparable to those of other strains of E. voratum reported at 10.1–17.1 µm and 7.8–14.4 µm,
respectively (Table 3). In SEM micrographs of cells, the width and EAV length of the E. voratum
MABIKLP88 (5.52–11.4 µm and 1.71–2.72 µm, respectively) were also similar to those of other strains
of E. voratum (5.8–10.9 µm and 1.75–3.19 µm, respectively) (Table 3). The ratio of cell length to the
width of the E. voratum MABIKLP88 (0.83–1.4) was comparable to those of other strains of E. voratum
(1.2–1.4) (Table 3). The ratio of cingulum displacement to cell length of the E. voratum MABIKLP88
(0.11–0.26) was similar to those of other strains of E. voratum (0.1–0.21) (Table 3). Therefore, our report
provides new information on the extended ranges of cell length, cell width, EAV length, the ratio of cell
length to cell width, and the ratio of cingulum displacement to cell length in E. voratum. These results
showed more variability on the measured morphological traits of the species than previously reported
E. voratum strains.

The sequence of the D1/D2 region of LSU rDNA was identical to the of the E. voratum strains located
in the waters off the Jeju Island of Korea, Tsushima Island of Japan, and Cook Strait of New Zealand.
Our phylogenetic analysis confirmed that the strain MABIKLP88 belonged to E. voratum (Table 4,
Figure 6). Molecular phylogeny results from the LSU rDNA sequences supported the morphological
identification by forming a well-supported clade, including the sequences from the original description.

Prior to the present study, E. voratum had been reported to live in waters in the temperate
latitudes in the western North Pacific, the southwest Western Pacific, the eastern North Pacific, the
eastern Atlantic, and the Mediterranean Sea [18,21–24,38–40]. E. voratum appears to be distributed
across high sub-tropical and low temperate latitudes. E. voratum is cold-water-adapted and may
tolerate temperatures as low as 10–12 ◦C. This is supported by physiological measurements taken on
culture rt-383, which showed that this strain grew optimally at 15–20 ◦C, but also grew at 12 ◦C and
28 ◦C [41]. This wide temperature range tolerance may enable E. voratum to survive in a wide variety of
oceanic environments around the world (Figure 7). Additional physiological tests on rt-383 and other
E. voratum strains are needed to elucidate their thermal tolerance. In addition, the maximal growth
of strain MABIKLP88 was obtained at 22–28 ◦C and 300–700 µmol photons m−2 s−1 (unpublished
data). Moreover, E. voratum has an ability to feed on bacteria and other macroalgae, proving a possible
survival strategy for Effrenium to persist in nutrient-poor conditions [39].

It seems that this wide temperature range tolerance of the species, coupled with tolerance to high
light intensities and mixotrophic ability, attributed to E. voratum’s survival and presence in a wide
variety of oceanic environments around the world. Thus, this newly isolated Korean strain could
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serve as a good example of a candidate for cosmopolite species in high sub-tropical and low temperate
latitudes. Exploration of this dinoflagellate’s distribution in greater detail would be worthwhile.

As shown in Figure 7, E. voratum strains are present in many locations, and the current report
further describes the occurrence of E. voratum in the western North Pacific Ocean (Table 6, Figure 7).
The latitude of the Dokdo Islands, where strain MABIKLP88 was isolated, is 37.2 N. The locations
where additional stains of the western North Pacific have been reported range from 22.5 N to 36.0 N
(Table 6). To date, the waters around the Dokdo Islands are the highest latitude in the western North
Pacific, where E. voratum has been found. The findings in this report expand upon the understanding
of the geographic distribution of E. voratum in the western North Pacific. It may also show that climate
changes caused by global warming have taken place in the oceans around the Korean Peninsula since
the Dokdo Islands are located at the front between the warm Kuroshio and the cold Kuril currents.

Figure 7. The global distribution of E. voratum. The dark circles refer to previous [18,21–24,38–40],
while the dark star indicates our MABIKLP88 strain of E. voratum.

Table 6. Strains of E. voratum isolated from locations in the western North Pacific Ocean.

Culture Collection Region LC Latitude Longitude Reference

MABIKLP88 Western North Pacific Dokdo Islands,
South Korea 37.240486 N 131.870853 E This study

SvIC 1 Western North Pacific Jeju Island,
South Korea 33.276667 N 126.170556 E [39]

SvFL 1 Western North Pacific Jeju Island,
South Korea 33.468611 N 126.324444 E [39]

SvFL 2–5 Western North Pacific Jeju Island,
South Korea 33.277778 N 126.719067 E [39]

SvFL 6 Western North Pacific Jeju Island,
South Korea 33.276667 N 126.170556 E [18]

MJa-B6-Sy Western North Pacific Muroto Cape,
Kochi, Japan 33.25 N 134.166667 W [24]

TSP-C2-Sy Western North Pacific

Tsushima
Island,
Nagasaki,
Japan

34.183333 N 129.283333 E [24]

- Western North Pacific Jiaozhou Bay,
China 36.02575 N 120.290231 E [38]

- Western North Pacific Zhujiang River
estuary, China 22.483333 N 113.75 E [40]
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Analysis of the cellular fatty acid composition of the strain MABIKLP88 revealed that it was rich
in C16:0 (22.1%), SFA and C18:4 n-3 (15.2%), C20:5 n-3 (10.9%), and C22:6 n-3 (25.4%) PUFAs. The fatty
acid profile of different dinoflagellate species has been extensively studied in order to find valuable
strains with high potentials for commercial applications [7,8,42–46]. The profile has also been used as a
general chemotaxonomic guide to defining a variety of taxonomic groups since different microalgal
groups show distinct fatty acid distributions [44,47,48]. In particular, the C18 fatty acids and >C20

PUFAs are generally regarded as the signature fatty acids for dinoflagellates [8,48]. In this study,
E. voratum MABIKLP88 was found to be rich in the C18 fatty acid, EPA, and DHA. It has also been
reported that dinoflagellates typically have higher DHA than EPA concentrations [7–9], and the
isolate exhibited much higher DHA (25.4%) content than EPA (10.9%). Several previous studies have
shown that the essential omega-3 PUFAs have a variety of beneficial health effects [49]. Importantly,
EPA and DHA, which are known essential omega-3 fatty acids, have been reported to be beneficial to
human health [50,51]. Most of the omega-3 PUFAs come from marine sources, such as fish oils and
a variety of commercial products that are available worldwide. Using marine fish as a sustainable
and safe resource of omega-3 is in question because of global climate change, overfishing issues, and
the increasing levels of environmental pollutants, such as heavy metals and radioactive materials
found in the ocean [52,53]. Some marine protists have high contents of EPA and/or DHA [6,54–57].
Therefore, this marine microalga may have the potential to be a clean and sustainable omega-3 source
alternative to fish-based oil. On the other hand, an excessive intake of omega-6 causes negative health
outcomes [58,59], even though both omega-3 and omega-6 PUFAs are essential, and they are required
for many biological processes. Due to the ever-growing demands for food, the fish farming industry
has rapidly expanded over the last few decades and aquaculture now accounts for over 50% of the fish
consumed worldwide [60]. This has caused further shortage of wild fish as feed at fish farms, and thus,
fish oil in the aquaculture feed has been increasingly replaced by terrestrial vegetable oils that normally
lack EPA and DHA, but often contain high levels of omega-6 PUFAs [61]. The imbalance between
omega-3 and omega-6 levels has deteriorated the nutritional quality of farmed fish such as Atlantic
salmon that contains less EPA and DHA and more omega-6 PUFAs than before [62,63]. Thus, strain
MABIKLP88 could be used for the production of designed aquafeeds for balancing the dietary omega-6
and omega-3 ratios. Furthermore, several authors reported that the amount of omega-3 PUFAs in the
phytoplankton community is reflected in the nutritional quality of predatory fish [7,10,11]. It should
also be noted that the availability of omega-3 PUFAs in aquatic ecosystems is closely related to egg
production and hatching success of marine copepods [64,65] and the fish larvae survival [66]. Hence,
the presence and abundance of this Korean dinoflagellate may have a potentially positive impact on
the sustainability of both capture fisheries and aquaculture in Korea.

In this study, we report the first record of E. voratum from the Dokdo Islands, in the East Sea of
Korea. This marine dinoflagellate would serve as potential biological resources to produce aquaculture
feeds and biochemicals of commercial interests. Importantly, a clonal culture was established and
deposited in a national culture collection to allow for further research.
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