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Abstract: Despite accumulative evidence regarding the impact of the physical environment on
health-related outcomes, very little is known about the relationships between built environment
characteristics and the quality of life (QoL) of cancer patients. This study aims to investigate the
association between the built environment and QoL by using survey data collected from cancer
patients within the United States in 2019. To better understand the associations, we controlled
the effects from sociodemographic attributes and health-related factors along with the residential
built environment, including density, diversity, design, and distance to transit and hospitals on the
self-reported QoL in cancer patients after treatment. Furthermore, machine learning models, i.e.,
logistic regression, decision tree, random forest, and multilayer perceptron neural network, were
employed to evaluate the contribution of these features in predicting the QoL. The results from
machine learning models indicated that the travel distance to the closest large hospital, perceived
accessibility, distance to transit, and population density were among the most significant predictors
of the cancer patients’ QoL. Additionally, the health insurance status, age, and education of patients
are associated with QoL. The adverse effects of density on the self-reported QoL in this study can be
addressed by individuals’ emotions towards negative aspects of density. Given the strong association
between QoL and urban sustainability, consideration should be given to the side effects of urban
density on cancer patients’ perceived wellbeing.

Keywords: built environment; quality of life; machine learning; cancer

1. Introduction

The relationship between built environment and health-related conditions (such as
physical activity, obesity, and cardiovascular disease) have been extensively discussed in
previous studies [1–3]. Although the sustainable built environment is a multidimensional
concept, the literature defines it through particular measures including the urban density
and intensity of activities, diversity of land use, street network design, aesthetic qualities,
and transportation facilities [4]. Neighborhood walkability, street connectivity, density, and
mixed land use are associated with higher walking trips and physical activities [5–7] and
can reduce the risk of cardiovascular disease [8,9]. Built environment attributes including
density, diversity of land use, availability of destinations, and distance to transit can explain
physical activity-related improvements in mortality and morbidity [10].

However, the evaluation of built environment attributes on cancer outcomes is a
relatively novel arena that has not been extensively discussed in cancer-related research.
Notably, a few studies discuss the role of residential neighborhoods on the level of physical
activities and body mass of cancer patients [11–14], while a majority of literature focuses
on the effects of geographical accessibility and distance to cancer care providers on cancer
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outcomes [15,16]. Meanwhile, some studies focus on the spatial cluster analysis of cancer-
risk factors and suggest that the number of new cancer incidences is higher in metropolitan
areas exposed to a high levels of air pollution when compared to less polluted geographical
clusters [17].

The impact of built environment on primary and secondary cancer prevention can be
investigated in four thematic areas of interest, including spatial proximity, transportation,
land use, and housing [18]. Nonetheless, pioneer studies often concentrate on the spatial
proximity and centralization of cancer care services in medical centers and large hospitals.
This line of research investigates the travel burden to low-income and transit-oriented can-
cer patients dwelling in remote areas [19–23]. The previous studies often have utilized the
neighborhood built environments to justify the health-related outcomes between different
ethnicities (such as overweight and obesity) among cancer survivors [24,25] to mediate the
relationships between the cancer risk and the socioeconomic status of the patients [14,24,25].
Access to neighborhood amenities such as recreational facilities, parks, and beaches have
been demonstrated to contribute to the physical activity recommended by the American
Cancer Society and improve cancer outcomes [14]. Moreover, a few scholars propose that
population density has an influence on cancer mortality [14,15,26,27]. It seems that living in
more densely populated neighborhoods is associated with higher risks of cancer incidents
and poorer overall survival.

On the other hand, it is suggested that a supportive built environment can overcome
the barriers in the outdoor environment and improve perceived quality of life (QoL) [28,29].
Notably, QoL, especially health-related QoL, denotes a broad-ranging concept with complex
impacts related to physical health, psychological state, personal beliefs, social relationships,
and a person’s relationship to salient features of their environment [30]. Analyzing cancer
survivors indicates that micro-environmental conditions can affect their level of physical
exercise and, consequently, the cancer patients’ quality of life [31]. Although evidence re-
veals that built environment characteristics promote physical activities, physical wellbeing,
social interaction in the community, and mental health, the impacts of built environment on
QoL is less recognized. Living in pedestrian-friendly neighborhoods with mixed-land use
and well-designed green areas is associated with higher levels of self-reported wellbeing
and mental health [32]. Examining the perceived neighborhood characteristics on health-
related quality of life (HRQOL) reveals that perception of diversity, safety, and esthetics are
associated with the higher physical and mental wellbeing of residents [33].

Contrary to the limited numbers of cancer studies investigating QoL and the built
environment, several studies have been developed to understand how cancer experiences
impact patients’ QoL as a multidimensional construct. Cancer types, pain intensity [34],
and cancer treatment [35] have been identified as the most significant factors. Sociodemo-
graphic features and social supports, on the other hand, are also commonly considered as
determinants of cancer patients’ QoL [36–38]. Evidence indicates that the QoL in cancer pa-
tients can be affected by race [39], age at diagnosis [40], access to health providers [41], and
social support [42]. Some studies suggest that the association between the socioeconomic
status of neighborhoods (such as race and ethnicity) and QoL result in health disparities
in geographical areas [43]. It is deemed that performing physical activity such as walking
and exercise interventions is significantly related to a higher QoL for patients with cancer
history [44–47].

To the best of our knowledge, the impact of built environment attributes on cancer
patients’ QoL has not been fully explored in the literature, and only a few studies have
explored the relationships between neighborhood environments and QoL in urban set-
tings [48]. Although little effort has been made to understand the effects of physical features
such as access to goods and services on cancer survival through physical activities [14,25],
the literature has not sufficiently explored the associations between built environment
and QoL among the cancer patients. To our knowledge, these associations have not been
investigated in the literature. Understanding the factors shaping patients’ QoL can help
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public health planners to recognize vulnerable groups of patients who require further
support interventions and provide appropriate services to cancer survivors [49].

The growing need to develop sustainability in cities points to the importance of health
and wellbeing in shaping sustainable communities. Researchers suggest a close association
between QoL and environmental sustainability. Accordingly, in addition to measuring
sustainability indicators, measuring and tracking the QoL of urban residents could be
regarded as a critical goal of city planners and policymakers [50]. Moreover, the satisfaction
of city residents regarding environmental sustainability indicators such as green spaces, air
quality, noise level, cleanliness, and climate change can increase city livability and QoL [51].
Accordingly, investigating the effects of built environment factors on QoL can be regarded
as an effort to understand the environmental sustainability concept.

This study aims to identify the factors that contribute to the QoL of people who
struggle with cancer while considering a comprehensive set of internal and external factors.
Accordingly, we address the following research questions: (1) How do built environment
attributes along with health-related and sociodemographics shape the self-reporting QoL of
cancer patients? and (2) What are the most influential factors associated with patients’ QoL?

To fulfill the research gap, the present study designs a comprehensive survey to
collect data from cancer patients across the US systematically. We explore the effects
of built environment attributes by considering objective and actual measures as well as
the subjective and perceptional factors. Furthermore, and to conduct a comprehensive
framework, we employ the sociodemographic attributes and health-related variables
suggested in the literature as the significant internal determinants of cancer patients’
QoL. Although most of the previous studies have focused on simple regression models
to examine the linear relationship between QoL and its predictors [36,52], we employ
machine learning models to analyze the survey data. The application of a broad conceptual
model developed based on machine learning algorithms allows us to better understand
self-reported QoL in cancer patients. Our study further incorporated machine learning
models (i.e., logistic regression, decision tree, random forest, and multilayer perceptron
neural network) to delineate the nonlinear patterns underlying the predictor variables with
respect to the QoL of cancer patients. Results of this study have a great potential to help
urban planners and policymakers design health-oriented neighborhoods that can improve
cancer patients’ wellbeing and satisfaction.

2. Methods
2.1. Survey Data Collection and Pre-Processing
2.1.1. Survey Design

In this study, an online cross-sectional survey was designed to collect data from cancer
patients across the US. All participants consented, and an Institutional Review Board (IRB)
was approved for survey administration and data usage. To ensure the survey cohort,
eligible participants must (1) have been treated by radiotherapy, chemotherapy, or other
treatments, (2) be in remission or still seeking other treatments, and (3) be over 18 years
old. The main objective of designing the questionnaire was to obtain information related
to the behavioral patterns of the cancer patients during primary treatments including
radiotherapy and chemotherapy, and other treatments. The questionnaire contained gen-
eral information and questions related to the cancer type and the treatments, patients’
residential neighborhoods as well as their perceptions, attitudes, and quality of life. The
third part of the questionnaire included the socioeconomic attributes of the respondents.
After attaining the initial data (n = 950), we omitted those patients who filled in the ques-
tionnaires within less than 600 s to remove unreliable entries. To this end, a total number
of 750 surveys remained for the spatial analysis.

2.1.2. Geocoding

By requesting the respondents’ home addresses, we geocoded home locations. We
omitted cases with invalid home addresses that we were not able to locate on the map. The
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remaining addresses were fed into Google MyMap (https://www.caliper.com/maptovu.
htm, accessed on 20 January 2020), which draws pushpins on locations corresponding to
given addresses. To ensure every pushpin was located in the correct location, we manually
verified each location by matching the home zip code and street names on Google maps
with the address provided by the respondent. As such, we geocoded latitude and longitude
coordinates of home address locations (n = 589). Figure 1 depicts the spatial disparities of
the cancer patients according to the types of treatments (radiotherapy and chemotherapy).
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Figure 1. The geographic distribution of the samples.

2.1.3. Built Environment Measures

Earlier studies have often calculated the built environment attributes at census block
level [53] or considering the zip codes of participants’ home addresses at the time of
diagnosis [54]. While the literature has often measured the built environment at the block
group level [14,24,25], this study measured the disaggregated built environment attributes
in a one-mile buffer area around the participants’ home location. The built environment
measures in the present study include density, land use diversity, street design, and distance
to transit. Using a geographic information system (GIS), we joined different datasets to the
extracted buffer layers and measured the built environment attributes.

To calculate population density, we used population data at the census tract level
from the American Community Survey (ACS) (https://www.nhgis.org/, accessed on 6
February 2020). Hence, the population density of each participant’s home location was
calculated within the corresponding one-mile buffer area.

Further, we computed an “entropy index” (EI) as our measure of land use diversity
(mixed-use) in buffer areas [55]. The jobs by sectors, including five sectors that are known
to be serving jobs (retail, services, food and accommodation, health, and education), were

https://www.caliper.com/maptovu.htm
https://www.caliper.com/maptovu.htm
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summed for blocks within the buffer areas of participants’ home locations. The entropy is
calculated as follows:

EI = −

(
∑K

k=1 Pk × ln Pk

)
ln K

where P is the share of each of the five job sectors, and K is the number of sectors (i.e., K = 5).
Notably, the EI ranges from 0 to 1, where the value of 1 shows the equal number of jobs in
each of the sectors within the buffer area and 0 indicates that all jobs are in a single sector.

The distance to transit was measured according to the network distance from par-
ticipants’ homes to the closest public transit stops by using Maptitude (https://www.
caliper.com/maptovu.htm, accessed on 12 February 2020) software. Moreover, transit stop
density was estimated by dividing the number of public transportations stops by the area
of the buffers to evaluate the accessibility of the participants to public transportation. We
measured the travel distance to the closest large hospital through the shortest travel time
from the geocoded respondent’s home location. Travel distances of more than 50 miles
were disregarded from the final analysis.

2.1.4. Perceived Built Environment and Accessibility

Although a supportive actual environment has been proven a necessary factor in
improving individuals’ health outcomes, studies suggest the importance of the perceived
environment in promoting active mobility and health-related behaviors [56]. To explore
the perceived built environment, we asked the participants to evaluate their neighbor-
hood’s characteristics on five-point Likert scales, where 1 = very poor to 5 = very good.
Respondents stated how well their residence and its location met their needs through
six statements in terms of easy access to their health provider, easy access to drugstores,
closeness to work/school, closeness to family members, affordability of the neighborhood
according to the patients’ income and their treatment costs, quietness, and safety and secu-
rity of their neighborhood according to the cancer patients’ mental and physical condition.
We then used confirmatory factor analysis (maximum likelihood with Promax rotation with
59.54% variance explained and Kaiser–Meyer–Olkin (KMO) = 0.869) to reduce the number
of factors and extract one factor to indicate the perceived built environment. We also asked
respondents to evaluate their residential accessibility in terms of approximate driving
distance (in minutes) from their residential built environment to six different errands.
We factor analyzed the distances to obtain a factor that indicated the built environment
accessibility (maximum likelihood with Promax rotation with 62.27% variance explained
and KMO = 0.879).

2.1.5. Quality of Life

All of our participants were selected from patients who had received three types
of cancer treatments. Accordingly, to identify QoL, the survey included a self-reported
question evaluating the respondents’ overall quality of life after cancer treatments in a
five-point Likert type scale from 1 = terrible to 5 = excellent.

2.1.6. Other Key Variables

Previous studies have found that other key variables such as sociodemographic
and health condition can also influence QoL. For instance, people on low income are
more likely to have less physical activity and hence higher rates of morbidity and poorer
physical function [57]. On the contrary, higher income adults are likely associated with
higher levels of health-related QoL [58]. Accordingly, the survey contained self-reported
questions related to the socioeconomic attributes of the patients including age, gender,
income, race, education, employment status, homeownership, car ownership, and health
insurance coverage.

Regarding cancer-related factors, the survey included questions about the cancer type
and the type of treatments. We categorized the patients’ cancer types based on the diagnosis
difficulty into three groups including easy, intermediate, and hard to diagnose [22]. Table 1

https://www.caliper.com/maptovu.htm
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shows the descriptive statistics of the key variables and Table 2 demonstrates the results
from the factor analysis. We also grouped the patient’s cancers based on radiotherapy
and chemotherapy.

2.2. Predictive Modeling for Quality of Life of Cancer Patients

In the literature, machine learning models have been widely used for predictive
modeling tasks, e.g., to predict chronic diseases and analysis of vital signs [59,60], to
study the effects of built environment on driving distance [61], to identify abnormalities in
manufacturing processes and schedule predictive maintenance [62–64], and to recognize
transportation modes with mobile sensing [65,66]. In this study, four machine learning
models, i.e., logistic regression, decision tree, random forest, and multilayer perceptron
neural network, were employed to investigate how built environment characteristics,
perceived built environment, socio-demographic attributes, and patients’ health-related
variables were correlated with their QoL. Notably, the QoL scores are binarized into high-
or low-level QoL using a cut-off QoL = 3. In other words, if a patient is with QoL ≥ 3,
a label of “high-level of QoL” (i.e., 1), will be assigned. Otherwise, the patient will be
associated with a label of “low-level of QoL” (i.e., 0). Let x = (1, x1, x2, . . . , xm) denote the
feature vector of an instance (i.e., a patient) and y ∈ (0, 1) be the label. In logistic regression,
the log-odds for label 1 are calculated as:

p̂(x) =
eβ0+β1x1+,...,+βmxm

1 + eβ0+β1x1+,...,+βmxm
=

1
1 + e−xβ

The parameter β can be determined using the maximum likelihood estimation [67].
As a classification problem, we adopted 0.5 as the cut-off probability: if p̂(x) ≥ 0.5, the
estimated label ŷ was considered as 1. Otherwise, it was 0 [68].

The decision tree model deploys a tree-like structure to learn simple decision rules
inferred from data. Starting from the root node, an instance is sorted through a sequence
of internal nodes to reach a leaf node, which assigns a class label to the instance. Each
internal node symbolizes a test on the instance and the path from the root to leaf node can
be represented as a classification rule [69]. Assume the leaf node h contains nh patients,
we let

p̂hk =
1

nh
∑

x∈Rh

I{y = k}

denote the proportion of class k observations in node h. The patients in node h can be
classified based on majority voting:

k(h) = argmax
k

p̂hk

A few criteria can be used for splitting internal nodes, such as cross entropy and
the Gini index [70]. Notably, although the decision tree method is considered a relatively
simple approach, the generated classification rules are highly interpretable. Thus, it is still
widely used in the machine learning community, especially among medical scientists [71].

An extension of the decision tree classifier is the random forest. It consists of a large
number of decision trees that operate as an ensemble [72]. To ensure maximum diversity
exists among the trees, the bootstrap aggregation (i.e., bagging) strategy is incorporated
in the random forest [69]. That is, each decision tree is allowed to perform bootstrap
(i.e., randomly sample from the dataset with replacement) and grow a decision tree based
on the bootstrapped instances. Then, the prediction of class membership is based on a
majority voting process. Let ŷt(x) be the predicted label from the tth decision tree for an
instance with a feature vector x, meaning the final predicted label of that instance is:

ŷ f orest(x) = majority vote {ŷt(x)}T
1
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where T is the total number of trees in the forest and this number can be adaptively
tuned by the user [69]. Finally, a multilayer perceptron (MLP) neural network model
was implemented. The MLP feature vectors in the input layer to the class labels in the
output layer through hidden layers [73]. Usually, multiple hidden layers are incorporated
to handle the nonlinearity of the input data. The output layer contains two neurons
representing the classification results (i.e., 0 and 1) [74]. The mean squared normalized
error is used as the performance measure of MLP and the weight associated with each
neuron is optimized based on the backpropagation approach [75].

3. Results
3.1. Descriptive Statistics and Factor Analysis

Table 1 indicates that approximately half of the sample were male, with an average
age of 53 years old. The majority of the cases were white American, mostly high-educated.
The sample population was covered by a variety of health insurance, the majority of which
are converged by Medicaid and Medicare. About 83% of the sample were categorized
into the easy to intermediate levels of cancer diagnosis. As cancer patients can be treated
by more than one type of treatment during the remedy, the sample can have multiple
answers. Thus, the distribution of the three cancer treatments is slightly similar to each
other. Table 2 indicates the factor analysis for perceived accessibility and perceived built
environment. Utilizing confirmatory factor analysis for each set of questions, we extracted
two main factors.

Table 1. Characteristics of the study population (n = 589).

Variables Description
Count Percent Mean S.D.

Socio-demographic attributes
Gender Female 292 49.6

Male 297 50.4
Race White 510 86.6

Non-white 79 13.4
Education Well-educated (bachelor and above) 316 53.7

Less-educated (below bachelor) 256 43.5
Missing 17 2.9

Employment status Employee 220 37.4
Not-employee 364 61.8

Missing 5 0.8
Residential status Owner 219 37.2

Not-owner 366 62.1
Missing 4 0.7

Number of cars in the household 0 45 7.6
1 243 41.3
2 217 36.8

3 or more 84 14.3
Health insurance Medicaid 96 16.3

Medicare 208 35.3
Affordable Care Act 21 3.6

Employer-paid insurance 142 24.1
Private health insurance 54 9.2

Uninsured 30 5.1
Other insurance 37 6.3

Missing 1 0.2
Income 50,872 28,132

Age 53 15.58
Household Size 2.55 1.36
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Table 1. Cont.

Variables Description
Count Percent Mean S.D.

Built environment characteristics
Population density 3714 6761

Entropy index 0.66 0.04
Intersection density 172 96
Transit stop density 12 20

Distance to transit (min) 27.29 95.23
Travel distance to the closest large

hospital (min) 12 206

Perceptions
Perceived built environment 99.72 25.33

Perceived accessibility 92.99 15.16
Health-related variables
Cancer type (diagnosis) Easy 285 48.4

Intermediate 203 34.5
Hard 72 12.2

Unknown 29 4.9
Cancer treatments

Radiotherapy 1 = having radiotherapy 266 45.2
0 = not having radiotherapy 323 54.8

Chemotherapy 1 = having chemotherapy 273 46.3
0 = not having radiotherapy 316 53.7

Other 1 = having other treatment 261 44.3
0 = not having radiotherapy 328 55.7

Quality of life
Overall quality of life Terrible 17 2.9

Poor 67 11.4
Average 168 28.5

Good 219 37.2
Excellent 118 20

Table 2. Results from the factor analysis for perceived built environment.

Please Indicate How Well Your Residence and Its Location Meet the
Following Characteristics Loadings

Perceived built environment

Easy access to your health provider 0.788
Easy access to drugstores 0.797
Closeness to work/school 0.772

Closeness to family members who can take care of me when I need them 0.730
Affordable neighborhood according to income and treatment costs 0.805

Quiet, safe, and secure neighborhood according to mental and
physical condition 0.735

Please indicate the approximate travel distance (in minutes) from your
current residence to the following errands Loadings

Perceived accessibility

Closest public transit station 0.517
Closest gas station 0.846

Closest restaurant/fast-food place 0.905
Closest drugstore 0.896

Closest grocery store 0.889
Patients’ primary health provider 0.584

3.2. Predictive Modeling Results

In this study, three metrics, i.e., accuracy, F-score, and area under the receiver operating
characteristic curve (AUROC) were used for the evaluation of the performance of the
proposed models. Accuracy was calculated as the correctly classified instances over the
total number of instances. F-score balanced the precision and recall in the classification
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results. Precision referred to the number of true positives over predicted positive instances,
whereas recall measured the ratio between the number of true positives and all positive
instances [69]. AUROC calculated the area under the ROC curve, plotting the true positive
rate versus the false positive rate. The true positive rate is the probability that a positive
instance (i.e., a high QoL patient in our case) will be predicted as positive, and the false
positive rate indicates the probability that a negative instance is considered as positive.
Both the accuracy and F-score were in the range of (0,1) where the ideal value is 1. The
AUROC ranged between 0.5 and 1, in which 0.5 corresponded to random classification and
1 corresponded to the perfect result. Notably, we randomly selected 80% of instances for
training and 20% for test and each result is an average of 50 replications.

As shown in Figure 2, the most complex model, i.e., the MLP, achieved the highest
accuracy for both the training (90%) and test sets (69%). Here, three hidden layers were
deployed with 12, 12, and 6 neurons, respectively. The model with moderate complexity,
e.g., the decision tree, achieved a test accuracy of 64%, which was slightly worse than the
MLP but better than the logistic regression. Notably, the decision tree model is associated
with high interpretability, and the obtained tree structure is visualized in Figure 3. In
addition, the simplest model, i.e., logistic regression, achieved 66% and 61% accuracy
for training and test, respectively. This corroborates the results from models with higher
complexity and demonstrates the effectiveness of the selected predictive variables. Notably,
the best accuracy for the test data achieved is ~70%. This is mainly due to the high
heterogeneity of cancer patients within each group (i.e., high-level QoL and low-level QoL)
as we binarized the continuous QoL scores from the survey.
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In addition, the F-score and AUROC of each model are summarized in Table 3. It
is noteworthy that all four models achieved similar F-scores and AUROCs. The MLP
achieved the best F-score, i.e., 0.72. The other three models, i.e., logistic regression, decision
tree, and random forest, achieved slightly lower F-scores around 0.69 to 0.71. Further,
the decision tree had the best AUROC, i.e., 0.67. The three other models obtained an
AUROC ranging from 0.63 to 0.66. The results have shown that all the models are associate
with good discriminative powers, and they are quite robust in predicting the patients in
the positive class (i.e., patients with high QoL). This, in turn, indicates that our selected
predictive variables are closely related to the QoL of cancer patients.
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Table 3. Performance results for various algorithms.

Logistic Regression Decision Tree Random Forest MLP

F-score 0.71 0.70 0.69 0.72
AUROC 0.64 0.67 0.63 0.66

To gain insight into the usefulness of each feature, we computed the importance scores
related to each feature considering the random forest approach. We omitted features with
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small scores and only considered the highest determinants of QoL (such as income, house-
hold size, perceived built environment). Table 4 indicates the top 17 features regarding the
scores. The score is calculated as node impurity weighted by the probability of reaching
that node and is normalized into (0,1). Moreover, to understand the relationship intensity
and direction of the independent variables and QoL, Table 5 summarizes the results from
the logistic regression and describes the most significant determinants of QoL in cancer
patients. The results from the logistic regression support the decision tree algorithms.
Comparing Tables 4 and 5 indicates that the top 10 features selected by random forest are
with larger coefficients than other variables in the logistic regression model. However,
the results from the decision tree effectively follow the scores of random forest and are
relatively in line with the coefficients from the logistic model (see Figure 3). The age,
health insurance, education, travel distance to the closest large hospital, and perceived
accessibility are among the most important predictors of cancer patients’ QoL in both the
decision tree and random forest scores.

Table 4. The most important features based on the random forest.

Feature Name Importance Score

1 Age 0.14198
2 Travel distance to closest large hospital 0.12031
3 Perceived accessibility 0.11206
4 Distance to transit (min) 0.10921
5 Population density 0.09243
6 Health insurance 0.08123
7 Entropy index 0.07142
8 Education (well-educated) 0.03246
9 Number of cars in the household 0.02834
10 Transit stop density 0.02341
11 Cancer treatments (chemotherapy) 0.02240
12 Employment status (employee) 0.01907
13 Cancer type (diagnosis) 0.01650
14 Gender 0.01106
15 Cancer treatments (radiotherapy) 0.00730
16 Race (white) 0.00659
17 Cancer treatments (other) 0.00292

Table 5. Coefficient for each feature in the logistic regression model.

Variables Coef St. Error Z p-Values

Socio-demographic attributes
Gender (female) 0.2621 0.230 1.141 0.254

Race (white) −0.0448 0.315 −0.142 0.887
Education (well-educated) 0.6215 00.213 2.922 0.003 ***

Employment status (employee) 0.2489 0.231 1.078 0.281
Number of cars in the household 0.2589 0.394 0.657 0.511

Health insurance −0.7557 0.381 −1.984 0.047 ***
Age 1.8632 0.523 3.565 0.000 ***

Built environment characteristics
Population density −14.1817 7.153 −1.983 0.047 ***

Entropy index −0.2651 0.629 −0.421 0.673
Transit stop density −0.4187 0.706 −0.593 0.553

Distance to transit (min) −2.2074 1.367 −1. 614 0.106
Travel distance to closest large

hospital 1.6386 1.127 1.453 0.146

Perceptions
Perceived accessibility −1.1933 0.774 −1.543 0.123



Sustainability 2021, 13, 5438 12 of 19

Table 5. Cont.

Variables Coef St. Error Z p-Values

Health-related variables
Cancer type (diagnosis) 0.1053 0.308 0.342 0.732

Cancer treatments (radiotherapy) 0.0180 0.251 0.072 0.943
Cancer treatments (chemotherapy) −0.7943 0.263 −3.021 0.003 ***

Cancer treatments (other) −0.3485 0.299 −1.164 0.244
*** indicates the significant p-value < 0.05.

4. Discussion

This study employs a cross-section survey to investigate how built environment
impacts the quality of life (QoL) of cancer patients.

The random forest’s results demonstrate the top ten most important features that
predict the QoL of cancer patients (Table 4) and the logistic regression indicates associations.
Our results demonstrate that the built environment characteristics considerably contribute
to predicting the QoL of the participants. According to the scored features in random
forest, the travel distance to the closest hospital is one of the most significant predictors of
QoL. Previous studies have suggested that the distance from residential neighborhoods
to patients’ treating hospital influences cancer outcomes, and consequently, those who
reside far from their care provides may have a lower QoL among cancer survivors [76].
Although travel distance to health facilities can be a barrier for cancer patients [77–80], this
study considers the distance to the closest hospital and not the treated hospital. Hence,
residing in neighborhoods distant from large hospital can be an indicator of living in the
low-dense suburbs.

Perceived accessibility is the third predictor of the QoL in random forest [33]. The
perception towards accessibility to the neighborhood local services such as access to schools,
public transportation, medical care, and shopping exhibits a significant effect on self-rated
health [81]. Although the logistic regression does not indicate a significant association
between the perceived accessibility and QoL, it seems that patients residing with less
accessibility (greater values of perceived accessibility), reported lower levels of QoL.

Distance to transit is the fourth important feature in the random forest. These measures
are defined as the supportive built environment features that can significantly predict the
QoL [29]. The literature introduces the distance to transit and residential density as two of
the objective indicators measuring the quality of urban life [50]. According to the logistic
model, patients residing in areas with more distance to transit declare lower QoL. The
association is not statistically significant, but the direction is aligned with the theory.

Population density is another determinant of QoL in the random forest. Despite the
lack of a clear understanding of the mechanism under which different urban densities
influence QoL, some studies have suggested that high density positively affects life satisfac-
tion [82]. Higher population density can be positively associated with subjective wellbeing
when accompanied by mixed land uses, public transport, limited car traffic, access to green
spaces, and social equity [83]. People who reside in higher density neighborhoods are
more likely to perform physical activities [84] and more able to experience better health
conditions and life satisfaction [85]. On the other hand, some research suggests that living
in less dense areas can increase the quality of life while controlling for all the other so-
ciodemographic and somatic health variables [86]. Accordingly, urban density contributes
to QoL in different ways. The results of logistic regression in terms of density and QoL
associations indicates an evident paradox. Earlier studies have often reported a positive
relationship between population density and health outcomes due to the availability of
walkable destinations, and consequently a higher tendency towards walking, biking, or
public transit [87,88]. In contrast, our results suggest that a higher level of QoL is reported
by participants in neighborhoods with lower population density. Research on compact city
form states that the negative association between life satisfaction and urban density stems
from the emotional response of the residents toward perceived crime and stress in crowded
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and noisy neighborhoods [83]. In contrast, residing in low-dense suburbs has positive
effects on the wellbeing of individuals through positive emotions and calmness [89]. In
addition, higher levels of anxiety can be found in high-density areas and consequently
decrease mental health [90]. The positive effects of density on wellbeing occur when it
brings with it mixed land use, access to public transit, restricted car travel, access to green
spaces, and social equity [83]. Accordingly, the adverse effects of population density on
the self-reported QoL in cancer patients can be a result of their negative emotions towards
the negative aspects of density, such as traffic congestion, the sense of crime, and lack of
green space.

The scored features of the random forest reveal that the entropy index plays a moderate
role in defining the level of self-reported QoL in cancer patients. Neighborhoods with
mixed land use provide the cancer survivors accessibility to different errands in a walkable
distance [25]. This result is in accordance with some previous studies about the compact city
form in which mixed land use has the potential to provide a better quality of life through
offering longer, healthier, and safer lives and contributing to the economic wellbeing and
health of cities [91].

Random forest scores show that among all sociodemographic characteristics, respon-
dents’ age has an enormous contribution to the level of QoL among cancer patients. It
seems that the process of aging in cancer patients can influence disease adjustment and
therefore impact the health-related QoL [92]. Our results from the regression model reveal
that older cancer patients have a higher level of QoL. This finding is in line with similar
studies, which suggest that younger patients feel worse than older adults on some quality
of life dimensions because they suffer more from psychological symptoms and financial
issues [93,94].

The random forest score of health insurance shows that this feature can differentiate
the QoL experience through different levels. This result is in line with previous studies that
demonstrate health insurance status is associated with health-related attributes of cancer
patients over time [95]. Since patients with poorer insurance coverage may have less access
to high-quality treatment, this can result in later diagnoses and worse outcomes [96]. This
result confirms empirical evidence, which shows that health insurance can reinforce the
health of vulnerable groups, such as senior adults, children, and people with premedical
conditions and low-income populations [97]. Moreover, the associations between health
insurance and QoL explain that participants who have private and/or employer-paid
insurance health insurance reported a higher QoL levels compared with low-income
participants who have government-related insurance. It confirms previous studies that
report that cancer-related financial burdens are related to an increased risk of depression
and lower health-related QoL levels in cancer patients [98].

The number of cars in the family is the tenth significant factor in predicting the QoL
that has been identified by the random forest. To the best of our knowledge, there is no
evidence to identify the effect of vehicle ownership on the QoL of cancer patients. However,
the vehicle is the most usual mobility mode particularly for residents of distant and rural
areas, so, it can affect a cancer patients’ access to treatment facilities where they might
not have access to other mobility modes [77,78,99,100]. Access to private vehicles and
the option of driving with others are among the most crucial treatment-related factors
that impose barriers to cancer patients [101]. Vehicle availability is assumed as a variable
that has a positive relationship with the early diagnosis stage [15] and receiving the first
line of treatments [79]. Patients residing in areas having no access to a private vehicle
are less likely to follow cancer screening treatments [102]. This evidence can support the
contribution of access to a car in the QoL of cancer patients.

Furthermore, education is another factor contributing to the QoL of cancer patients.
This result supports the studies that propose education improves wellbeing because it
develops access to economic devices, enhances a person’s sense of control over life, and
increases social support [103]. The positive association between education and QoL in this
study can be justified by the earlier research suggesting that low education along with
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low neighborhood socioeconomic status result in worse all-kind survival for particular
cancers [24]. The higher score related to the significance of chemotherapy compared with
radiotherapy reveals that chemotherapy treatment has a more significant contribution
in predicting quality of life [104]. Chemotherapy treatment appears to have a negative
effect on the QoL of patients who received this treatment. Although physicians suggest
chemotherapy to improve QoL for patients with end-stage cancer, it cannot reinforce
QoL for patients with moderate or poor performance status and worsened QoL close for
patients with good performance status [105]. Gender and race have a small participation in
determining the level of QoL. The race of the participants (white versus other races) has a
small but notable effect on QoL after treatment [106].

5. Conclusions

This study brings new insights regarding the impacts of actual and perceived built
environment characteristics on the QoL of cancer patients while controlling sociodemo-
graphic and health-related factors. To address the first research question regarding the
factors explaining the self-reporting QoL, we employed the random forest approach. Re-
sults suggested that the QoL of cancer patients can be principally influenced by built
environment features, including travel distance to a closest large hospital, perceived ac-
cessibility, distance to transit, population density, and sociodemographic factors such as
age, health insurance status, and education. Results from the logistic regression fulfill the
second research question regarding the most significant determinants of QoL in cancer
patients. Population density, age, education, health insurance, and chemotherapy treatment
are the most critical determinants of QoL in cancer patients. We point out the main research
outcomes in the following areas:

• Our findings regarding the effects of built environment features such as density and
access to healthcare facilities on the QoL of cancer patients indicate that a supportive
built environment can overcome the barriers in the outdoor environment, increase the
likelihood of physical activity, and therefore improve perceived quality of life. These
results point out that urban design and transportation planning need to become more
friendly for this population group with particular needs and requirements.

• To improve social equity, it is fundamental to design environments compatible with
the needs of all community groups, including people who are struggling with chronic
diseases that require ongoing medical attention or limit activities of daily living in the
long term.

• Understanding the associations between built environment and health-related QoL
can help in the development of intervention policies that aim to improve cancer pa-
tients’ wellbeing. Hence, there is a need for collaboration between transit agencies,
MPOs, and community planners to target the living environment and mobility needs
of people who are burdened with chronic disease. To this end, urban and transporta-
tion planners and practitioners should be more involved in this field and acquire
more knowledge from other disciplines. Integrating transportation planning with
public health and social studies could reinforce existing policies and strategies in
transportation accessibility and equity and therefore increase wellbeing and QoL.

• In addition, there is an inherent need to develop a QoL measurement that comprehen-
sively counts for subjective feelings as well as objective factors in terms of patients’
health condition, transportation, and built environment. This QoL measurement
can be used as a policy tool by communities and local governments to evaluate the
extent to which the mobility and built environment meet the needs of patients with
chronic diseases.

• The inverse associations between population density and cancer patients’ QoL indicate
that compact development strategies can be fulfilled when policymakers address the
side effects of urban density, such as fear of crime, high noise, and traffic congestion.
This compact development pattern should concentrate on strategies that increase
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robust transportation options and improve public health indicators such as air quality
while creating safe and secure neighborhoods that preserve more open space.

There is large room for improvement in our understanding of the effects of built
environment and transportation accessibility on cancer patients’ QoL in future research.
Working with the small sample size in our study can be a principal limitation of our
study, which may have caused some failures in identifying more associations between
the key variables, particularly in the logistic regression model. Further studies need to be
developed to collect data on a large population of cancer patients regarding their mobility
needs, their concerns towards residential neighborhoods, and their preferences about the
attributes of a supportive neighborhood that can overcome their physical, mental, social,
and environmental barriers. The other limitation of this study is related to measuring QoL.
Measuring the QoL of the patients through standard EQ-5D-5L or Q-5D-3L criteria can
allow future studies to explain the QoL of cancer patients thoroughly. This study also
emphasizes the need for collaboration between health policymakers, urban planners, and
transportation experts to conduct more research regarding the effects of transportation
policies on health outcomes.
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