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Abstract: To reduce environmental noise pollution and to safeguard people’s well-being, it is urgently
necessary to move towards sustainable urban development and reconcile demographic and economic
growth with the protection and restoration of the environment and the improvement of the quality
of human lives. This challenge should be a concern to policymakers, who must issue regulations
and define the appropriate actions for noise monitoring and management, and citizens, who must
be sensitive to the problem and act accordingly. Starting from an analysis of several crowdsourcing
noise data collection tools, this paper focuses on the definition of a methodology for data analysis
and mapping. The sound sensing system, indeed, enables mobile devices, such as smartphones and
tablets, to become a low-cost data collection for monitoring environmental noise. For this study,
the “NoiseCapture” application developed in France by CNRS and IFSTTAR has been utilized. The
measurements acquired in 2018 and 2019 at the Fisciano Campus at the University of Salerno were
integrated with the kernel density estimation. This is a spatial analysis technique that allows for the
elaboration of sound level density maps, defined spatially and temporally. These maps, overlaid on a
campus facilities map, can become tools to support the appropriate mitigation actions.

Keywords: noise pollution; crowdsourcing data; NoiseCapture; kernel density estimation; spatial
analysis; sound density maps

1. Introduction

Population growth, urbanization, and socio-economic evolution have produced an
increase in mankind’s industrial, commercial, transport-related, and recreational activi-
ties. These cause a worsening of sound pollution in urban areas [1] and its auditory and
non-auditory effects on human health, such as annoyance, sleep bothers, hypertension, car-
diovascular disease, and impaired cognitive performance in schoolchildren [2]. Currently,
the European Environment Agency (EEA) estimates that almost 20% of the population in
Europe is exposed to harmful noise levels daily [3].

Consequently, noise impact is a growing concern among both the general public and
authorities. In 1999, to protect human health, the World Health Organization (WHO)
published some recommendations on noise level values [4], which were updated for some
of the sources, such as transportation (road traffic, railway, and aircraft), wind turbine,
and leisure noise [5] in 2018. Moreover, many regulations have been issued in the last
decades to select the acoustic indicators, define people’s exposure, and propose noise
control procedures to reduce and prevent noise pollution. The European Union (EU), for
instance, enacted a directive on environmental noise in 2002, inviting the EU member
states to produce strategic noise maps and action plans [6]. Those maps must be produced
concerning sound emission calculations and mathematical models for the propagation
law of sound, using standard or advanced methods, or with the aid of a measurement
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campaign [7–13]. However, both these approaches have some limitations [14]. The emission
models, indeed, often represent a simplification of the reality, referring, for example, to
traffic sound sources without considering other sources or people’s perception of noise
and making other approximations about the traffic flow, the weather conditions, the
morphology, and the ground type [15,16]. Moreover, a measurement campaign in an urban
area requires a considerable number of points of measurements [14], based on expensive
equipment dedicated to noise collection, that must consider the phenomenon dynamically,
making this technique almost unsustainable.

Recently, another approach that involves people in the data acquisition is becoming
increasingly popular in the research field [17]. Each citizen can easily contribute to environ-
mental noise data collection with the use of smartphones and tablets [18]. These devices,
combined with GPS tracking, allow the display of the results in interactive maps and the
generation of noise maps in a GIS-based model. Consequently, participatory sensing could
be considered a low-cost alternative to large-scale and costly infrastructure sensing based
on sensor networks [19]. Despite less adequate accuracy, this approach could lead to the
production of more realistic noise maps [20], integrating all the involved sound sources
and their temporal dynamics.

These noise maps become essential to promote urban planning procedures accord-
ing to sustainable development standards [21], as defined in the 11th Goal of the 2030
Agenda [22]. Since public and private community facilities in an urban area must be
planned according to their economic, social, and environmental impacts, their location
must be defined according to several criteria [23]. Among others, total noise pollution is a
feature that must be considered [24]: for instance, some noise-emitting facilities need to be
placed far away from sensitive buildings, such as hospitals and schools. Moreover, another
consideration can be outlined: community facilities can generate noise, but also, they can
be affected by noise [25].

Starting from these considerations, this paper aims to deepen understanding of some
aspects related to environmental noise mapping and its relationship with the community
facilities. The first focus is on highlighting the potential of crowdsourcing data collection
tools for the acquisition of voluntary data on sound pressure levels. The second aspect
concentrates on the generation of sound density maps in a geographic information system
(GIS) to comprehend the sound distribution, both spatially and temporally. Finally, the third
point is the generation of a solution matrix, derived from the analysis of the relationship
between noise and community facilities. Specifically, after the description of the tools
used for the data acquisition and their elaboration, the definition of a methodology for
noise analysis and generation of acoustic concentration maps, based on the kernel density
estimation, is described in Section 3. The methodology becomes a tool for supporting
urban planning decisions, because it integrates noise density maps with public facilities
maps. In Section 4, the results deriving from the application of the methodology to the
Fisciano Campus of the University of Salerno (Italy) are described, and finally, Section 5
contains the main conclusions of this research.

2. Data Collecting and Mapping
2.1. Participatory Tools for Environmental Noise Assessment

The increasingly widespread tendency to involve citizens in data collection and the
extremely large number of people equipped with a mobile device (3.8 billion users world-
wide is forecasted in 2021 [26]) have led to the awareness that the use of smartphones is
potentially a relevant solution to realize a large-scale environmental noise evaluation. More-
over, the continuous improvement of smartphone features and the creation of appropriate
applications allow the acquisition of noise data easily and the creation of noise observation
networks, spatially and temporally. This approach does not represent a novelty and, in line
with citizens’ science, volunteers taking part in the scientific research have been already
found in many disciplines, such as health research [27] or environmental monitoring [28].
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Regarding environmental issues, public involvement has been also acknowledged by the
European Directive 2003/35/EC [29].

Currently, numerous platforms and tools for environmental noise study utilize the
approach of crowdsourcing data collection. In [17,30], the authors show the features of
several applications aimed at noise control, such as Laermometer, 2Loud?, NoiseWatch,
UbiSound, and NoiseTubePrime. Moreover, other applications and projects are: Noise-
Tube project [31,32]; the WideNoise application, developed within EveryAware project [33];
NoiseSPY, which is part of the MobSens project, that integrates three other mobile phone
applications dedicated to health, social, and air pollution sensing [34]; the NoizCrowd appli-
cation, belonging to the BioMPE project [35]; SoundOfTheCity, Ear-phone, and MobGeoSen
applications [36]; the NoiseMap application [37]; NoiseBattle and NoiseQuest prototypes,
which are based on the open-source application NoiseDroid and collect noise data through
gaming techniques [38,39]; the NoiseCapture application of the Noise-Planet project [40];
and the OpeNoise application developed by the Regional Agency for Environmental Pro-
tection of Piedmont in Italy [41]. Typically, these platforms are client–server systems that
integrate a mobile application used by volunteers and a central server application.

The mobile application enables users to measure noise parameters everywhere and at
any time. In many cases, the application is available for free for smartphone users, both
iOS and Android models. Other aspects are related to the possibility that the applications
can record and collect both perceptive and acoustic data and other contextual information
that can be provided by users employing a tagging component with the upload of pictures
or the reply to perceptive questionnaires. Finally, to preserve the volunteers’ privacy, the
applications collect encrypted data [30,42,43]. Table 1 compares some applications in terms
of their functionalities that give participants information on their level or community level
of exposure, on health risk assessment, context awareness, and allow them to share their
experience of exposure concerning their feelings about the sound. The table summarizes
results presented in [17,30,36] and implements other applications. The first 6 rows and
5 columns in the table indicates respectively the apps and the features common to the three
studies, and the stars mean that the features need future improvements.

Table 1. Participatory tools and functionality for environmental noise assessment. The 3 symbol
refers to a feature fully implemented, the * symbol means that the feature is partially implemented
and needs future improvements and the - symbol is for non implemented features. Modified
from [17,30,36].

Applications
Features 1

PE CE RA U CA EE Con P NC SC Cal S/I EA Cor

SoundOfTheCity 3 3 3 3 3 3 3 - 3 3 - - * *
NoiseTube 3 3 3 - - - 3 - 3 - 3 3 - 3

NoiseSpy 3 3 - * * - 3 - 3 - 3 3 * 3

Ear-Phone * 3 - 3 * - 3 - 3 - 3 - 3 3

WideNoise 3 3 - - - * - - - - - 3 - *
NoiseMap 3 3 - - - - - - - - 3 3 - -

MobGeoSen 3 - - - - * * - - - - - - *
NoiseBattle 3 3 - - - 3 - - 3 - - - - -

NoiseTubePrime 3 3 3 - - 3 3 3 3 - - - - -
UbiSound 3 3 3 3 3 3 3 3 3 3 - - - -

Laermometer 3 3 - - - - - - - - - 3 - -
NoiseDroid 3 3 - - - - - - - - - - - -

2Loud? 3 3 * - 3 - - - - - 3 - - -
NoizCrowd 3 3 - - - - - - - - 3 3 * -
NoiseWatch 3 3 - - - - - - - - 3 3 - -
OpeNoise 3 3 - - - - 3 3 3 - 3 - 3 3

NoiseCapture 3 3 - - 3 3 3 3 3 3 3 - 3 3

1 PE = personal exposure; CE = community exposure; RA = risk assessment; U = unobtrusiveness; CA = context
awareness; EE = experience exposure; Con = continuity; P = privacy; NC = noise capture; SC = soundscape
capture; Cal = calibration; S/I = standards/interoperability; EA = energy awareness; Cor = correctness.
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The central server application is necessary for receiving and storing measured data,
uploaded by volunteers automatically or manually and, only later, it will be possible to
generate maps that show the geographical distribution of the measured parameters [32,44]. The
described infrastructure is fully based on open-source tools and programming languages
that perfectly comply with geographical standards and facilitate data exchanges toward a
global centered hub [45].

The main steps of the data acquisition procedures are the initialization of the noise
measurements, the upload of the collected data to a server application, and finally, the
visualization on a geo-located noise map [42,46]. Moreover, these platforms are based on
four levels of stakeholders:

1. the volunteer, who collects noise data with a smartphone and publishes it on the
central server application, which can be considered a spatial data infrastructure (SDI);

2. the expert (geographer, acoustician, urban planner, and researchers), who can manage and
understand the raw data, extracted from the SDI, and use them in several applications;

3. the decision maker, who can use the information as a support for land manage-
ment decisions;

4. the public, who are represented by citizens who can use the visualization services to
be aware of noise issues and understand the mitigation actions implemented by the
decision maker for managing noise pollution.

The scientific community is debating the use of these applications as an alternative to
the traditional measurement instrumentation [47] because the results are often affected by
errors concerning both the sound levels and their localization. The mobile devices used for
sound measurements and the professional instruments, such as sound level meters, are
characterized by different microphone hardware, filters, and sound application program-
ming interfaces for processing the measured data [48]. The measurement accuracy, indeed,
is strictly connected with its purpose and the different features of mobile devices available
in the market [49–51]. Generally, a specific treatment of the collected raw data, such as a
post measurement cross-calibration procedure, is necessary to correct the smartphones’
microphone response. Sakagami et al. [49] examined the accuracy of acoustic measure-
ments of both iOS and Android types, observing that it depends on the application, its
calibration function, and the type of microphone. Additionally, the accuracy is continu-
ously improving because the devices and the applications are often updated, and new
versions appear frequently. Moreover, Murphy and King [52] reported that applications
for noise measurement for the iOS platform are superior to those working on the Android
platform, probably because of higher quality control, a better quality of microphones, and
less variation in smartphone models. However, the Android models are more popular
worldwide than the iOS ones. Another accuracy concerns the geo-localization of collected
data due to the GPS data deviation (a typical precision is about 10–50 m) that can produce
errors that allocate high noise levels to quiet environments [20].

Several works [33,50,53] demonstrate that, when the operations of measurement are
coordinated properly, the acquired data can produce collective noise maps comparable
to simulation-based maps. Despite the lower quality of acoustic measurements than the
traditional methods, Guillaume et al. [17] discussed the relevance of the approach. Also,
the accuracy of the results obtained in the acoustic field was studied by Aumond et al. [54]
and Can et al. [55], who reported that using mobile devices to collect noise data is better
than using the interpolation method to produce noise maps. Moreover, Grubeša et al. [56]
concluded that smartphones could be used as instruments for creating, or even checking,
final noise maps in an urban environment. Consequently, researchers’ interest in this
approach is growing.

Since measurements are achieved completely freely, a further observation on this
approach is that some areas and some periods are covered with a very high statistical
representativeness, while others only gather a few (or no) measurements. Therefore,
the production of a single aggregate noise map implies the introduction of a statistical
component. Consequently, after the division of the surveyed area into smaller areas using
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a regular grid and the partition of the set of measurements over those areas based on
their geographic coordinates, it is necessary to perform a statistical analysis per unit area
which allows the generation of a map made of average values with coded colors on each
pertaining area [46].

2.2. Participatory Tools for Environmental Noise Assessment

To overcome the problem of non-continuity between cells, techniques of spatial con-
centration, such as the function of the kernel density estimation (KDE), can be applied. The
KDE belongs to the point pattern analysis, which is a family of spatial analysis techniques
developed starting from the first principle of geography by Tobler [57]: “All things are
related, but nearby things are more related than distant things”, and implemented by
Gatrell et al. [58] in their studies on the spread of epidemics. Given a phenomenon, this
kind of analysis studies the distribution of events throughout a region and, from sources of
punctual vector data, there is a generation of grids that are classified according to associated
numerical attributes [59].

The method is based on the density and, with regards to heterogeneous distributions
of points, the focus shifts to the calculation of the local density. In particular, the density is
estimated by counting the number of events in a region, said kernel, centered at the point
where it is preferred to have the estimate. It is necessary, therefore, that each Li event is
uniquely and spatially identified by the coordinates xi, yi. Accordingly, an event Li is a
function of the position and its attributes. While the simple density function examines the
number of events for each element of the regular grid that composes the R study region, the
kernel density considers a movable surface in three dimensions, which weighs the events
according to their distance from the point at which the intensity is estimated [60].

The density or intensity λ(L) of the distribution at the point L can be defined by
the equation:

λ(L) = ∑n
i=1

1
τ2 k

(
L − Li

τ

)
, (1)

where Li is the i-th event; k(L, Li, τ) is the kernel function, which weighs the events according
to their distance from the point it is estimated; and τ is the bandwidth, i.e., the radius of
the circle centered at L within which the events contribute to the estimate (Figure 1). The
choice of the bandwidth affects greatly the resulting surface of estimated density. If the
bandwidth is big, the kernel density is considerably closer to or coincides with the values
of the simple density. If the bandwidth is rather small, the resulting surface will tend to
catch single events with near-zero density for elements of the grid that are far from each
event. The bandwidth must be evaluated according to the phenomenon, which must be
analyzed and determined for subsequent adjustments [61].
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Thanks to the integration of kernel density estimation in a GIS environment, it is
possible to produce raster maps depending on the attributes associated with geometric
primitives that are representative of the designed pattern [62,63]. These maps of concentra-
tion, which can be named “density maps”, contribute to understanding the distribution of
the phenomenon in a region starting from the punctual measurements performed [64].

3. Materials and Methods
3.1. Methodology for Noise Analysis and Mapping

Starting from the organization of the participatory noise platform and the stakeholders
involved, a methodology for data analysis and mapping is developed in this section.
The proposal regards the experts who, with the data collected in crowdsourcing, can
make further analysis. The whole process can be developed in a GIS environment and is
organized into three phases (Figure 2).
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Figure 2. The 3–phases noise analysis model.

First, the expert builds a database made of the crowdsourcing data, open data, and
all the official information shared by other infrastructures, such as public bodies and
technical offices.

The second phase performs a spatial analysis of the phenomenon. Since both acoustic
and statistical indicators are computed for the whole duration of the measurement, it is
possible to generate their density maps through the kernel density estimation function.
These maps can be understood as sound and perceived effective maps of the study region.
Additionally, a model for the generation of density maps can be built in the GIS environ-
ment with the Model Builder application, which allows for automation of the procedure,
to be performed in succession and repeated over time and for different case studies.

Finally, in the third phase, a comparison will be made between the different noise
density maps and a suitability overlay of the different facilities in the area of study. The
considerations deriving from this phase can be a support for the decision-makers and, as a
consequence, address the actions that can affect citizens.

3.2. Case Study

Among the several tools proposed for crowdsourcing data collection, the case study
focused on the application of the Noise-Planet project [40], which is led by two French
research teams: the Environmental Acoustics Laboratory (Eiffel University, former IFST-
TAR) for environmental noise research and the DECIDE Team (Lab-STICC—CNRS UMR)
for GIScience. In this project, the data is collected from the free and open-source An-
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droid NoiseCapture application and shared from the OnoM@p Spatial Data Infrastructure
(SDI) [45,62]. The Noise-Planet project is integrated also with a free GIS-based model to
compute noise maps and an interactive maps viewer to display noise data collected by the
community. The NoiseCapture approach consists of computing each second of the equiva-
lent A-weighted sound levels along a path and then sharing data with the community. All
data are aggregated in cells with the shape of a regular hexagon to produce mean noise
indicators in each one [20].

The methodology was applied to the case study of the Fisciano Campus at the Uni-
versity of Salerno, located in the Municipality of Fisciano, in South Italy (Figure 3). The
choice of this case study derives from the availability of the sound environmental noise
measurements carried out mostly in two sound-walks (NoiseCapture Parties) organized
by the Applied Physics Laboratory (LAFIN) at the Department of Civil Engineering of
the University.
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In these events, organized on 17 May 2018 and 24 May 2019, on campus, most of the
volunteers who collected data with the NoiseCapture app were students of the physics
course of the bachelor degree of the study programs offered by the above department.
The students were asked to use their smartphones/tablets to record environmental noise.
The aim was to bring together a large number of contributors simultaneously, measuring
noise along a path and then, to share data with the community to create a participatory
noise map.

Before starting the activity, the devices were calibrated. The team of NoiseCapture
provides three calibration methods. The first one is a manual calibration with a reference
sound level meter (SLM). The second method is a calibration by using an external micro-
phone plugged into the smartphone and a standard calibrator for SLM. The final method
is the cross-calibration between two devices, one of which is calibrated with one of the
previous methods. In this measurement campaign, the calibration of the greater part of the
devices was done in-lab by comparison with a first-class sound level meter as a reference.
Few devices have been cross calibrated with the latter method.

These measurement campaigns were organized to cover the largest possible area in
the campus, and some areas were preferred for their destination and use. The criteria
for choosing the paths were proximity to the squares, where a large number of people
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concentrate during the day; the roads and the car parks, for the vehicles’ noise; and the
green parks, within which it was supposed there would be pleasant sound conditions.

From the noise-planet.org website [40], it is possible to view the maps generated from
the two NoiseCapture parties (Figure 4).
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It is possible, also, to notice that other volunteers have used the NoiseCapture app,
thus, contributing to an increase in the number of measurements in the last years. Moreover,
to compensate for the lack of information in some areas of the campus, the previous
campaigns were integrated by other measurements, made specifically for the present study.

This data acquisition technique could integrate the soundscape approach since the
NoiseCapture app allows for an overall rating of pleasantness only at the end of each
measurement. However, since measurements were taken while continuously walking
in order to cover the entire campus area in a reasonable time frame, it is not possible to
give a rating of the pleasantness at each point of the path. The soundscape approach,
based on sound-walks and questionnaires given to participants on the perceived or experi-
enced acoustic environment, has been adopted by some of the authors in a different field
measurement campaign in the same location, reported in [65].

4. Results and Discussion
4.1. Creation of Sound Levels Density Maps

From the noise-planet.org website, all the sound level measurements of the Fisciano
Campus were acquired on 3 December 2019. Organized in a zipped folder, the files, which
can be downloaded for each region of a country, are in .geojson format. Generally, these
files are further divided into points and areas, which have specific characteristics in terms
of geometry and other information.

The first type, the points file, contains georeferenced points that are characterized
by a table of attributes. The relevant fields for this study were the date and time of the
measurements and the noise level, i.e., the value of sound pressure level measured at that
point in a time of 1 s, expressed in dB(A). The areas file corresponds to basic post-processing
of all measurements produced by the community and all data are aggregated in hexagons to
produce mean noise indicators and information in each hexagon [62]. The file contains only
the hexagons with at least one measurement point belonging to the points file. Its attributes
table has several fields, but those relevant for this work are the A-weighted equivalent
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continuous sound level (LA,eq) and the date and time of the first and the last measurement
belonging to the hexagon. The points and areas files were converted into shapefile format
and processed in a GIS environment. Figure 5 shows the spatial representation of the noise
levels of the points file and the LA,eq of the areas file. Because these maps provide additional
information on the acoustic environment, they are not alternative but complementary to
the “standard” noise maps, which deal mainly with transport and industrial noise [48].
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Figure 5. Spatial representation of all measurements of (a) noise level and (b) LA,eq.

However, two critical issues can be highlighted from the LA,eq spatial representation.
The first problem is related to the spatial non-continuity of the phenomenon between the
hexagonal cells, while the second issue concerns the non-homogeneity of the data stored in
terms of LA,eq since it is the result of the cumulative measurement points in each hexagon
relating to different time intervals.

To overcome the first problem of non-continuity between cells, the kernel density
estimation was applied. The outputs were raster maps for each measured parameter,
generated in ArcMap© produced by ESRI. For the study case, the function was evaluated
considering 100 m for the radius and a 20 m × 20 m cell-sized, with a total area of 400 m2,
comparable to the area of the hexagons. Moreover, both the distribution of points relating
to the instantaneous measurement of the noise levels (points file) and the distribution of
the centroids of the hexagonal cells (areas file) to which LA,eq is associated were used as
the basic point pattern (Figure 6). The maps produced were classified using the natural
break classification method [66]. Starting from a defined number of classes, this method
allows for the identification of the limits of the classes minimizing the internal variance
of each class. Accordingly, the representation identifies homogeneous values for each
class, highlighting the differences between classes, i.e., representing the intensity of the
measurements in terms of noise level and LA,eq.

The difference between the representation of the KDE maps deriving from points and
areas that emerge from the values of the classes can be interpreted taking into account
that the first map (Figure 6a) follows the instantaneous sampling trajectories, while the
second concentrates the point values detected in the center of gravity of each hexagonal
cell (Figure 6b). This affects, first, the number of points and, consequently, the value of the
KDE which, in the first case, takes on higher min–max values than in the second.
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A further difference lies in the spatial variability of the spatial distribution, which
is extremely dynamic in the first case because of the variability of the distribution of the
measurement points and static in the second because it is related only to the centroids,
which are fixed (Figure 7).
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To overcome the second problem, a representative map of the acoustic state of the
study case, corresponding to a specific day and time, was generated. For this reason, only
the hexagons with the last measurement dated 24 May 2019 were selected and saved in a
new layer. This choice was made because most of the total data available, corresponding to
the last measurements, were collected on that day. Through operations of intersection and
summarize in ArcMap©, it is possible to associate the attributes of the points measurements
to the hexagons they belong; derive various summary statistics, i.e., average noise level
(ANL), minimum noise level (Lmin), and maximum noise level (Lmax); and compare them
with the LA,eq, in relation to the density maps respectively generated (Figure 8).
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The LA,eq density map was obtained as a function of the continuous equivalent sound
pressure level indicator provided by the Noise-Planet platform in the Areas file, and
therefore, it is an average time of the pressures measured in each hexagon:

LA,eq = 10 log10

(
1
T

N

∑
i=1

10
LA,i
10

)
(2)

in which LA,i is the 1-s sound level in dBA recorded by the participants in the i-th point, N
is the total number of measurements in each hexagon, and T is the overall measurement
time in seconds, which, in our case, is equal to the number of measurements.
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The average noise level density map, instead, was obtained as a function of the sound
pressure level indicator, i.e., the arithmetic average of the changes in sound pressure
measured for each point falling in the hexagon:

ANL =
1
N

N

∑
i=1

LA,i (3)

LA,i and N have the same meaning of formula (2).
For qualitative comparison, the two maps can be overlapped and the difference, in

terms of percentage, of the single hexagons stands in the order of 0–25%.
A further consideration of this second phase is that the creation of different density

maps, representing the spatial distribution of various parameters, should define a protocol
for future measurement campaigns necessary to implement the noise maps and monitor
the acoustic status of a place. This will be fostered by the calculation in GIS of the LA,eq
related to the chosen time interval.

Additionally, ArcMap© allows for the automation of the creation of density maps
through a Model Builder application. This creates a sequence of workflows that string
together sequences of geoprocessing tools, feeding the output of one tool into another tool
as input. It is a parametric model that allows the iteration following a unique analysis
protocol. For the study case, the input data were the points and areas shapefiles, while the
outputs were four density maps. (Figure 9). This implementation is particularly effective
when many measurements are available. Indeed, it is possible to easily spatialize the
evolution of the environmental noise phenomenon at various t instants, thus, obtaining
multiple density maps at different instants and their comparative evaluations. The consid-
erations that can be reached, for example, through a standard deviation operation, are the
identification of the areas in which the phenomenon persists over time with high density
and, therefore, the structuring of possible intervention strategies.
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4.2. Noise and Facilities Maps Overlay

Thinking about the relationships between the location of community facilities, the
environmental noise, and in general, the impact of urban development on noise generation
can lead to the implementation of the third phase of the methodology. It is necessary,
indeed, to deepen understanding of the issues related to the application of urban plan-
ning parameters to achieve better sound environments and address urban planners in
an integrated vision regarding acoustic impacts [67]. This can lead potentially to more
effective noise management strategies and, simultaneously, to the sustainability of urban
regeneration and transformation.
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Currently, the planning of community facilities and services in Italy, also called territo-
rial provisions, is based on strictly quantitative criteria without any reference to the quality
of urban settlements. However, in the last decades, the scientific community has been
experimenting with new planning approaches that focus on facilities performance and
their influence on people’s quality of life and collective wellbeing [67,68]. As highlighted
by Gerundo and Graziuso [23], community facilities must be designed specifically for
each territorial reality and be open to the effective involvement of citizens in the planning,
design, construction, and management of the services. In this framework, the acoustic
environment could also become a feature that could influence the choices for the loca-
tion and management of facilities. The designed methodology, considering volunteers
as fundamental characters in the acquisition of acoustic data, integrates the concept that
facilities must be planned with the involvement of citizens. The overlay of the noise density
maps, with the facilities map, could lead to the identification of appropriate actions for the
improvement of the environment, according to the urban and acoustic point of view and
people’s evolving needs.

Consequently, the third phase of the methodology was characterized by the identifica-
tion of all the facilities in the Fisciano Campus according to the main service provided. This
allowed for the creation of the community facilities map (Figure 10). As defined previously,
this step was made because, on the one hand, the facilities could be considered generators
of the pollutant, and on the other, they could be affected by noise.
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Figure 10. University of Salerno—Community Facilities Map.

To interpret the interaction of noise density maps with the community facilities,
the ranges of the density values were aggregated into three macro-classes: low (0–0.06),
medium (0.07–0.12) and high (0.13–0.18). Therefore, concerning the maximum noise level
(Lmax) density map, Figure 11 shows the three new macro-classes.
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Through an operation of overlay maps, it has been possible to summarize the relation-
ship between the noise density classes and functions (Figure 12), which led to the compilation
of a simple solution matrix of interaction between noise and facilities (Table 2). From the
analysis of this matrix, some preliminary considerations can be highlighted. All the facili-
ties with a low effect can be justified because there were few measurements performed in
those points. In addition, laboratory L6 was characterized by a low density because it is
protected from noise by other buildings and vegetation. Moreover, the theatre; the canteen;
the rectorate; the bus station; and most of the squares, teaching buildings, car parks, offices,
laboratories, green, and sports facilities were associated with a medium-density class.
Three car parks (Cp2, Cp3 and Cp4), two squares (S1 and S3), and the equipped green park
(E1) lay partly in the high-density class because of their proximity to the main road axis of
the campus. Additionally, the library Li2 and some teaching buildings (T1– T5– T6– T9– T12)
partially overlaid the high density class, particularly at the entrance to the facility, because
of the presence of a place of high interaction among people, which generally generates an
increase of the intensity of noise. The presence of noise generators can be observed also
in two equipped green parks (E3 and E4), because of their location in a high overcrowded
area that connects the public transport service with most of the buildings.
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Table 2. Solution Matrix: Facilities/noise density classes. The numbers refer to the locations of facilities showed in Figure 10;
the 3 symbol means that there is only one facility in the campus and it falls within the class indicated.

Facilities Noise Density Classes

Low Medium High

Theatre - 3 -
Canteen 3 3 -

Laboratory—Ln L1, L6 L2, L3, L4, L5, L7, L8 -
Office—On O1, O2, O3, O4, O7, O8 O2, O3, O4, O5, O6 -

Library—Lin Li1, Li2 Li2 Li2
Rectorate 3 3 -

Car park—Cpn Cp1, Cp2 Cp1, Cp2, Cp3, Cp4, Cp5 Cp2, Cp3, Cp4
Teaching building—Tn T1, T4, T8, T9 T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12 T1, T5, T6, T9, T12

Green park 3 3 -
Equipped green

park—En
E1 E1, E2 E1, E3, E4

Sport facility 3 3 -
Public square—Sn S4 S1, S2, S3, S4, S5, S6 S1, S3
Student residence 3 - -

Bus station - 3 -

All these results demonstrate that the solution matrix and the overlay map facilitate the
comprehension of the relationship between noise, community facilities, and territorial con-
texts, thus, becoming useful tools that can support the actions necessary for the reduction
of noise exposure. In the planning phase, indeed, such information can support the location
choices of new community facilities [23] and organize the urban spaces by localizing the
functions that produce impacts and those that experience such pressures [69–72].

5. Conclusions

In this paper, spatial and temporal density maps of sound pressure levels were gener-
ated, starting from data measured by people. According to Citizen Science, the involvement
of volunteers for data acquisition contributes to their greater awareness about noise pollu-
tion. These geolocated sound level data can also be used for the creation of noise maps,
which, opportunely combined with other information, can implement urban planning
procedures according to sustainable development standards, as defined by the 2030 agenda.
Specifically, the potential of the crowdsourcing data collection tool for the acquisition of
information on the noise level has been discussed. Compared with classical noise evalua-
tion methods based on numerical simulations (with a limited number of sound sources
and approximated noise propagation models), the noise crowdsourcing platforms have
enabled researchers to present a more realistic state of the noise exposure, based on real
measurements carried out everywhere. The criticism is only related to the quality of the
noise measurement because of smartphone features and their microphone capabilities.
However, this limitation can be overcome using post-process measurements.

After the analysis of the various data collection platforms for the sensing environmen-
tal noise approach, a methodology for spatial and temporal noise analysis has been defined.
It has been organized into three phases, beginning with the acquisition of the data by the
experts in the first phase, their analysis and the generation of density maps of the acoustic
parameters in the second phase, and the overlay of the density maps with the facilities
located in a territory in the third phase.

The methodology was tested in the Fisciano Campus of the University of Salerno,
where crowdsourcing noise data collection was organized in 2018 and 2019. As a result
of this data, recorded by volunteers and uploaded on the Noise-Planet platform, noise
density maps were created in the GIS environment with the use of the kernel density
function. Then, through the Model Builder application in the ArcGis© software, it was
possible to generate maps, classified according to the established criteria, using input data,
suitably adequate and shared by the Noise-Planet platform. The model built becomes
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an essential tool for further analysis, which involves the study of the phenomenon both
spatially and temporally. Moreover, the overlap of these noise density maps with the
community facilities of the campus, such as squares, car parks, buildings for education,
libraries, and public and equipped green areas, has led to further considerations on the
correlation between the sources and the measured levels, which can be used to define the
most suitable interventions to be carried out.

Finally, the noise crowdsourcing data could be useful for preserving the acoustic
heritage of a place and for pervasive monitoring of noise levels in cities. Consequently, the
use of the defined methodology, on different territorial scales, can help to enforce local or
regional regulations on limits of the maximum noise levels and become a tool of support
both for the actions to be taken to reduce and contain noise and for the location choices of
the urban transformations.
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