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Abstract: The impact of extreme climate on natural ecosystems and socioeconomic systems is more
serious than that of the climate’s mean state. Based on the data of 1698 meteorological stations in
China from 2001 to 2018, this study calculated the 27 extreme climate indices of the Expert Team on
Climate Change Detection and Indices (ETCCDI). Through correlation analysis and collinearity diag-
nostics, we selected two representative extreme temperature indices and three extreme precipitation
indices. The spatial scale of the impact of extreme climate on Normalized Difference Vegetation Index
(NDVI) in China during the growing season from 2001 to 2018 was quantitatively analyzed, and the
complexity of the dominant factors in different regions was discussed via clustering analysis. The
research results show that extreme climate indices have a scale effect on vegetation. There are spatial
heterogeneities in the impacts of different extreme climate indices on vegetation, and these impacts
varied between the local, regional and national scales. The relationship between the maximum length
of a dry spell (CDD) and NDVI was the most spatially nonstationary, and mostly occurred on the
local scale, while the effect of annual total precipitation when the daily precipitation amount was
more than the 95th percentile (R95pTOT) showed the greatest spatial stability, and mainly manifested
at the national scale. Under the current extreme climate conditions, extreme precipitation promotes
vegetation growth, while the influence of extreme temperature is more complicated. As regards
intensity and range, the impact of extreme climate on NDVI in China over the past 18 years can be
categorized into five types: the humidity-promoting type, the cold-promoting and drought-inhibiting
compound type, the drought-inhibiting type, the heat-promoting and drought-inhibiting compound
type, and the heat-promoting and humidity-promoting compound type. Drought is the greatest
threat to vegetation associated with extreme climate in China.

Keywords: extreme climate; vegetation; spatial heterogeneity; dominant factors

1. Introduction

Against the background of global climate change, all countries are seeking to compre-
hensively control greenhouse gas emissions and deal with climate warming. Compared
with climate mean state change, extreme climate change has more aspects, greater ampli-
tude, and causes more potential damage, posing a greater threat to the natural ecosystem
and socioeconomic systems [1–5].

Vegetation is a common risk receptor in the study of climate change. It is also an ex-
tremely important carbon source and sink in terrestrial ecosystems, and plays an important
role in the global carbon cycle. Studies have shown that in the past few decades, terrestrial
ecosystems have absorbed large amounts of carbon dioxide emitted by human activities,
and have effectively regulated the carbon cycle [6]. Studies have shown that compared with
the climate mean state and the slow increment of climate change, ecosystem biodiversity is
mainly affected by extreme climate change [7–10]. The response of vegetation to climate
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change, especially extreme climate events, has also been acknowledged in many places
around the world [11–13].

A series of vegetation indices are often used to characterize, analyze, and evaluate the
activity of vegetation. Satellite-based data are based on algorithms that estimate the target
variables; however, there are clear advantages. With the progress of science and technology,
satellite-based data have overcome some of the limitations of field observation and research
due to their characteristics of easy access, long time series, and large spatial scale, and they
have been assigned great importance by academics. The Normalized Difference Vegetation
Index (NDVI), obtained via remote sensing, is widely used in vegetation research, especially
in the study of the relationship between climate factors and vegetation [14–19].

China is one of the countries most affected by extreme climate events and disasters.
At the same time, China is rich in vegetation resources of various types and regional
characteristics, and so is also commonly used for vegetation research. Recently, researchers
have conducted statistical studies, model simulation studies and experimental observa-
tional studies, based on different data sources, of the effects of extreme climate change on
vegetation in China, at a variety of spatial and temporal scales [20]. For example, some
research was carried out in the Loess Plateau, which is an ecologically vulnerable region in
China [21]. In addition, there is research focused on the typically agricultural areas of China
to discuss the threats of drought and frost to the vegetation, which are important in the
practice of actual agricultural production [22,23]. At present, the research is mainly focused
on specific ecologically vulnerable or sensitive areas in China, and analysis on the national
scale is relatively rare. Furthermore, the research mainly concentrates on the degree and
direction of the influence, and the temporal hysteresis [24]. However, few studies deeply
and quantitatively discuss the spatial heterogeneity of the impacts of different extreme
climatic elements on vegetation. In addition, the regional complexity of the combined
effects of extreme temperature and precipitation need to be considered thoroughly.

This study takes China as the focus to assess the impacts of extreme climate on
vegetation, based on data from meteorological stations and NDVI. The main scientific
questions to be addressed are as follows: (1) what are the effects of extreme climate
on vegetation in China in terms of scale and spatial heterogeneity? (2) What are the
leading factors in different regions? The aim of this study is to be helpful in the further
understanding of the relationship between climate and the terrestrial carbon cycle, and
to contribute a crucial study case to future research in the field of global extreme climate
on “attribution”, “detection” and “impact” by exploring the relationship between extreme
climate conditions and vegetation in China. Moreover, we hope to provide a basis for
adopting scientific countermeasures according to local conditions through identifying the
regional differences in the impacts of various extreme climate indices on vegetation.

2. Materials and Methods
2.1. Data Sources
2.1.1. Meteorological Data

We used the daily observational temperature and precipitation data from 2474 na-
tional surface meteorological stations in China, provided by the National Information
Center of China Meteorological Administration. After data screening and processing, the
influences of meteorological station migration and missing data were eliminated, and 1698
meteorological stations nationwide were ultimately retained as research objects (Figure 1).
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2.1.2. Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a vegetation index based on
the difference in the spectral reflectance characteristics of the leaves in red (visible) and
near-infrared bands. It can monitor the vegetation growth and coverage changes well
and provide information on the structure and greenness of the plant. The NDVI data
we used came from the Moderate Resolution Imaging Spectroradiometer (MODIS) on
NASA’s Terra and Aqua satellites. In this study, MODIS NDVI’s latest sixth generation
product MOD13C2 was used. This set contains monthly data with a spatial resolution of
0.05◦ × 0.05◦. The data were downloaded from the official website of the NASA Land
Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/, accessed on 2 June
2020). The original data were processed with atmospheric correction (including cloud and
aerosol disturbance removal, etc.) and subjected to strict quality control [25]. The spatial
distribution patterns of MODIS NDVI were consistent with the distribution characteristics
of vegetation in China, thus we can use the data directly without any transformation.

2.1.3. Climate Zone

China has a vast territory and spans multiple temperature zones. The dry and wet
conditions in different regions also differ. Therefore, in the analysis of the results, the climate
zoning information, with comprehensive consideration of temperature and moisture,
was used to determine the hydrothermal background of the climate to supplement the
description of the location (Figure 2) [26].

https://lpdaac.usgs.gov/
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Figure 2. Climate zone map of China.

Considering the availability of both the MODIS NDVI and meteorological data sources,
we finally chose 2001–2018 as the research period. According to the growth characteristics
of most vegetation types in China, and the research experience on vegetation in China,
we used April to October as the growing season to study the effects of extreme climate
on vegetation.

2.2. Methodology
2.2.1. Selection of Representative Extreme Climate Indices

Using Climpact2, we calculated the 27 extreme climate indices of the ETCCDI via the
meteorological data in batches. Climpact2 was developed by the WMO Climate Council
Expert Group [27]. After this calculation, we conducted a correlation analysis between the
extreme climate indices and NDVI. According to this analysis, NDVI was not significantly
correlated with the number of warm days (WSDI) and cold days (CSDI) in the growing
seasons from 2001 to 2018. The definitions of the 27 indices and regression analysis results
are listed in Table S1 in Supplementary Materials.

In order to further exclude the influence of collinearity among extreme climate indices
in the regression model, a multi-collinearity diagnosis was performed in Statistical Product
and Service Solutions (SPSS) for the other extreme climate indices, after removing the
indices showing no significant correlation. Those variables with a variance inflation factor
(VIF) below 10 in the collinearity statistics were retained. According to these results, we
finally chose two extreme temperature indices and three extreme precipitation indices.
These were TXx, TX10p, CDD, CWD and R95pTOT. The five indices are defined in Table 1.
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Table 1. Definition of the five selected extreme climate indices of ETCCDI.

Indices Definition Unit

TXx Monthly maximum value of daily maximum temperature ◦C

TX10p Percentage of days when daily maximum temperature
< 10th percentile %

CDD Maximum length of dry spell, maximum number of consecutive
days with daily precipitation amount < 1 mm d

CWD Maximum length of wet spell, maximum number of consecutive
days with daily precipitation amount ≥ 1 mm d

R95pTOT Annual total precipitation when daily precipitation amount
> 95th percentile mm

Information come from http://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 1 December 2020).

2.2.2. Multiscale Geographically Weighted Regression

The traditional global regression model (GRM) assumed that the relationship between
spatial variables was fixed such that it did not change with location, which was obviously
not consistent with the actual situation. The geographically weighted regression (GWR)
model and multiscale geographically weighted regression (MGWR) model were proposed
to resolve this contradiction. According to the Tobler’s first law of geography, “everything
is related to everything else, but near things are more related than distant things” [28], and
in the GWR and MGWR model, “borrowed” data from points at nearby locations were
used to make the regression varied across space. The data-borrowing range was identified
as “bandwidth”. Detail information can be learned from the related literature [29–34].
Compared with GWR, which employs the same optimal bandwidths for different indepen-
dent variables [29–32], the MGWR method allows for changes in the relationship between
the independent variable and dependent variable with shifts in spatial location, and can
also calculate the optimal bandwidths of each independent variable in relation to the
dependent variable; that is, the effective scale of the spatial relationship. Accordingly, the
simulation results of this model are closer to the actual situation [33]. This method can not
only analyze the spatial correlation of data, but can also identify the spatial heterogeneity
of relationships. The two processes of spatial analysis can be combined to quantitatively
evaluate the magnitude of the spatial differences.

In this study, the vegetation index was taken as the dependent variable and the extreme
climate index as the independent variable. The MGWR method was used to evaluate the
spatial scale of the impacts of extreme temperature and precipitation on vegetation, and to
explore the spatial heterogeneity of these impacts. The selected indicators of the model
are the quadratic kernel function and the AICc information criterion. We chose SOC-f as
the iterative termination criterion because it not only focuses on the overall model fit, but
compared with SOC-RSS, it can also better detect the relative changes in each additive
terms [33].

We used the spatial analyst tools “Extract Multi Values to Points” based on bilinear
interpolation in ArcGIS to extract the NDVI of each station from the raster data source of
MODIS NDVI. Then, we calculated the regression coefficients between NDVI and extreme
climate indices in MGWR2.2 software [34]. The extreme climate indices and NDVI analyzed
were both based on annual mean data of the growing season from 2001 to 2018.

2.2.3. Self-Organizing Feature Map

The self-organizing feature map (SOFM) was first proposed by Kohonen, a Finnish
scholar, based on the theory of cortical competition (lateral inhibition). It is a kind of
unsupervised learning neural network. This kind of neural network does not need to be
informed the output associated with the input mode in advance. It is also not necessary
to give it the category’s expected value in advance; instead, it learns and evolves through
different parts of the network in response to different input modes, and can extract the

http://etccdi.pacificclimate.org/list_27_indices.shtml
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corresponding features and rules, which are reflected in space as samples with the same or
similar features being concentrated in a certain region [35].

The topology structure of the SOFM network is a fully interconnected neuron array
composed of two layers: the input layer and the competitive layer (Figure 3). The input
layer is used to receive input samples, and the input samples are classified in the competi-
tive layer. The specific learning process of the SOFM primarily involves the initialization
and training of the network. The training process of the network involves adjusting the
weights of the neurons in the competitive layer. The arrangement of neurons in the com-
petitive layer is specified by the topological function, and the distance between neurons is
calculated by the distance function.
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The SOFM network does not need to make judgment and weight setting in advance,
and is not affected by subjective judgment. Therefore, it has been widely used in cluster
analysis. Based on the results of single factor analysis of the impact of extreme climate
on vegetation in the MGWR model, this paper uses the SOFM network to conduct cluster
analysis to identify the dominant influence factor and the component effects of multiple
extreme climate indices on vegetation in China. In this study, we used the normalized
regression coefficients of different extreme climate indices from each station as samples
and input them into the SOFM network for training.

3. Results
3.1. Impacts of Extreme Climate Indices on NDVI and Its Spatial Heterogeneity in China
3.1.1. Performance of MGWR Model

Taking the annual average NDVI of the growing season from 2001 to 2018 as the
dependent variable and the five extreme climate indices as the independent variables, the
regression was conducted in the MGWR2.2 software. The model’s statistical results are
shown in Tables 2 and 3. Adj-R2, RSS and AICc are the three most important indicators for
measuring the fitting effect of the regression model. The larger Adj-R2 is, the higher the
goodness-of-fit of the model will be, while the smaller the RSS and AICc are, the better the
performance of the regression model will be. It can be seen from Table 2 that among the
three models, MGWR has the best performance.

Table 2. Performance comparison of different models.

Indicator GRM GWR MGWR

Adj-R2 0.654 0.852 0.857
RSS 585.304 225.466 201.764

AICc 3025.058 1902.813 1776.306
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Table 3. Bandwidth comparison of MGWR and GWR models.

Variables
Bandwidth

MGWR GWR

TXx 871 77
TX10p 99 77
CDD 69 77
CWD 426 77

R95pTOT 1321 77
Intercept 43 77

Nationwide, the bandwidth of the GWR model was 77, which means that the spatial
scale of the effect of different extreme indices was the same. Other than this, the impacts
of different kinds of extreme climate indices all operated on the local scale. However, the
MGWR model is flexible in terms of the optimal scale, and each independent variable
corresponds to a different bandwidth. Different extreme climate indices have different
spatial scale effects on the vegetation NDVI (Table 3). In the MGWR model, the statistical
results of the bandwidth of each variable were as follows: R95pTOT > TXx > CWD > TX10p
> CDD. CDD showed the greatest spatial heterogeneity, while R95pTOT had the greatest
spatial stability.

3.1.2. Spatial Heterogeneity Analysis of the Impacts of Extreme Climate Indices on NDVI

Variable standardization was performed before the model was operated. This renders
the regression coefficients of each variable dimensionless, meaning they can be compared
in detail, as in Table 4. More sites passed the significance test in the context of the effect
of extreme precipitation than in the context of extreme temperature, which indicates that
extreme precipitation had a broader influence on vegetation in China in the 18 years studied.
The regression coefficients of CWD passed the significance test for all sites, meaning that
CWD had a significant impact on the vegetation of the whole country. The regression
coefficients of CWD and R95pTOT are both positive, indicating that the increase in extreme
precipitation over the 18 years studied—both the number of precipitation days and the
amount of precipitation—caused an increase in NDVI all over the country. After the
significance screening of TXx, all of the regression coefficients were also positive. The
regression coefficients of CDD and TX10p have both positive and negative values, which
need to be correlated to their spatial distribution in the site for analysis. CDD and CWD
show large mean regression coefficients and high degrees of influence.

Table 4. Regression coefficient data for different variables in the MGWR model.

Variable Mean Mean Value after
Significance Test Min Minimum Value after

Significance Test Max Maximum Value after
Significance Test

Proportion of
Sites that Pass the
Significance Test

TXx 0.073 0.124 −0.033 0.059 0.207 0.207 47.56%
TX10p 0.113 0.181 −0.417 −0.417 0.401 0.401 48.38%
CDD −1.1 −1.626 −3.308 −3.308 1.237 1.237 68.51%
CWD 0.656 0.656 0.261 0.261 1.024 1.024 100%

R95pTOT 0.054 0.066 0.023 0.038 0.092 0.092 67.92%

The spatial pattern of the regression coefficients of each extreme climate variable is
shown in Figure 4. As regards the impacts of TXx on vegetation, the sites in Northeast
China, North China, the middle and lower reaches of the Yangtze River, and the southeast
coastal areas did not pass the significance test. In the sites that passed the significance
test, the TXx was positively correlated with vegetation growth, and the degree of influence
gradually increased from east to west. The spatial scale of the effects was large (regional).
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The direction of influence was the same at all the stations that passed the significance test,
but the degrees of impact varied between regions.
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The spatial difference of TX10p was greater than in TXx. Among the stations that
passed the significance test, the regression coefficients of the sites in the upper and middle
reaches of the Yellow River were all negative, especially in the Hetao plain area. In the
analysis of TXx, the correlation coefficient was positive in this area. The NDVI is elevated
under higher temperatures, and inhibited by lower temperatures. Evidently, the area is
more vulnerable to cold waves, frost, and other extreme cold events. The other regions
that passed the significance test were all positively correlated, and the spatial scale pattern
was mainly local. The areas with relatively large regression coefficients are concentrated
in the Beijing–Tianjin–Hebei region, the Yangtze River Delta and the Pearl River Delta, all
of which are economically developed districts with high population densities. TX10p has
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a small bandwidth, only slightly larger than that of CDD, which means that the impact
of TX10p on NDVI has very strong spatial heterogeneity. In practice, the impact of TX10p
should be considered locally.

CDD has the smallest bandwidth among the five indicators, and thus the most ap-
parent spatial heterogeneity. In terms of spatial distribution, the sites that failed to pass
the significance test are mainly located in the north, including Northeast China, North
China and Xinjiang province of China. The vegetation in these areas was not significantly
affected by consecutive drought days in the 18 years studied. The number of sites positively
correlated with NDVI is relatively small, and these sites are concentrated in the Hetao Plain
in the middle and upper reaches of the Yellow River, and the Huanghuai Plain in its lower
reaches. The vegetation in these areas showed a strong adaptability to drought. The sites
with negative regression coefficients are mainly distributed in the southern region, and the
degree of influence decreases gradually from north to south and from east to west. The
north and south of Northeast China and some areas of Inner Mongolia also contain areas
that were impacted negatively. The plotting grade differences in CDD reached about 1.1,
even though this feature showed a basically regional character. If the grade differences
were narrow, a patchier spatial distribution would be obtained (see reclassified CDD), with
very high spatial heterogeneity.

The spatial effects of CWD on vegetation are relatively regular. From southwest to
northeast, the degree of influence on vegetation gradually deepens. There is some spatial
heterogeneity, but its scale is relatively large. The promotional influence of CWD on
vegetation during the growing season in the studied period is regional.

The bandwidth of R95pTOT is the largest, while its spatial heterogeneity is the smallest.
Southern China generally failed the significance test; the regression coefficients of central
and northern China showed an increasing trend from south to north, and the regression
coefficient of the Xinjiang region was the highest in China. The difference between the
maximum value and the minimum value of the R95pTOT regression coefficient is only
0.054, meaning that if the mapping grade is more than 0.054, there will be no spatial
heterogeneity. Accordingly, the spatial heterogeneity of this index in China is very small.
The influence of R95pTOT is national.

3.2. The Dominant Factors and Regional Characteristics of the Impact of Extreme Climate
on NDVI

In this section, R95pTOT, which showed no apparent spatial difference in China,
was removed, and the regression coefficients of the other four extreme climate indices
and vegetation indices were used as clustering indices. The regression coefficients were
inputted into the SOFM network for training, until the topology of the network remained
basically unchanged. Given that this analysis seeks to identify the dominant elements in
each category and the significance of influence, the number of categories was set as five.

3.2.1. Clustering Results and Test

The spatial pattern of the clustering results affecting NDVI is shown in Figure 5.
The spatial agglomeration characteristics of the five types are obvious. Type 1 is mainly
distributed in the Northeast Plain and the North China Plain, in the temperate humid
and semi-humid regions, and in the eastern parts of the temperate arid and semi-arid
regions. Type 2 is distributed in the southern part of the tropical and subtropical humid
areas of Guangdong Province, and on the boundaries of Guangdong and Fujian, Hunan
and Guangxi, and Hunan and Guizhou. Type 3 is mainly concentrated in the north and
east of the tropical and subtropical humid regions, such as the middle and lower reaches
of the Yangtze River plain and the surrounding area. Type 4 is located in the Qinghai–
Tibet Plateau and the transitional zone between the region and tropical and subtropical
humid areas, including the southeastern part of the Qinghai–Tibet Plateau, the Sichuan
Basin, the Yunnan–Guizhou Plateau, most of Guangxi, the Leizhou Peninsula, and Hainan
Island. Type 5 is mainly located in the central and western areas of the temperate arid



Sustainability 2021, 13, 5748 10 of 17

and semi-arid regions, the northeastern part of the Qinghai–Tibet Plateau, and most of the
Loess Plateau.

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 17 
 

Guangdong Province, and on the boundaries of Guangdong and Fujian, Hunan and 
Guangxi, and Hunan and Guizhou. Type 3 is mainly concentrated in the north and east 
of the tropical and subtropical humid regions, such as the middle and lower reaches of 
the Yangtze River plain and the surrounding area. Type 4 is located in the Qinghai–Tibet 
Plateau and the transitional zone between the region and tropical and subtropical humid 
areas, including the southeastern part of the Qinghai–Tibet Plateau, the Sichuan Basin, the 
Yunnan–Guizhou Plateau, most of Guangxi, the Leizhou Peninsula, and Hainan Island. 
Type 5 is mainly located in the central and western areas of the temperate arid and semi-
arid regions, the northeastern part of the Qinghai–Tibet Plateau, and most of the Loess 
Plateau. 

 
Figure 5. Clustering results of the impact of extreme climate on NDVI based on the SOFM net-
work. 

In order to test the rationality of our classification, one-way ANOVA was performed 
in SPSS to test whether there were significant differences among all five types, as well as 
between sets of two types. Given space restraints, we have only listed the results for CDD 
as a table, and the rest of the indices will be described. 

Following the overall analysis of variance (Table 5), the significance test results of the 
impact of the four extreme climate indices on NDVI were all less than 0.01, suggesting 
extreme significance. There were extremely significant differences among the five types, 
indicating that the classification was generally scientific and reasonable. According to the 
results of the multiple variance analysis of the impact of CDD on NDVI (Table 6), there 
were no significant differences in the effects of CDD between Type 1 and Type 5, or be-
tween Type 2 and Type 4, since they did not pass the significance test. However, all the 
other pairs showed significant variation in terms of the influence of CDD. The five types 
of impacts of CWD, TX10p and TXx all passed the pairwise significance test, with signifi-
cant differences. 

  

Figure 5. Clustering results of the impact of extreme climate on NDVI based on the SOFM network.

In order to test the rationality of our classification, one-way ANOVA was performed
in SPSS to test whether there were significant differences among all five types, as well as
between sets of two types. Given space restraints, we have only listed the results for CDD
as a table, and the rest of the indices will be described.

Following the overall analysis of variance (Table 5), the significance test results of the
impact of the four extreme climate indices on NDVI were all less than 0.01, suggesting
extreme significance. There were extremely significant differences among the five types,
indicating that the classification was generally scientific and reasonable. According to the
results of the multiple variance analysis of the impact of CDD on NDVI (Table 6), there
were no significant differences in the effects of CDD between Type 1 and Type 5, or between
Type 2 and Type 4, since they did not pass the significance test. However, all the other pairs
showed significant variation in terms of the influence of CDD. The five types of impacts of
CWD, TX10p and TXx all passed the pairwise significance test, with significant differences.

Table 5. Overall variance analysis of the effect of CDD on NDVI.

Sum of Squares df Mean Square F Sig.

Between Groups 1451.407 4 362.8517 930.2601 0.000
Within Groups 660.7516 1694 0.390054

Total 2112.158 1698



Sustainability 2021, 13, 5748 11 of 17

Table 6. Multiple variance analysis of the effect of CDD on NDVI.

(I) 5 Types (J) 5 Types Mean Difference (I-J) Std. Error Sig.
95% Confidence Interval

Lower Limits Upper Limits

1 2 1.53925 * 0.06260 0.00000 1.41646 1.66204
3 2.13345 * 0.03925 0.00000 2.05648 2.21043
4 1.42263 * 0.04194 0.00000 1.34036 1.50489
5 −0.01401 0.05201 0.78768 −0.11603 0.08801

2 1 −1.53925 * 0.06260 0.00000 −1.66203 −1.41646
3 0.59421 * 0.06463 0.00000 0.46745 0.72096
4 −0.11662 0.06630 0.07876 −0.24665 0.01342
5 −1.55326 * 0.07309 0.00000 −1.69660 −1.40991

3 1 −2.13345 * 0.03925 0.00000 −2.21043 −2.05648
2 −0.59421 * 0.06463 0.00000 −0.72096 −0.46745
4 −0.71082 * 0.04490 0.00000 −0.79890 −0.62275
5 −2.14746 * 0.05443 0.00000 −2.25422 −2.04071

4 1 −1.42263 * 0.04194 0.00000 −1.50490 −1.34036
2 0.11662 0.06630 0.07876 −0.013417 0.24665
3 0.71082 * 0.04490 0.00000 0.62275 0.79890
5 −1.43664 * 0.05640 0.00000 −1.54727 −1.32601

5 1 0.01401 0.05201 0.78768 −0.08801 0.11603
2 1.55326 * 0.07309 0.00000 1.40991 1.69660
3 2.14746 * 0.05443 0.00000 2.04071 2.25422
4 1.43664 * 0.05640 0.00000 1.32601 1.54727

* The significance level of mean difference was 0.05.

3.2.2. Analysis of the Regional Dominant Factors of the Impact of Extreme Climate
on NDVI

On the basis of the above classification test, the difference between the mean value of
the regression coefficients of different extreme climate indices in each type and the national
mean value was calculated to judge the magnitude of the impact. The results are shown in
Figure 6. For the convenience of comparison, the difference in CDD was calculated after
taking the absolute value of the regression coefficient into account. Through the size of
the value of difference, we can judge the “intensity” of the impact of the extreme climate
index on vegetation. Based on the results of the analysis of regression coefficients, the
regression coefficients of some sites did not pass the significance test (their influence was
not significant). Therefore, the significance test should be taken into consideration when
identifying specific features of each type. We calculated the percentage of sites that passed
the significance test for the different extreme climate indices in each type. The results
are shown in Figure 7. According to the proportion, the impact scope of each extreme
climate index on vegetation in different types can be identified. At the same time, the
proportion can be used to examine the results of impact intensity. The elements with a
higher proportion of sites passing the significance test and greater influence intensity are
the dominant ones.
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In Type 1, as regards the influence of CWD, the proportion of sites passing the signifi-
cance test is the highest, reaching 100%. The proportions of each of the other three extreme
climate indices are below 50%. In this region, CWD has the largest influence scope on
vegetation. In the assessment of difference, the influence intensities of CWD and TX10p
are both higher than the national average, but the degree of deviation of TX10p is low. In
general, the NDVI in this area was mainly affected by CWD, in terms of both geographical
area and intensity, in the 18 years studied.

In Type 2, all sites passed the significance test for CDD, CWD and TX10p, but not TXx,
for which this proportion was slightly lower. Besides CWD, the degree of influence of the
other three indices were all higher than the national average, among which CDD had the
largest influence. As shown by the horizontal comparison of the five types, TX10p in Type
2 is present at the highest level, and has the greatest influence among the five types. In
general, the Type 2 region is mainly affected by CDD and TX10p.

In Type 3, the proportion of CDD and CWD sites passing the significance test was
100%, followed by TX10p. In terms of influence intensity, CDD and TX10p were above the
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national average, and the deviation of CDD was the most obvious and was the greatest
among the five types. In short, the vegetation in this region was mainly affected by CDD in
the 18 years studied.

In Type 4, all extreme climate indices except for TX10p at all sites passed the signifi-
cance test (100%), and a large range of influence was shown in this region. The influence
intensity of both CDD and TXx was higher than the national average. CDD showed the
strongest intensity in this region, and the influence intensity of TXx here was second only
to this feature’s intensity in Type 5, which is the region most affected by TXx. In conclusion,
the vegetation in the Type 4 region was strongly affected by CDD and TXx.

Type 5 is mainly influenced by CWD and TXx in spatial scope, and the sites of both
indices passed the significance test up to 100%. In this region, the CDD was below the
national average, and showed a higher degree of deviation, close to that of Type 1, which
also explains why there was no significant difference in CDD between Type 1 and Type
5 according to the multiple analyses of variance. The value of CWD was higher than the
national average, and its influence intensity was second only to that of Type 1, which
showed a strong influence. TXx showed the greatest change in intensity. Considering the
proportion of sites passing the significance test, and the intensity of influence, we can assert
that the vegetation in this area is mainly affected by the compound influence of CWD
and TXx.

Based on the results of the comprehensive type analysis, those factors with a degree
of influence above the national average are labeled “+”, and those whose influence degree
deviates significantly are labeled “++”. Those below the national average are marked
“−”, and those deviating significantly are marked “− −” (Table 7). According to the
characteristics of the different dominant factors, the five types can be described as follows:
the humidity-promoting type; the cold-promoting and drought-inhibiting compound
type; the drought-inhibiting type; the heat-promoting and drought-inhibiting compound
type, and the heat-promoting and humidity-promoting compound type. Correspondingly,
vegetation in different areas can be susceptible to the adverse effects of different extreme
climate events in the future. In the Type 1 areas, the vegetation was mainly enhanced by
extreme precipitation, which means that the vegetation in this area is more adapted to the
humid environment. As such, this type will be more sensitive to drought in the future. Type
2, showing an increase in TX10p, showed higher NDVI and a better vegetation condition.
However, this is inhibited by CDD. Therefore, in this region, we should pay more attention
to preventing the risks of heat wave and drought. Type 3 was shown to not be significantly
affected by other indices, and was mainly inhibited by drought (the factor with the highest
intensity). In the future, dry conditions caused by the intensification of extreme drought
in this region should be addressed. Type 4 showed similar properties to Type 2: it is an
area affected simultaneously by extreme temperature and extreme precipitation. This area
was shown to be subjected to obvious inhibitory effects by drought, which verifies the
multiple analysis of variance for these two types in terms of CDD. Compared to Type 2, the
vegetation in Type 4 regions was mainly enhanced by heat events, implying the higher risk
of extreme cold events in the future. Type 5 is also a composite type, which is enhanced
by high temperatures and is at high risk of damage as a result of cold waves in the future.
Meanwhile, the extreme precipitation level also promotes the growth of vegetation in this
region. If the extreme precipitation decreases, the vegetation is more likely to be inhibited,
and so the risk of drought to vegetation here is high. In general, Type 2, Type 4 and Type 5
are all under the compound influence of extreme temperature and extreme precipitation,
while Type 1 and Type 3 are influenced primarily by single factors.
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Table 7. Comprehensive description of the impact types and future risks of extreme climate in terms of NDVI, identified via
the SOFM network.

Type Description of the Type Main Risk in the Future CDD CWD TX10p TXx

1 Humidity-Promoting Type Drought − − ++ + − −

2 Cold-Promoting and
Drought-Inhibiting Compound Type Hot wave, Drought ++ − − ++ +

3 Drought-Inhibiting Type Drought ++ − + −

4 Heat-Promoting and
Drought-Inhibiting Compound Type Cold wave, Drought ++ − − − ++

5 Heat-Promoting and
Humidity-Promoting Compound Type Cold wave, Drought − − ++ − − ++

4. Conclusions and Discussion

In this study, representative extreme climate indices were selected to explore the
spatial heterogeneity and complexity of the impacts of extreme climate on the greenness of
vegetation in China, during the growing seasons in the years from 2001 to 2018. The main
conclusions are as follows:

(1) There were spatial differences in the impacts of climate extremes on vegetation, and
there were obvious scale effects of different extreme climate indices. Among the five
extreme climate indices, the effects of CDD and TX10p on vegetation were small
in the spatial scale, and their spatial heterogeneity was strong. Therefore, regional
studies should be focused on high-risk areas. R95pTOT showed a large spatial scale,
and its scale of influence was close to the whole country. Therefore, more attention
should be paid to the overall, national-scale changes. Under current extreme climatic
conditions, the scope of the impact of extreme precipitation on vegetation in China
is larger, and the increase in extreme precipitation in most regions is beneficial to
vegetation growth, while the effect of extreme temperature is relatively complex;

(2) During the period 2001–2018, the impacts of extreme climate on NDVI in China
showed obvious regional characteristics. The spatial classification results describe
two single-factor types (humidity-promoting and drought-inhibiting), and three
combination types (cold-promoting and drought-inhibiting, heat-promoting and
drought-inhibiting, heat-promoting and humidity-promoting), of the impact of ex-
treme temperature and precipitation. The results show that drought is a typical
extreme climate risk for vegetation growth in China;

(3) The study identified some sensitive areas, such as the Beijing–Tianjin–Hebei region,
the Yangtze River Delta, and the Pearl River Delta, which are more adaptable to
extreme low temperature. Vegetation in these areas is more likely to be affected by
high temperature and heat waves in the future. The vegetation in Hetao Plain was
inhibited by extreme low temperature and promoted by drought conditions, which
was different from other regions in China, and should be paid more attention.

The conclusions of this study are verified by the results of other studies on typically
affected regions and representative extreme temperature and precipitation events in China.
Our results are consistent with Zhang et al. [36], who conducted a comparative study in the
dryland ecosystem between Xinjiang and Arizona on the response of natural vegetation to
climate. Based on their research, they concluded that vegetation growth in Xinjiang was
positively correlated with wet conditions based on the increase in precipitation. This is
consistent with our conclusion that the CWD and R95pTOT, which represent the humidity
conditions, all had a positive relationship with the NDVI. Zhang et al. indicated that
large fraction of Xinjiang experienced warming and wetting, which is exactly the same
as our conclusion for Xinjiang area in the SOFM simulation work, that the impact type of
extreme climate to the vegetation in Xinjiang was heat-promoting and humidity-promoting
compound. In addition, we all gave the judgement that the drought will be a major risk
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in the future in this area. Similar conclusions to our study were also made in the research
carried out by Abbas et al. [37] on the Pearl River Delta in China, in that for the growing
season from 1982 to 2015, temperature was negatively correlated with crop production
and forest vegetation, which corresponds with our conclusion, especially with the results
of SOFM. The study of Chu et al. [38] drew the conclusion that precipitation was the
dominant effect factor on NDVI during the growing season in the Amur-Heilongjiang
River Basin based on GIMMS NDVI and raster climate data source, which verified our
results in Northeast China.

This study also performed a comprehensive and systematic analysis of the spatial
differences in the impacts of extreme climate on vegetation at the national scale, providing
a basis for the prevention of extreme climate risks according to local conditions. Compared
with previous studies using global regression or GWR models, the spatial scale of impacts in
this study is more quantitative and precise. The spatial scale of the impacts corresponding
to each extreme climate index is analyzed, and the conclusions of the spatial analysis are
optimized. At the same time, in our comprehensive analysis of the regionally dominant
factors, the boundaries and the weights of indicators are not defined in advance. Instead,
the principle of the artificial neural network is used to conduct a classification analysis
from the perspective of the data’s structure similarity, so as to avoid the interference of
subjective experience. The results call attention to drought, which threatened the entire
country. Meanwhile, heat waves and cold waves pose risks for some regions in the future
that should be paid more attention in practice.

In this study, only the NDVI was considered. Some studies assert that the NDVI
mainly represents structural information, such as vegetation coverage and greenness, but
cannot accurately reflect the physiological activity of vegetation. The conclusions related
to physiological functions, such as the length of the growing season, analyzed by NDVI
are different from the actual observational results [39–41]. With the progress made in
remote sensing technology and the detection of fluorescence, solar-induced chlorophyll
fluorescence (SIF), as a by-product of photosynthesis, has gradually attracted attention in
the field of vegetation research due to its ability to represent physiological activities related
to photosynthesis [42–46]. In the future, we may be able to introduce SIF into the practice
of vegetation representation, in order to study the impacts of extreme climate on vegetation
in a more comprehensive way. In addition, the aim of this study was to systematically
evaluate the spatial influence characteristics of extreme climate on vegetation, and so a
discussion of human influence is not included. In future study, the contributions of climate
and human activities to vegetation change can be comprehensively discussed for different
regions, based on the typical regions identified in this study.
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