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Abstract: This work aims to minimize the cost of installing renewable energy resources (photovoltaic
systems) as well as energy storage systems (batteries), in addition to the cost of operation over
a period of 20 years, which will include the cost of operating the power grid and the charging
and discharging of the batteries. To this end, we propose a long-term planning optimization and
expansion framework for a smart distribution network. A second order cone programming (SOCP)
algorithm is utilized in this work to model the power flow equations. The minimization is computed
in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different
scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution
test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed
optimization and forecasting model. The numerical studies are conducted on two of the highest
performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs).
In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs.
The results are presented to showcase the economic profits of utilizing these battery technologies.

Keywords: battery energy storage system (BESS); lithium-ion battery; redox flow battery (RFB);
stochastic expansion planning; second order cone programming (SOCP); power optimization; power
distribution network; smart distribution network

1. Introduction

In today’s world, many technologies and technological devices that are used on a daily
basis, whether it is for personal or commercial use, rely on fossil fuels as their generation
source of electricity. This dependence has led to an increase in the greenhouse gas (GHG)
emissions, as well as other related fossil fuel pollution in the environment, and stirred an
interest in utilizing renewable energy resources [1,2]. Renewable energy resources, such
as wind turbines, solar panels, and hydro-power are freely available, pollution free, and
durable, which are the main reasons for growing industrial and residential interest in
utilizing these resources. This has therefore led to the transformation of these units into
smart microgrids [1,3]. Smart microgrids use wireless networks for energy data collection,
power line monitoring, protection, and demand/response management, and have made
energy usage more flexible and economically efficient [4]. Smart microgrids, however,
are dependent on renewable energy resources, and these resources are considered to be
unreliable due to their stochastic behavior and their dependency on factors such as weather,
wind speed, cloud cover, humidity, elevation, and solar irradiance. There are periods
of time when these resources might not be able to provide any energy to support the
microgrid, which is the reason why energy storage systems (ESS) are integrated into the
microgrids [5]. Consequently, one of the priorities of the Department of Energy (DOE) [6]
for smart grid development is the integration of appropriate batteries and other storage
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systems. ESS can help with frequency and voltage regulation, capacity support, reactive
power compensation, and peak shaving [7–10].

Many countries including the Unites States have adopted, funded, and supported
ESS projects; however, many industries are interested in a technology that can be sustain-
able and independently-operated. The fact that needs to be addressed is that once this
technology becomes independently-owned, it has to participate in the electricity market,
which could eventually lead to increasing costs for the customers. Hence, it is of the utmost
importance to adopt a technology and battery chemistry that is economically beneficial to
the customers in the long term [11].

To address these concerns, several research studies have been conducted that focus
on finding the best battery technologies that could be used for electrochemical energy
storage applications. Among all battery technologies, Lithium-ion (Li-ion) battery tech-
nology has evolved over 40 years and proven itself as the dominant battery technology
powering up everything from small electronic devices, to rechargeable energy resources in
electric vehicles, and to energy storage systems in residential units [12,13]. Li-ion batter-
ies are very lightweight compared to other batteries, allowing them to have a very high
energy density. Despite the advantages and domination of Li-ion battery technology in
current battery storage market, it does not provide the needed solution for the utility-scale
commercial battery market due to its short operating life and its issues with rapid heat
generation. A majority of grid storage today is pumped hydro, but there are geologic
and environmental constraints on the deployment location of pumped hydro. Therefore,
utility grids need large-scale, stable, and long-lasting chemical battery storage to deal with
rapid intermittency of renewable energy generation resources and fast load changes. Vana-
dium redox flow battery (RFB) technology offers several advantages such as scalability,
non-flammability, compactness, low maintenance, long life cycle, high efficiency, high
charge and discharge duration, durability, and fast responsiveness [14,15]. Furthermore,
the Earth’s crust has more vanadium than lithium. However, the commercialization of
RFB technology suffers from the high cost of Vanadium extraction, which is why RFB
technology has only been utilized in the industry and it is not currently economically viable
for residential and home storage applications [16].

There are several works in the literature that have compared the performance of Li-ion
batteries [17] with RFBs and have studied their effects on the grid and users [18,19]. In [20],
a comprehensive assessment of a prospective production process for RFBs is presented
showing that compared to Li-ion batteries, RFBs exhibit lower costs of manufacturing, due
to their simpler reactor (cell) design, lower required area, and thus a simpler manufac-
turing process. It is also shown that RFBs, compared to competitive technologies such
as Li-ion batteries, are projected to achieve the majority of manufacturing scale benefits
at lower production volumes, but this advantage is offset due to the remarkably lower
current production volume of flow batteries. In [21,22], novel strategies are presented
to achieve the goal of high energy density for RFBs and to address one of the inhibiting
factors in widespread utilization of RFBs in utility-scale energy storage systems. A compre-
hensive review of RFBs and their potentials as future utility-scale battery storage systems
is presented in [23,24]. In [25,26], it is demonstrated that utilizing batteries and storage
systems will improve the efficiency and reliability of the grid. Other studies have focused
on combined utilization of batteries and renewable energy sources in order to compensate
for the stochastic characteristics of these resources and to help utility companies with
peak shaving [27–29]. However, none of the available articles have addressed how the
installation, operation, and maintenance costs of each of these batteries might affect the
utility’s and customer’s decision in adopting these battery technologies.

Therefore, to outline the potential benefits of RFBs in meeting stringent cost target
for grid applications and to shed some light on the viability of RFB technology as a
promising solution for future utility-scale battery storage system, we have investigated
the optimal cost and the benefits of deploying RFB technology and compared it with the
current mature and dominant Li-ion battery storage technology. Comparison of RFB, as
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a centralized battery technology, and Li-ion battery, as a decentralized technology, also
reveals the impacts and economic profits of these two battery technologies. To this end,
this work proposes a long term planning optimization and expansion framework for a
smart distribution network having combined centralized battery technology, e.g., RFB
and decentralized technology, e.g., Li-ion battery as well as renewable energy resources,
such that the grid would have optimal power flow with AC power flow constraints. A
second order cone programming (SOCP) algorithm is utilized in this work to model the
power flow equations [30–32]. Leveraging the full AC power flow constraints enables an
accurate modeling for the loss as well as voltage drop across the distribution network.
One major research question analyzed in this work is the impact of the location of the
storage units as well as the size and the procured technologies. The full AC power flow
constraints embedded into the long-term expansion planning framework ensure that all
operating conditions are satisfied. The presented analysis reveals the impact of each type
of technology on both economics of the system as well as operating criteria. This work
will pave the way toward a wise decision in choosing and deployment of a proper battery
technology among various technologies. The contribution and objective of this work is
to minimize the cost of installing renewable energy resources as well as energy storage
systems (batteries), in addition to the cost of operation over a period of 20 years, which
will include the cost of operating the grid as well as the charging and discharging of the
batteries. The numerical results are presented to showcase the economic profits of operating
investor-owned batteries (Li-ion battery in this case) and utility-owned battery storage
systems (RFB in this case). The highlights of this work can be summarized as follows:

• In this work, a long-term planning optimization and expansion framework for a smart
microgrid is proposed to minimize the cost of installing renewable energy resources
(photovoltaic systems) as well as energy storage systems (batteries), in addition to
the cost of operation over a long period of 20 years, which will include the cost of
operating the power grid and the charging and discharging of the batteries.

• The full AC power flow constraints embedded into the long-term expansion planning
framework ensure that all operating conditions are satisfied. Furthermore, it enables
an accurate modeling for the loss as well as the voltage drop across the distribution
network.

• To include all affecting parameters into the optimization process, the minimization is
computed in accordance with the years (y), seasons (s), days of the week (d), time of
the day (t), and different scenarios based on the usage of energy and its production (c).

• The difference between a centralized battery technology, e.g., RFB and decentralized
technology, e.g., Li-ion battery is investigated in this work to compare and showcase
the economic profits of these battery technologies.

• An IEEE 33-bus balanced distribution test bench is utilized in this work to evaluate
the performance, effectiveness, and reliability of the proposed optimization and
forecasting model.

The rest of this paper is organized as follows. In Section 2, the formulas for the
optimization problem are derived. The solution method is presented in this section. In
Section 3, the proposed optimization algorithm is implemented on an IEEE 33-bus balanced
distribution test bench and the numerical results are presented. The discussion and analysis
of obtained numerical results are then provided in Section 4. Finally, conclusions are drawn
in Section 5.

2. Problem Formulation and Methodology

Consider a radial power grid network with i buses existing in the distribution grid
as expressed in IEEE’s 33-bus balanced distribution test system. A radial network is a
tree shaped network with child, chi and ancestor Ai nodes connected to the ith node, such
that there are no closed loops within the system that would lead to the origin. Due to
the assumption of the existence of renewable energy resources on random buses, it can
be assumed that any of these networks might be forced to operate in an islanded mode
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due to reasons such as improving the reliability of the grid or preparing for unforeseen
natural weather occurrences [33]. Subscript i denotes the number of buses on the network.
Subscript SP denotes a specific solar panel on a bus, while subscripts BL and BF would
denote specific Li-ion and RFB on each bus, respectively. The existence of each of these
resources or energy systems on a specific bus is indicated by the Incident Matrix, A.
Incident Matrices ASP, ABL, ABF, and AG represent the existence and the location of solar
panels, Li-ion batteries, RFBs, and other power resources on the grid, respectively.

As mentioned earlier, the focus of this work is on planning and optimizing a long
term expansion for a network, utilizing photo voltaic (PV) panels as well as battery storage
resources. This expansion depends on the number of years, y, which would divide the
market into one year time slots such that y = 1; . . . ; Y, where Y = 20. In addition, it would
depend on the seasons of each year, s, where s = 1; 2; 3; 4; such that 1, 2, 3, and 4 represent
Spring, Summer, Fall, and Winter, respectively. Moreover, the days of the week are also
considered in this work in order to signify the difference between weekdays and weekends
on the energy usage; therefore, the subscript d would either be 1 or 2 where 1 indicate
weekdays and 2 represents weekends. The day-ahead energy market is also divided into
24 time slots, such that t ranges from 1 to 24. Other factors considered in the optimization
are the 10 different demand scenarios, c, based on the usage of energy and its production,
which also reflects the time of use (TOU) regulations set by the utility grid.

To minimize the cost of installation, maintenance, and operation of renewable en-
ergy resources in tandem with battery storage units, the objective function, F , can be
expressed as

F = Min

((
∑
y

∑
j

∑
k

(
Cins,j

k,y Iins,j
k,y

))
+

(
∑

c
ρc ∑

y
∑

s
∑
d

∑
t

(
PGrid

y,s,d,t,cCGrid
y,s,d,t,c

)))
, (1)

where j used in the first term can either be PV, BL, or BF, and index k is pv, bl, and b f
referring to existing PV, Li-ion, and RFB systems, respectively. In general, the first term
represents the cost of installing either solar panels or battery storage units in a certain year,
and the second term represents the cost of delivering power to the grid. This objective
function consists of 3 different variable types, including decision variables, binary variables,
and constant parameters. In this equation, the costs of the solar panels and batteries are
1-dimensional arrays of 1× 20 which includes the depreciation of dollar value as well
as the installation cost of each of these systems [34–36]. The cost of the grid’s operation
is assumed to be a constant parameter, however, the size of this array depends on the
number of hours in a year. The prices considered in this array are based on TOU rates from
San Diego Gas and Electric (SDG&E) for different times of the day, days of the week, and
seasons of the year [37]. The demand of the grid is based on multiple 24× 10 matrices
that indicate the demand based on TOU, different scenarios of usage pattern, as well as
the different seasons of the year. The power delivered by the grid is a decision variable,
indicated by the solver itself, and the installation indices are binary variables, meaning
that they can either be 0 or 1. Due to the existence of these different variable types in
the objective function as well as the constraints mentioned in the following sections, this
becomes an SOCP problem.

The binary assumptions for installation indices are made such that the following
constraints are satisfied:

Iins,PV
pv,y = IPV

pv,y − IPV
pv,y−1, (2a)

Iins,BL
bl,y = IBL

bl,y − IBL
bl,y−1, (2b)

Iins,BF
b f ,y = IBF

b f ,y − IBF
b f ,y−1, (2c)
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where indices pv, bl, and b f refer to specific existing PV, Li-ion, and RFB systems, respec-
tively. In other words, the above-mentioned sub-equations indicate that the current values
of installation indices depend on what they were the year before, such that if they are 0,
they will indicate no installation, and if they are 1, they will indicate the installation and ex-
istence of their respective devices. In order to solve the aforementioned objective function,
there are multiple constraints that need to be taken into account. The first constraint will
be based on the active and reactive power flow in the power network.

The active power flow in the network can be formulated as follows,

∑
i

∑
c

∑
y

∑
s

∑
d

∑
t

Pinj,i
y,s,d,t,c = ∑

i
∑

c
∑
y

∑
s

∑
d

∑
t

(
∑
pv

Ai
pvPPV

pv,y,s,d,t,c

+∑
g

Ai
gPGrid

g,y,s,d,t,c + ∑
bl

Ai
bl(Pdis,BL

bl,y,s,d,t,c − Pch,BL
bl,y,s,d,t,c)+

∑
b f

Ai
b f (Pdis,BF

b f ,y,s,d,t,c − Pch,BF
b f ,y,s,d,t,c)− PD,i

y,s,d,t,c

)
,

where the first term depicts the active power injected in the ith node of the bus, which
is equal to the sum of all the power exiting (subtraction) or entering (addition) the bus
based on the different years, seasons, days, times, scenarios, as well as individual PVs and
batteries. Index g represents different tiers of usage. In this equation, all of the variables
are considered to be decision variables except the demand power and the incident matrices
that were discussed previously. The second term indicates the power dispatched by certain
solar panels; the third term indicates the power dispatch of the grid; the fourth and fifth
terms represent the power dispatch of the batteries based on their charge or discharge
mode, such that if the battery is discharging it is injecting energy into the grid and when
it is charging it is draining energy from the grid; and finally the sixth term indicates the
demand power used by the costumers.

Similarly, the reactive power injection into the grid is formulated as follows,

∑
i

∑
c

∑
y

∑
s

∑
d

∑
t

Qinj,i
y,s,d,t,c = ∑

i
∑

c
∑
y

∑
s

∑
d

∑
t

(
∑
pv

Ai
pvQinv,PV

pv,y,s,d,t,c

+∑
g

Ai
gQGrid

g,y,s,d,t,c + ∑
bl

Ai
blQ

inv,BL
bl,y,s,d,t,c

+∑
b f

Ai
b f Qinv,BF

b f ,y,s,d,t,c −QD,i
y,s,d,t,c

)
,

where the reactive powers indicated in the first, third, and fourth terms are for the inverters
of PVs, Li-ion batteries, and RFBs, respectively. Again, all of the variables in this equation
are decision variables except the demand reactive power and the incident matrices.

The optimal power flow on each bus can also be modeled such that the dependence on
the bus admittances, voltages, and phasors is evident. The set of Equations (3) through (5)
formulate the AC active and reactive power flow equations and voltage bounds for each
node. The active polar power flow equation is modeled as follows,

Pinj,i = GGivi
2 + ∑

j∈chi

(
GGi,jvivj cos (θi − θj)− BBi,jvivj sin (θi − θj)

)
+ GGi,ai vivai cos (θi − θai )− BBi,ai vivai sin (θi − θai ), (3)

in which the admittance values will be obtained from the IEEE 33-bus balanced distribution
test systems [38,39]. The reactive polar power flow equation is similarly modeled as follows,

Qinj,i = −BBivi
2 + ∑

j∈chi

−
(

BBi,jvivj cos (θi − θj) + GGi,jvivj sin (θi − θj)
)

− BBi,ai vivai cos (θi − θai )− GGi,ai vivai sin (θi − θai ), (4)
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such that

(Qinj,1)2 + (Pinj,1)2 ≤ (Str)
2, (5)

where Str is the capacity of the transformer connected to the first bus, and is assumed to
be at 5MVA. This value will be changed to 1MVA and 15MVA to evaluate the effect of the
sizing of the distribution transformer on the bus. The voltage constraints for the ith node
can be modeled as follows,

(Vmin
i )2 ≤ v2

i ≤ (Vmax
i )2, (6)

where the limits on the voltage of the power delivered by utilities are enforced in the square
form imposing a contract between the utility and the consumers to deliver the voltage
within a limit which is usually 5% of the nominal value. In (6), Vmin

i and Vmax
i are the lower

and upper limits for vi, respectively, and are constant parameters, however, vi itself is a
decision variable. It should be noted that as both upper and lower limits are non-negative,
enforcing the square form of the constraints will have the same impact as the one without
squaring the limits and the voltage variable. Equation (6) can also be applied to the children
and ancestor nodes of i as well. The main benefits of the AC power flow compared to the
DC power flow or linearized AC power flow is the possibility of showing the voltages at
each bus of the network. The limitations on the sine and cosine functions and phases are
as follows,

∑
i

θi,ai ,chi
= 2πk, f or some kεZ, (7)

which indicates that the phase difference can range from zero (0) to any multiple of 2π.
Based on the constraints provided, it can be concluded that the current power flow

model is a polar one, and therefore, hard to solve. To alleviate the extensive calculations
and achieve higher computation efficiency, the rectangular and relaxed power flow models
will be obtained later in this section.

The constraints of the power generated by each specific PV in the grid, pv, can be
formulated as follows,

0 ≤ PPV
pv,y,s,d,t,c ≤ IPV

pv,y × PPV,max
pv,y,s,d,t,c (8a)

IPV
pv,y ≥ IPV

pv,y−1 (8b)

where (8a) states that the power generated by the PVs in the grid will always be less than
that of the power capacity of the grid, which can be obtained by multiplying the existence
variable of the PV by the total capacity of each panel based on the solar panel itself, year,
season, day, time, and scenario.

The restrictions on the grid power are as follows,

0 ≤ PGrid
g,y,s,d,t,c, (9a)

ρc(PGrid
g,y,s,weekday,t,c × 22 + PGrid

g,y,s,weekend,t,c × 8) ≤ PGrid,max
g,y,s (9b)

where it can be seen from Equation (9a) that the power generated by the grid can never
be negative and its lower bound is zero. Equation (9b) indicates the effect of the days
of the week (weekday vs. weekend) on the power flowing in the grid. Based on these
two restrictions, it can be concluded that the total power of the grid, considering the effect
of the 10 different usage scenarios, and the days of the week will be restricted by the
maximum capacity of the grid which is set by the scenario with the highest grid demand.
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The reactive power restrictions for the PVs, RFBs, and Li-ion batteries are summarized
as follows,

−Qinv,PV,max
pv × IPV

pv,y ≤ Qinv,PV
pv,y,s,d,t,c ≤ Qinv,PV,max

pv × IPV
pv,y (10)

−Qinv,BL,max
bl × IBL

bl,y ≤ Qinv,BL
bl,y,s,d,t,c ≤ Qinv,BL,max

bl × IBL
bl,y (11)

−Qinv,BF,max
b f × IBF

b f ,y ≤ Qinv,BF
b f ,y,s,d,t,c ≤ Qinv,BF,max

b f × IBF
b f ,y (12)

Equations (10)–(12) indicate that the reactive power of the device needs to be restricted
by the absolute value of the capacity of the inverters based on the existence variables.
Again, it is worth to mention that the capacity variables are all constant parameters and
the existence variables are all binary.

Since the contribution of this work is on distinguishing the difference between Li-ion
batteries and RFBs in a long term expansion planning, the constraints and limitations on
these two batteries are also formulated. The limitations on the Li-ion battery are as follows,

EBL
bl,y,s,d,t,c = EBL

bl,y,s,d,t−1,c + Pch,BL
bl,y,s,d,t,c × ηBL −

Pdis,BL
bl,y,s,d,t,c

ηBL
(13)

EBL
bl,y,s,d,0,c = EBL

bl,y,s,d,24,c (14)

EBL,min
bl × IBL

bl,y ≤ EBL
bl,y,s,d,t−1,c ≤ EBL,max

bl × (IBL
bl,y −

y

∑
y′

αBL IBL
bl,y′) (15)

0 ≤ Pch,BL
bl,y,s,d,t,c ≤ Pch,BL,max

bl (16)

0 ≤ Pdis,BL
bl,y,s,d,t,c ≤ Pdis,BL,max

bl (17)

0 ≤ Ech,BL
bl,y,s,d,t,c ≤ EBL,max

bl × (IBL
bl,y −

y

∑
y′

αBL IBL
bl,y′) (18)

0 ≤ Edis,BL
bl,y,s,d,t,c ≤ EBL,max

bl × (IBL
bl,y −

y

∑
y′

αBL IBL
bl,y′) (19)

Similarly, the limitations on the RFB are as follows,

EBF
b f ,y,s,d,t,c = EBF

b f ,y,s,d,t−1,c + Pch,BF
b f ,y,s,d,t,c × ηBF −

Pdis,BF
b f ,y,s,d,t,c

ηBF
(20)

EBF
b f ,y,s,d,0,c = EBF

b f ,y,s,d,24,c (21)

EBF,min
b f × IBF

b f ,y ≤ EBF
b f ,y,s,d,t−1,c ≤ EBF,max

b f × (IBF
b f ,y −

y

∑
y′

αBF IBF
b f ,y′) (22)

0 ≤ Pch,BF
b f ,y,s,d,t,c ≤ Pch,BF,max

b f (23)

0 ≤ Pdis,BF
b f ,y,s,d,t,c ≤ Pdis,BF,max

b f (24)

0 ≤ Ech,BF
b f ,y,s,d,t,c ≤ EBF,max

b f × (IBF
b f ,y −

y

∑
y′

αBF IBF
b f ,y′) (25)
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0 ≤ Edis,BF
b f ,y,s,d,t,c ≤ EBF,max

b f × (IBF
b f ,y −

y

∑
y′

αBF IBF
b f ,y′) (26)

Equations (13) and (20) refer to the energy available in the battery unit. In other
words, they are referring to the condition which states that the energy stored in the battery
at the current time t depends on its energy at t− 1 in addition to the energy consumed
during charging of the battery and the energy extracted from the node based on the
discharge of the battery. Equations (14) and (21) refer to the fact that the energy stored in
the battery at the end of the day has to be equal to its value at the beginning of the day.
Equations (15) and (22) formulate the limitations on the dispatch of the battery units based
on their installation indices. Equations (16)–(19) and (23)–(26) refer to the constraints on the
charge and discharge energy dispatch of the batteries. The last term in (18) and (19) presents
the impact of battery aging on its charging and discharge rate. The maximum capacity
variables in all Equations (13) through (26), as well as the efficiency factors are constant
parameters. The charging and discharging efficiencies are considered to be the same for
both RFB and Li-ion battery. The charge and discharge powers as well as battery capacities
are decision variables, and the existence variables are binary values in these equations.

As it was mentioned earlier, it can be seen that the problem is in the form of a
nonconvex nonlinear optimization problem. The reason for this is the nonlinearity of the
bus voltages and their corresponding phase differences as demonstrated in (3)–(5). Another
reason is due to the quadratic constraints on the voltage limitations, as formulated in (6).
Nonlinear functions are amongst the hardest and most complicated to solve and optimize,
and therefore, need to somehow be simplified in order to become solvable. That is why
the aforementioned equations are convexified and the problem is converted to an SOCP
relaxation operation problem.

To this end, the nonconvex and nonlinear power flow and constraint equations, which
we have previously derived, are relaxed using the methods presented in [31]. Initially,
these equations need to be transformed from the polar environment to the rectangular
environment, such that the power flow equations transforms as follows,

Pinj,i =GGi(ei
2 + fi

2) + ∑
j∈chi

GGi,j(eiej + fi f j)− BBi,j(ei f j − fiej)

+ GGi,ai (eieai + fi fai )− BBi,ai (ei fai − fieai ),
(27)

Qinj,i = −
(

BBi(ei
2 + fi

2) + ∑
j∈chi

BBi,j(eiej + fi f j) + GGi,j(ei f j − fiej)

+ BBi,ai (eieai + fi fai ) + GGi,ai (ei fai − fieai ),
) (28)

where (27) represents the active rectangular power flow model and (28) represents the
reactive rectangular power flow model. It can be seen that even the rectangular model has
some quadratic terms which leads to a lengthy optimization process. The relaxed optimal
power flow model would require the following substitutions for the ei and fi terms:

ei
2 + fi

2 = ccii,

eiechi
+ fi fchi

= cci,chi
,

eieai + fi fai = cci,ai ,

ei fchi
− fiechi

= ssi,chi
,

ei fai − fieai = ssi,ai .

(29)
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As it can be seen, all of the previous quadratic terms are now replaced by linear terms,
which will be substituted in the power flow equation to obtain the semi-relaxed model.

Pinj,i = GGiccii + ∑
j∈chi

(
GGi,jcci,j − BBi,jssi,j

)
+ GGi,ai cci,ai − BBi,ai ssi,ai , (30)

Qinj,i = −
(

BBiccii + ∑
j∈chi

(BBi,jcci,j + GGi,jssi,j) + BBi,ai cci,ai + GGi,ai ssi,ai

)
, (31)

where (30) represents the semi-relaxed active power flow model and (31) represents the
semi-relaxed reactive power flow model. Here, the real and imaginary bus admittance is
extracted from the IEEE 33-bus balanced distribution test system. The constraints on these
decision variables are defined as follows,

cci,chi
2 + ssi,chi

2 ≤ cciiccchi ,chi
,

cci,ai
2 + ssi,ai

2 ≤ cciiccai ,ai ,

cci,chi
= ccchi ,i,

cci,ai = ccai ,i,

ssi,chi
= −sschi ,i,

ssi,ai = −ssai ,i.

(32)

The conditions that transforms this model from a semi-relaxed to a completely relaxed
model are the first and second terms in (32).

Essentially, the two variables cc and ss are replacing the voltage and phase terms,
therefore, the constraints on the voltage with respect to the variables will be transformed to:

(Vmin
i )2 ≤ ccii ≤ (Vmax

i )2, (33)

and the voltages of the bus components could then be defined and obtained as follows,

cci,chi
2 = vivchi

cos(θi − θchi
),

cci,ai
2 = vivai cos(θi − θai ),

ssi,chi
2 = vivchi

sin(θi − θchi
),

ssi,ai
2 = viaai sin(θi − θai ).

(34)

where cc, ss, phasors, and voltages are decision variables defined without initialization,
and are obtained based on the objective function. The capacity or maximum values in these
equations are the only variables that are defined as constant parameters. It can be seen that
the proposed relaxation strategy does not have any nonlinear and quadratic terms, and is
relaxed for modeling.

3. Numerical Results

The power flow, battery storage, and constraint formulations are modeled in the
YALMIP environment [40] and solved using the Gurobi solver [41]. The solver is run on an
HP Pavilion g6 Notebook PC with 4 GB memory. The IEEE 33-bus balanced distribution
test bench is also used as an input for the model alongside the incident matrices, cost
vectors, and constant parameters. The constant parameters for the demand and rates were
obtained from [37], the battery, and solar panel information, including the inverter sizes
as well as their capacity were obtained from [42–48]. These values are summarized in
Tables 1–6. In order to assess the benefits of employing renewable energy resources as well
as energy storage units, multiple scenarios are considered and analyzed.

Multiple scenarios are considered in this work. Some scenarios are based on the
capacity and number of buses that are occupied by solar panels and Li-ion batteries. Other
scenarios consider the size of the transformer at the distribution bus. In addition, we
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considered a specific scenario that shows how efficient the system would be with only
Li-ion or RFB present. The results for the percentage of loss, voltage profile, and optimal
cost of each scenario are shown in Figures 1–3, and are summarized in Table 7 for different
scenarios that are briefly explained below:

• Scenario I: This scenario considers close to minimum number of PVs and Li-ion
batteries (on 4 buses only) with a transformer size of 5MVA. In addition, RFB has
been connected to the first bus of the grid. This scenario is chosen as a basis for the
voltage profile comparison of different scenarios.

• Scenario II: This scenario considers the situation where half of the buses of the
network have PVs and Li-ion batteries installed (16 buses only) with a transformer
size of 5MVA. In addition, RFB has been connected to the first bus of the grid.

• Scenario III: This scenario considers the situation where almost all of the buses of the
network have PVs and Li-ion batteries installed (32 buses only) with a transformer
size of 5MVA. In addition, RFB has been connected to the first bus of the grid.

• Scenario IV: This scenario considers the existence of the PVs (on 4 buses only) and
RFB connected to the first bus of the grid, however, eliminates any Li-ion batteries in
order to assess their effect on the network. The transformer is considered to be 5MVA.

• Scenario V: This scenario considers the existence of the PVs and the Li-ion batteries
(on 4 buses only); however, it eliminates any RFB in order to assess their effect on the
network. The transformer considered is 5MVA.

• Scenario VI: This scenario considers a distribution transformer of size 15MVA. This
system has PVs and Li-ion batteries on 4 buses and the RFB on the first bus of the grid.

• Scenario VII: This scenario considers a distribution transformer of size 1MVA. This
system has PVs and Li-ion batteries on 4 buses and the RFB on the first bus of the grid.

Table 1. Effective lower and upper bounds for RFB (capacity of 6000 kWh and SOC range of 5% to
95%) and Li-ion battery (capacity of 300 kWh with SOC range of 15% to 85%).

System Type Min. Capacity (kWh) Max. Capacity (kWh)

Li-ion Battery 45 255
RFB 300 5700

Table 2. Charging and discharging power rating for RFB (capacity of 6000 kWh with SOC range of
5% to 95%) and Li-ion (capacity of 300 kWh with SOC range of 15% to 85%).

System Type Maximum Charging Power (kW) Maximum Discharging Power (kW)

Li-ion Battery −8 50
RFB −60 1200

Table 3. Maximum power production of the grid and PV.

System Type Maximum Power (kW)

Grid 5000
PV 150

Table 4. Inverter capacity for PV, RFB, and Li-ion battery.

System Type Capacity (KVA)

PV Inverter 150
Li-ion Battery Inverter 300

RFB Inverter 6000
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Table 5. Efficiency and degradation factors (%).

Factors αBF ηBF αBL ηBL ρc

Numerical Value (%) 0.96 0.9 0.9 0.95 0.1

Table 6. Installation costs for the solar panels (cost depreciation factor of 2.5%), Li-ion batteries (cost
depreciation factor of 4%), and RFB (cost depreciation factor of 4%) in ($/kWh) over the span of
20 years.

Year PV Cost ($/kWh) Li-ion Battery Cost ($/kWh) RFB Cost ($/kWh)

1 250 273 500
2 243.75 262.08 480
3 237.66 251.6 460.8
4 231.71 241.53 442.37
5 225.92 231.87 424.67
6 220.27 222.6 407.69
7 214.77 213.69 391.38
8 209.4 205.15 375.72
9 204.16 196.94 360.69
10 199.06 189.06 346.27
11 194.08 181.5 332.42
12 189.23 174.24 319.12
13 184.5 167.27 306.35
14 180.32 161.42 294.1
15 176.71 155.77 282.33
16 173.18 150.31 271.34
17 169.72 145.05 260.2
18 166.32 139.98 249.79
19 162.99 135.08 239.8
20 159.74 130.35 230.21

Table 7. Optimal cost and power loss for different scenarios.

Scenarios Power Loss (%) Optimal Cost ($)

I 0.51158 14,179,000
II 0.49336 17,505,000
III 0.36438 18,940,000
IV 0.42369 12,194,000
V 0.5233 10,804,000
VI 0.82162 22,728,000
VII 0.48341 13,441,000
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Figure 1. The grid’s voltage profile for different penetration levels of PV and battery storage (both Li-ion and RFB) systems:
Scenario I with low penetration level (only on 4 buses), Scenario II with medium penetration level (16 buses), and Scenario
III with high penetration level (32 buses).

Figure 2. The grid’s voltage profile for different battery storage technologies, i.e., Li-ion battery and RFB: Scenario I with
both Li-ion batteries and RFB, Scenario IV with only RFB and no Li-ion batteries, and Scenario V with only Li-ion batteries
and no RFB.
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Figure 3. The grid’s voltage profile for different sizes of distribution transformer: Scenario I with a 5MVA transformer,
Scenario VI with a 15MVA transformer, and Scenario VII with a 1MVA transformer.

4. Analysis and Discussion

Comparing the results of all the investigated scenarios, it is evident that the grid’s
voltage profile is improved with high penetration level of PVs and battery storage systems
as shown in Figure 1. In addition, it is discernible that the efficiency of the grid is best when
RFBs are employed. Furthermore, Figure 2 showcases that the voltage profile of the system
is much improved with RFBs compared to scenarios where no RFBs are employed. It is
also observed from Figure 3 that increasing the capacity of distribution transformer will
deteriorate the grid’s voltage profile. It should be noted that in all figures, the voltage-drop
happening on the 18th bus is due to the topology of the grid, where the 18th bus is the last
bus on the grid and it would experience the least voltage due to transmission losses [49].
It can be seen that the best option in terms of capacity for the grid is Scenario III where
almost all the buses (32 buses out of 33) have installed PV and both Li-ion batteries and
RFB, since the loss percentage is the lowest among all scenarios as summarized in Table 7.
Figure 1 also confirms this hypothesis since it shows that voltage deviation is lowest for
this scenario. It should be noted that in Scenario III, the first bus is only connected to RFB.
If the first bus is also populated with PVs, Li-ion batteries, or both, the model becomes
unstable. That might be due to the additional load that each PV or Li-ion battery, especially
in charging phase, adds to each bus. Therefore, an imbalance in the load on the first bus
might be the reason for the instability of the system with all buses equipped with PVs and
Li-ion batteries.

It was demonstrated that if the power network is not employing RFBs (Scenario V),
while the total operation and maintenance cost is lower, the efficiency of the network is
decreased and the voltage is not regulated, as shown in Figure 2. In terms of transformer
capacity, it can be seen that if RFBs are employed, a smaller size transformer is both cost
and energy efficient (Scenario VII), compared to utilizing a larger one (Scenario VI). This is
also evident from Figure 3 illustrating that the smaller transformer has less deviation from
the base case (Scenario I). In fact utilizing a larger distribution transformer (Scenario VI) is
the least cost and energy efficient case among all scenarios. This research demonstrates
the effectiveness of RFBs compared to Li-ion in regulating the voltage of the distribution
power network as well as increasing the efficiency of the distribution grid. The results
also show that with the current price trends for the installment of energy storage systems,
addition of the Li-ion batteries combined with PVs on a selected number of buses is the
least expensive solution for a sustainable distribution grid powered with renewable energy
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resources. Therefore, the immediate installation of a small number of Li-ion batteries across
several buses within the distribution network is the optimal expansion planning strategy.
In addition, comparing Li-ion and RFB storage technologies, on balance, Li-ion technology
is a better choice for the electricity distribution network.

5. Conclusions

This paper proposed a long-term expansion and optimization framework for the smart
distribution network to investigate long-term efficiency of Li-ion and RFBs in terms of
economics for the customers as well as the operating utility company. The formulation used
for the power flow as well as the constraints considered an SOCP algorithm, and the model
was linearized by applying the relaxed AC optimal power flow (ACOPF) model. These
algorithms were implemented on an IEEE 33-bus balanced distribution testbed system. The
proposed optimization algorithm was tested in several different scenarios to investigate
the effects of penetration level of PVs, RFB and Li-ion battery storage technologies as well
as the capacity of the distribution transformer. The results demonstrate the efficiency and
effectiveness of the proposed optimization model, revealing that installing Li-ion batteries
on several buses of the distribution network is the optimal expansion planning strategy.
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Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery energy storage system
ESS Energy storage system
Li-ion Lithium-ion
RFB Redox flow battery
SOCP Second order cone programming
ACOPF AC optimal power flow
TOU Time of use
PV Photovoltaic
GHG Green house gas
SDG&E San Diego Gas and Electric
DOE Department oF Energy

Nomenclature
Ai Incident matrix on node i
PPV Active power of PV
PGrid Active power of the grid
Pch,BL Active power of charging Li-ion battery
Pch,BF Active power of charging RFB
Pdis,BL Active power of discharging Li-ion battery
Pdis,BF Active power of discharging RFB battery
PD Active power of demand
Pinj Injected active power
QGrid Reactive power of the grid
QD Reactive power of demand
Qinj Injected reactive power
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Cins,PV PV installation Cost
Cins,BL Li-ion installation Cost
Cins,BF RFB installation Cost
CGrid Cost of power from the grid at different tiers of energy usage
Iins,PV Decision index of installing PV
IPV Existence variable of PV
Iins,BL Decision index of installing Li-ion battery
IBL Existence variable of Li-ion battery
Iins,BF Decision index of installing RFB
IBF Existence variable of RFB
ρc Probability factor of the occurrence of each scenario
BBi Susceptance of the line connecting to node i
GGi Conductance of line connecting to node i
vi Voltage of node i
vchi

Voltage of node chi, the children nodes of i
vai Voltage of node ai, the ancestor nodes of i
Vmin

i Minimum voltage of node i
Vmax

i Maximum voltage of node i
ei The real part of voltage phasor of node i
echi

The real part of voltage phasor of node chi, the children nodes of i
eai The real part of voltage phasor of node ai, the ancestor nodes of i
fi The imaginary part of voltage phasor of node i
fchi

The imaginary part of voltage phasor of node chi, the children nodes of i
fai The imaginary part of voltage phasor of node ai, the ancestor nodes of i
cci,i The lifting variable associated with node i
cci,chi

The lifting variable associated with node i and its children nodes chi
cci,ai The lifting variable associated with node i and its ancestor nodes ai
ssi,i The lifting variable associated with node i
ssi,chi

The lifting variable associated with node i and its children nodes chi
ssi,ai The lifting variable associated with node i and its ancestor nodes ai
θi Phase of node i
θchi

Phase of node chi, the children nodes of i
θai Phase of node ai, the ancestor nodes of i
PPV,max Power production capacity of the PV
PGrid,max Power production capacity of the grid
Qinv,PV Reactive power of the PV inverter
Qinv,BL Reactive power of the Li-ion battery inverter
Qinv,BF Reactive power of the RFB inverter
Qinv,PV,max Reactive power capacity of the PV inverter
Qinv,BL,max Reactive power capacity of the Li-ion battery inverter
Qinv,BF,max Reactive power capacity of the RFB inverter
EBL Energy stored in Li-ion battery
EBF Energy stored in RFB
Ech,BL Charging energy of Li-ion battery
Edis,BL Discharging energy of Li-ion battery
Ech,BF Charging energy of RFB
Edis,BF Discharging energy of RFB
EBL,min Minimum energy stored in Li-ion battery
EBL,max Maximum energy stored in Li-ion battery
EBF,min Minimum energy stored in RFB
EBF,max Maximum energy stored in RFB
αBL Degradation of Li-ion battery
αBF Degradation of RFB
ηBL Efficiency of Li-ion battery
ηBF Efficiency of RFB
Str Transformer capacity
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