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Abstract: Various studies on how to prevent and deal with traffic accidents are ongoing. In the past,
the key research emphasis was on passive accident response measures that analyzed roadway-based
historical data to identify road sections with high crash risk. Through assessing crash risks by
analyzing simulation data and actual vehicle driving trajectory data, this study suggests a method
of effectively preventing accidents before they happen. In this analysis, using digital tachograph
(DTG) data, which is the vehicle trajectory data for commercial vehicles running on Korean highways,
hazardous and normal traffic flows were identified and extracted. Driving behavior event data for
both types of traffic flow was processed by measuring safety indicators through the extracted data.
Safety indicators with a high impact on traffic flow classification were then extracted using gradient
boosting, a representative ensemble technique. A neural network analysis was performed using the
extracted safety indicators as independent variables to create a traffic flow classifier, which had a high
accuracy of 94.59%. The DTG data set was also classified based on the severity of each accident that
occurred in the studied roadway, the time of the accident, and the weather; the results were compiled
to enable comprehensive accident prediction. It is expected that proactive crash prevention will be
possible in the future by evaluating real-time accident risks using the findings and ensemble-based
methodologies of this paper.

Keywords: crash risk; driving behavior event data; ensemble; gradient boosting; safety indicators

1. Introduction

Worldwide, traffic accidents cause more than 1.35 million deaths each year and serious
injuries to 20–50 million people, and are recognized as a major public health problem as
well as the cause of significant economic losses [1]. A number of studies are therefore
being carried out on how to prevent traffic accidents and reduce damage. In the past,
such research was mainly conducted to minimize damage after an accident by analyzing
link-based historical data to derive accident-prone sections of roadways [2–5]. In recent
studies, crash risk is measured by evaluating driving trajectory data such as simulation data
or actual driving data; crash risk analysis examines ways to effectively prevent accidents
before they occur [6,7].

The driving trajectory data recorded by the digital tachograph (DTG) device mounted
on a commercial vehicle was set as the analysis data. The driving trajectory data on a
Korean highway was analyzed, and normal traffic flow was extracted. In the event of
an accident, hazardous traffic flow was derived from the accident point by matching the
driving trajectory data and highway accident data, and comparing it with the normal traffic
flow. DTG data were acquired on the driving trajectory of Korean expressways for a total
of two months, from 5 March to 14 December 2017, and 4 to 23 March 2018. Data was
extracted by matching it with accidents that occurred within the temporal and spatial range
of the collected DTG data.
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In this study, when an accident occurs, it is assumed that the characteristics of traffic
flow will be very different compared to normal traffic flow. To prove this assumption,
hazardous traffic flows and normal traffic flows were defined, and characteristics of each
traffic flow were compared and analyzed. Various safety indicators published in previous
studies were used to assess the crash risk of the studied area. DTG data does not provide
information about the surrounding vehicles and conditions, but information from the
subject vehicle such as speed, acceleration, jerk, and yaw can be used to calculate safety
indicators. Crash risk was evaluated using 33 safety indicators developed in the existing
literature [8–15]. In a variety of studies, safety indicators are being established as surrogate
safety measures for assessing crash risks. In most experiments, one or two indicators
are measured and assessed, and the results can be derived differently depending on the
geometry of the analyzed road segment and the traffic conditions. Therefore, this study
aims to create a research framework that measures different safety indicators, extracts
the highly influential indicators in the studied road section when classifying accident risk
situations, and ultimately derives a new hazardous traffic flow classifier.

Ensemble learning is a machine learning technique that combines multiple decision
trees to perform better than one decision tree. Among the ensemble techniques, Friedman
reported on gradient boosting, a representative methodology [16]. The gradient boost-
ing methodology was used here to rank the safety indicators with the highest influence
when classifying hazardous traffic flow and normal traffic flow. In many studies in the
field of transportation, gradient boosting has been used to extract high-priority traffic
variables [17–19]. Here, the top 20 safety indicators derived from the analysis were set
as independent variables, and a traffic flow classifier was derived from a neural network
analysis. The neural network analysis was performed by classifying data sets in various
ways to make comprehensive analysis. The data sets according to accident severity, acci-
dent time, and weather were classified in binary to derive various models that can capture
dangerous situations according to the accident environment. The remarkable point of this
study is that the actual accident data and trajectory data are matched, not simulation data,
and that the dangerous traffic flow has been verified.

The crash risk of traffic flow can be measured using the ensemble-based accident risk
analysis methodology established in this study. Through the calculation of crash risks,
it is expected that road sections with high accident probabilities can be identified before
accidents occur. Therefore, the proposed research framework can be used to proactively
address the high crash-risk road sections. This research can derive real-time crash risk from
the standpoint of a traffic operations manager, and it is expected that customized traffic
safety information—advance hazard predictions—will be provided to prevent potential
traffic accidents. By using the proposed framework, it is possible to derive an appropriate
set of safety indicators for evaluating safety according to the traffic conditions, road and
vehicle geometry, and environmental factors described in the following analysis section.

2. Literature Review
2.1. Safety Indicators Based on Trajectory Data

The Korea Transportation Safety Authority, an agency that collects and manages
nationwide DTG data, oversees commercial transport companies by analyzing DTG data
and reviewing dangerous driving events [8]. For example, rapid deceleration events
(RDEs) are defined as cases in which deceleration exceeds a threshold value in actual
driving data, and could represent dangerous situations [9]. Peak-to-peak jerk, calculated as
the difference between the maximum and minimum jerk values occurring in an analysis
unit, is a surrogate safety measure to classify the severity of a conflict [10]. The number of
peak-to-peak jerk values exceeding 14.7 (m/s)3 can be counted and used as an indicator of a
dangerous situation, and as a result of matching and analyzing accident data; it was found
to be statistically significant [11]. Feng et al. classified an aggressive driver group and a
normal driver group, and discovered a correlation between the frequency of large negative
jerks (LNJs) and large positive jerks (LPJs) and aggressive driving behavior [12]. Wu and
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Jovanis defined the yaw rate as when the heading of a vehicle shifted by more than 4◦, and
its lateral driving safety was assessed through the yaw rate [13]. To capture a vehicle’s
driving variability, Kamrani et al. conducted a study to establish an accident prediction
model by deriving driving volatility measures [14]. Kim et al. developed an erratic driving
indicator (EDI) to reflect the usual driving patterns of drivers; it then detects aggressive
driving by adding threshold values for each driver based on those normal patterns [15].

Xu et al. calibrated and evaluated the RSS model based on the car-following scenario
generated by safety critical event (SCE) detected in the Shanghai Naturalistic Driving
Study [20]. Responsibility-sensitive safety (RSS) is a rigorous mathematical model that
defines the real-time safety distance an autonomous vehicle (AV) must maintain in relation
to surrounding vehicles and helps AVs respond to dangerous situations. Wang et al.’s paper
focused on reviewing surrogate safety measure (SSM) and its application in connected
and autonomous vehicle (CAV) safety studies. It provided a comprehensive review of
critical SSMs and broke them down into two main categories: SSM and SSM-based models,
based on how you evaluate the severity of the interaction. In summarizing field and
simulation-based safety studies using SSM, researchers and practitioners understand the
strengths and weaknesses of the existing SSM and suggested a method to select the most
suitable SSM for safety research [21]. Sinha et al.’s study investigated the effect of CAV
on collision severity and frequency through micro-simulation modeling exercises. The
VISSM micro-simulation platform was used to simulate the case study of the M1 Geelong
Ring Road network (i.e., Princes Freeway) in Victoria, Australia. Network performance is
evaluated using performance metrics (e.g., total system travel time, delay) and kinematic
variables (e.g., speed, acceleration, jerk speed). It also checks the safety of the network by
examining proxy safety measures (e.g., time to collision, time after intrusion, etc.) [22].

2.2. Methodology for Evaluating Crash Risk

Abdel-Aty et al. used Dutch highway detectors and accident data to perform a traffic
safety evaluation using a random forest methodology [23]. The random forest approach
was found to be a more powerful classifier than the decision tree in this analysis. Variables
related to accident probability derived from the random forest were used to evaluate the
neural network-based accident/nonaccident classifier. Harb et al. [24] used a random forest
technique to find important factors that influence a driver’s accident avoidance actions.
Jiang et al. have used random forest analysis to calculate traffic accident impact factors
for each type of collision [25]. Shannguan et al. proposed a methodology that integrated
driving risk status identification, driving time window-based feature extraction, real-time
driving risk status prediction, and driving risk influence factor analysis to accurately assess
and predict real-time driving risk status [26]. Risk situations were classified and predicted
using random forest, gradient boosting, and support vector machine methodology.

As a methodology for deriving the importance of variables, gradient boosting has
mainly been used in recent years compared to random forests for reasons of model perfor-
mance [17–19].

Lin et al. used the random forest method to choose input variables for predicting
driving danger [27]. Furthermore, Xiong et al. used a Markov chain to depict the transition
pattern of driving risk status, and then developed a multinomial logistic model to boost
the prediction algorithm’s accuracy. When the input and output time windows of the
prediction model are 1.4 s and 0.8 s, respectively, the accuracy of the driving risk status
prediction model reaches over 85 percent [28]. Furthermore, through a simulation exper-
iment, Wang et al. used a back propagation neural network to predict the driving risk
on expressways [29]. Chen et al. proposed a new neural network model for predicting
crash risk and discovered that using 15 s as the optimal time window length for the input
variable would significantly reduce prediction error [30]. Costela and Castro-Torres used
eye movement characteristics in a feed-forward neural network to predict risk [31].
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2.3. Differentiation of Research

In previous studies, various indicators are being developed and verified to evaluate
the crash risk. In particular, in recent studies, there is a trend to evaluate risk using SSM that
considers interaction with surrounding vehicles for using information that can be collected
in AV and CAV environments. However, before entering the future CAV environment, it
was determined that a methodology for estimating the crash risk using only the indicators
that can be calculated using information of the subject vehicle, such as GPS, is necessary.
In addition, in most studies, several analysis indicators are set, and verification of the
indicators is performed. In the verification of the indicators, it was determined that the
analysis results may appear differently depending on the geometry of the analysis section
and traffic conditions. Therefore, in this study, various safety indicators are summarized
and presented, and a methodology for selecting appropriate indicators for the analysis
section is proposed.

3. Methodology
3.1. Overall Framework

In this study, existing studies were reviewed to derive various safety indicators for
crash risk analysis based on vehicle driving trajectory data. DTG data and accident data
were matched to extract driving trajectory information at the accident point. The extracted
trajectory data information was defined as a hazardous traffic flow, and general traffic
flow was extracted as an analysis comparison group. Driving behavior event data was
aggregated every minute based on safety indicators for each traffic flow. Gradient boosting
analysis was performed to determine which safety indicators had high influence on the
occurrence of accidents, and the top 20 safety indicators were derived. A classifier was
built to classify traffic flows by crash risk, by performing neural network analysis using
the selected set of indicators as independent variables. The analysis result was verified by
setting the ratio of the training and test datasets to 7:3 in the total dataset. Additionally,
in order to perform an analysis that reflects the difference in characteristics according to
the accident environment, the model was compared and analyzed by binary classification
of the data set by accident severity, accident occurrence time, and weather. The overall
framework of the research is presented in Figure 1.

3.2. Gradient Boosting

Ensemble learning is a machine learning technique that combines multiple trees and
performs better than a single decision tree. Ensemble learning methods include bagging
and boosting. Bagging is a method of taking samples several times and training each
model to aggregate the results, and boosting is a method of making trees sequentially by
compensating for errors in the previous tree, and turning weak classifiers into a strong clas-
sifier. Gradient boosting is a representative ensemble algorithm in the boosting family [32].
Boosting is generally less error-prone than bagging and has good performance. However,
it takes a long time and the possibility of overfitting is high.
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Gradient boosting is a function F(x) that minimizes the expected value of the loss
function Ψ(y, F(x)) given a training set of

{(
x1, y1), · · · , (xi, yi)}n

1 . Gradient boosting
considers hm(x), which is a weak learner for a function. The analysis process for gradient
boosting can be expressed as Equations (1)–(4) [17]:

F(x) =
M

∑
m=1

γmhm(x) (1)

Fm(x) = Fm−1(x) + γmhm(x) (2)

At each stage, the decision tree hm(x) was chosen to minimize the loss function given
the current model Fm−1(x) and its fit Fm−1(xi).

Fm(x) = Fm−1(x) + argmin
n

∑
i=1

L(yi, Fm−1(xi)− h(x)) (3)

At each iteration m, a tree partitions the x-space into L-disjoint regions and predicts a
separate constant value in each one:

γim = argminγ ∑
xi∈Rim

Ψ(yi, Fm−1(xi) + γ) (4)
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Gradient boosting attempts to numerically solve this problem of minimization via
the steepest descent. The steepest direction of descent is the negative gradient of the loss
function assessed in the current model Fm−1(x), which can be determined for any function
of differentiable loss. Table 1 presents a description of the hyperparameters for gradient
boosting.

Table 1. Hyperparameters of gradient boosting.

Hyperparameters Definition

N tree Number of tree

Interaction depth The number of branches to extend from each node
(the depth of the tree)

Shrinkage Controls how fast the algorithm makes the gradient descent
(learning rate)

In this paper, hyperparameters were adjusted using a grid search to derive optimal
results. Grid search is a method of searching for the optimal parameter within a range
by setting the range of the hyperparameter. As a result of the analysis, a hyperparameter
setting to minimize the RMSE was derived. A model representing the optimal performance
was established and the relative importance of the variables in the model was derived.

3.3. Neural Network

Neural networks are models of machine learning modeled after human neuron struc-
tures. They consist of an input layer that accepts input data, a hidden layer that processes
and outputs the product of the input values, and an output layer that measures the value of
the output [33]. Each layer is made up of nodes and the results are obtained from the rela-
tion between the nodes and the transfer function operation. This study used a feed-forward
model, in which signals are transmitted forward by allowing connections only between
neighboring layers. Feed-forward networks can be trained to classify inputs according
to class. It learns to output the results corresponding to the input and output patterns,
which is used for pattern recognition as an output pattern according to an unknown input
pattern. Therefore, the parameters to be optimized for the neural network were here set
as the number of hidden layers, the number of neurons, and the transfer function that
calculates the output values of the neurons.

Bayesian optimization is a technique that effectively solves the global optimization
problem, and this methodology was used here to tune the hyperparameters in the neural
network model [34,35]. Bayesian optimization is defined in Equation (5) as a problem
to find x that maximizes the objective function f (x) [35]. The objective function in this
analysis implies the classification accuracy of the classifier, and we aimed to extract the x
hyperparameter that maximizes this:

x∗ = argmaxx f (x)C(M) = M + dM (5)

where,

x∗ : Optimal hyperparameter
x : hyperparameter
f (x) : objective f unction (CCR)

Bayesian optimization uses a probabilistic framework to model f(x), and the analysis
process is as follows:

(1) Assuming that f (x) follows the Gaussian process (GP) prior, a model is trained using
the given data D.

(2) Calculate the acquisition function for data not included in D.
(3) The data point (xn+1, f(xn+1)) with the largest acquisition function value is included

in D.
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The acquisition function is a measure to find the global optimum, that is, the hyperpa-
rameter that affects the maximum classification accuracy. The acquisition function can be
selected from the expected improvement (EI), the probability of improvement (PI), and the
upper confidence bound (UCB), and EI is generally known to minimize the error of the
predicted f (x) [36]. In this study, EI was used as an acquisition function and was defined as
Equation (6):

z = f̂ (x)max−µ( f̂ (x))
σ( f̂ (x))

EI(x) = σ(zG(z) + g(z))
(6)

where,

f̂ (x)max : The maximum predicted classi f ication accuracy f or any hyperparameters
µ( f̂ (x)) : The average predicted classi f ication accuracy f or any hyperparameters
σ( f̂ (x)) : The standard deviation predicted classi f ication accuracy f or any hyperparameters
G(x) : normal cumulative distribution function
g(x) : probability density f unction

GP is used as a model for calculating the mean and standard deviation of predictions,
and is a very suitable model for Bayesian optimization algorithms because incremental
learning and the variance calculation of predictions are easy [37,38].

4. Data
4.1. Data and Traffic Flow Definition

DTG data is collected and managed by the Korea Transportation Safety Authority, a
public agency in Korea, related to commercial vehicles such as trucks, taxis, and buses. In
this case of DTG data analysis, highway driving data for a total of about two months from
5 March to 14 December 2017, and 4 to 23 March, 2018, were extracted. It was matched
with traffic accidents that occurred within the temporal and spatial range of the collected
DTG data, within 15 min prior to the time of each accident. Since DTG data is not an access
data, there is a limit to acquisition. In particular, since accidents can be greatly affected
by seasonality, the sampling period is important. However, in the case of Korea, since
March is spring and December is winter, seasonal characteristics are reflected, so the data
sampling problem can be supplemented.

For accident risk analysis, it is necessary to define normal and hazardous traffic
flows. Wu et al. analyzed crash risks using individual vehicle data and dangerous events
were identified; dangerous traffic flows were defined based on the event occurrence time
points [39]. In this study, traffic accidents were defined as events and the analysis range
was set to 1 min, which represents a travel distance of about 1.5 km in high-speed highway
driving. Hazardous traffic flow was set to 1 min before each accident. When analyzing
conflicts, the ratio of the event groups and the comparative groups was generally set as
1:5 [3]. Thus, for normal traffic flows, data from the 5 min intervals from 10 min before
to 15 min before each accident were organized into 1 min increments to build a data set
that was five times more dangerous than typical traffic flows. In this way, we extracted
246 hazardous traffic flows and 1183 normal traffic flows.

4.2. Safety Indicators

To analyze the crash risks, various sets of safety indicators were suggested by existing
studies. In the case of DTG data, since there was no available information on the surround-
ing vehicles, we used safety indicators that could analyze the crash risk using only the
information of the subject vehicle. Table 2 shows the variable information for the safety
indicators used in this study. In addition, detailed information such as the equations for
the safety indicators used in the Appendix A is presented.
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Table 2. Safety indicators.

Indicator Variable Name

Peak to peak jerk P to p jerk
SRI SRI_variable (speed, acc, jerk, yaw)
EDI EDI_variable (speed, acc, jerk, yaw)

Dangerous driving events rate Dangerous event
RDEs RDE

LNJ/LPJ LNJ/LPJ_threshold
Rapid peak to peak jerk rate Rapid p to p jerk rate

Yaw rate Yaw rate

Driving
volatility

Standard deviation S.D_variable (speed, acc, jerk, yaw)

Mean absolute deviation MAD_variable (speed, acc, jerk, yaw)

TVSV
(Time-varying stochastic volatility) TVSV_variable (speed, acc, jerk, yaw)

Safety indicators were derived using the speed, acceleration, jerk, and yaw variables
calculated from the position change information per second of DTG data. “Dangerous
driving event,” an existing indicator that evaluates road risk using DTG data, was used.
Various other indicators were used to detect when speed, acceleration, jerk, yaw, etc.,
exceeded certain threshold values. Driving volatility measures were calculated to capture
vehicle driving variability. Most of the existing indicators set a threshold value, and in most
cases, detect when that value is exceeded. However, it was determined that an indicator
reflecting the roadway characteristics was necessary because the behavior of a vehicle may
change depending on the roadway geometry characteristics or traffic volume. Therefore,
EDI was used to capture dangerous situations by applying a threshold value for each
roadway segment. EDI is a value obtained by setting a relative threshold for each road
section and dividing the volume of a variable that exceeds the threshold by the driving
time [15]. In addition, by applying the EDI concept, a safety reliability indicator (SRI) was
calculated to obtain the ratio value exceeding the threshold for each road section.

5. Results and Discussion
5.1. Gradient Boosting

Driving behavior event data based on safety indicators was processed using DTG
driving trajectory data. A set of safety indicators for each type of traffic flow was derived,
and gradient boosting was performed to derive a model that classified the dependent
variable (s), hazardous traffic flow, and normal traffic flow. Analysis was performed using
a total of 1429 data samples (246 hazardous traffic flow and 1183 normal traffic flow), and
the training and test dataset ratio was divided into 7:3. As independent variables, 33 safety
indicators derived from the DTG data were used to build a model, and the hyperparameters
were tuned through grid search. The optimized hyperparameters are presented in Table 3.
In the final model, the classification accuracy was found to be 84.71%, and the top 20
indicators of relative influence are presented in Table 4. Depending on the geometry of the
analysis section and the traffic environment, the priority results may appear differently.
However, when various indicators are to be used, it is expected that they can be used as a
method to derive an appropriate indicator set for the analysis section.

Table 3. Optimal hyperparameters for gradient boosting.

Hyperparameters Optimal Value

N tree 44
Interaction.depth 5

Shrinkage 0.05
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Table 4. Relative influence of variables.

Rank Variable Name Relative Influence

1 Dangerous event 33.65
2 SRI_yaw 9.03
3 RDEs 8.33
4 TVSV_speed 4.85
5 P to p jerk 4.07
6 MAD_speed 3.68
7 Rapid p to p jerk rate 3.51
8 SRI_acc 3.49
9 S.D_acc 3.32
10 Yaw rate 3.06
11 S.D_yaw 2.63
12 MAD_yaw 2.51
13 SRI_speed 2.42
14 TVSV_acc 2.37
15 LPJ_1.5 2.16
16 LPJ_2 1.84
17 S.D_jerk 1.57
18 SRI_jerk 1.36
19 MAD_acc 1.12
20 LPJ_4 0.87

Dangerous driving events, an indicator used to manage transportation companies by
DTG data analysis, were the most important safety indicators, with a relative influence of
about 33%. It is assumed that the driving safety of the longitudinal actions of a vehicle can
be measured by safety indicators based on variables related to acceleration/deceleration.
Furthermore, safety indicators dependent on the yaw variable are supposed to be able to
comprehensively determine the safety of the lateral actions of the vehicle.

5.2. Neural Network

In this study, a neural network model was developed to classify dangerous traffic
flows and general traffic flows in a section of Korean highway. A total of 1429 data samples
(246 hazardous traffic flow and 1183 normal traffic flow) were used for review of the DTG
data matched to the accident data. In the case of the analysis data, since the trajectory data
matched with the actual accident data was used, validation of hazardous traffic flow was
performed. This can increase the reliability of the analysis result. For analysis, the training
and test data samples were analyzed in a ratio of 7:3. Based on the gradient boosting
results, the top 20 safety indicators that can indicate hazardous traffic flows were set as
the input variables, and class labels for normal traffic flows (0) and hazardous traffic flows
(1) were set as dependent variables. In order to predict a dangerous situation, a classifier
was developed according to the characteristics of traffic flow using safety indicators in
each traffic flow. Using the developed classifier, it is possible to identify road sections with
high risk of collision in real-time in advance, and to support proactive countermeasures
before an accident occurs. The optimal parameter set for the classifier being trained using
the training set is shown in Table 5. In addition, the final derived model’s classification
accuracy was 94.59%, and the confusion matrix is provided in Table 6.

Table 5. Optimal hyperparameters for neural network.

Hyperparameters Optimal Value

Transfer function Symmetric sigmoid
Number of hidden layers 3

Number of neurons (30,75,55)
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Table 6. Classification results of neural network (total data).

Predicted

Normal
Traffic Flow

Hazardous
Traffic Flow

Correct
Classification Rate (%)

Normal traffic flow 341 10 97.15
Hazardous traffic flow 13 61 82.43
Overall percentage (%) 94.59

In this study, a neural network model was established by classifying data sets based
on accident severity, accident occurrence time, and weather. By classifying the data set,
a comprehensive prediction analysis was performed according to the accident character-
istics. In Korea, accidents are categorized as A, B, C, or D grade based on their severity;
the D grade is least severe—those cases where there is little or no personal or material
damage [40]—while grade A is most severe. When we grouped A, B, and C accidents,
they comprised a total of 390 events that occurred during 66 hazardous traffic flows and
324 normal traffic flows. There were 1029 D grade accidents that occurred in 180 hazardous
traffic flows and 849 normal traffic flows.

The daytime accidents occurred during 155 hazardous traffic flows and 790 normal
traffic flows, and the total of 474 night accidents occurred during 91 hazardous traffic
flows and 383 normal traffic flows. In terms of weather, sunny and cloudy weather were
grouped and classified as good weather, and rain or snow was classified as bad weather.
During good weather, there were a total of 1101 accidents during 193 hazardous traffic
flows and 908 normal traffic flows, while during bad, there were a total of 299 accidents
during 50 hazardous traffic flows and 249 normal traffic flows.

A neural network analysis was performed by classifying the dataset by accident
severity, accident occurrence time, and weather, and dividing each dataset into training
and test data samples at a ratio of 7:3. The number of samples for the dataset classified and
built for comprehensive prediction is summarized in Table 7.

Table 7. The number of samples.

Data Set Total Normal Traffic Flow Hazardous
Traffic Flow

Total 1429 1183 246

Severity D 1029 849 180
ABC 390 324 66

D/N
Day 945 790 155

Night 474 383 91

Weather
Good 1101 908 193
Bad 299 249 50

Accuracy is the measure most often used for comparison between models; it is a
measure of the degree to which the predicted values of the model match the actual values.
Here, sensitivity is a measure of whether the normal traffic flows were properly classified,
and specificity is a measure of whether the actual hazardous traffic flows were classified as
hazardous traffic flows [41]. A neural network model was constructed by classifying the
dataset, and the scales for evaluating the performance of each model are summarized and
presented in Table 8.
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Table 8. Evaluation of performance for models.

Data Set Accuracy Sensitivity Specificity

Total 97.15% 96.33% 85.92%

Severity D 94.81% 96.85% 85.19%
ABC 97.44% 96.98% 94.44%

D/N
Day 93.64% 96.6% 79.17%

Night 95.07% 97.35% 86.21%

Weather
Good 94.24% 96.34% 84.21%
Bad 95.51% 97.3% 86.67%

The dataset was classified and analyzed based on the severity of each accident, the
time of each accident, and the weather. The accuracy, sensitivity, and specificity were higher
in the cases with a high accident grade, night occurrence, and bad weather compared to the
comparison group. These results can be interpreted as the difference in prediction accuracy
between models as traffic and environmental characteristics affect the driving behavior
events. Specifically, the difference between the comparison groups in specificity was the
largest, which appears to show higher discrimination when classifying hazardous traffic
flows because traffic and environmental characteristics influence the accident characteristics
when an accident occurs.

6. Conclusions

Existing research to prevent accidents can be categorized as either plans for passive
responses to minimize the severity of future accidents after an accident has occurred, or
proactive plans that predict and prevent an accident before it occurs. In this study, a
research framework is proposed to preemptively prepare for accidents by predicting the
risk of accidents before they occur. Various safety indicators are summarized and presented
with reference to existing studies. Vehicle driving trajectory (DTG) data and accident data
are matched to extract hazardous traffic flow data at the accident times, using normal
traffic flow as the comparison group. Safety indicators are calculated from the extracted
DTG data for each type of traffic flow, and the driving behavior event data per minute is
processed. Through gradient boosting (a representative ensemble technique), the top 20
safety indicators with high impact when classifying traffic flows are derived. The gradient
boosting analysis revealed that dangerous driving events (a key indicator for managing
commercial transport companies by analyzing current DTG data) were a factor in about
33% of the highway accidents studied here. The classification accuracy of gradient boosting
model was derived as 84.71%.

By setting a derived set of safety indicators as inputs, a traffic flow classifier was
developed using the neural network model, which showed a very high accuracy of 94.59%.
In addition, for comprehensive accident prediction, the DTG dataset was classified by
accident severity, accident occurrence time, and weather. Analysis revealed more than 90%
accuracy for all the models. In particular, it was confirmed that the classification accuracy
for hazardous traffic flows was increased when the accident grade (A–D) was high, and
when it occurred at night and in bad weather. These results demonstrate that traffic and
environmental characteristics influence the driver’s behavior when an accident occurs. In
addition, the results for the sensitivity and specificity of each model were presented, and
there was a large difference in specificity between the comparison groups. This seems
to be particularly different when classifying dangerous traffic flows because traffic and
environmental characteristics affect the accident characteristics in the event of an accident.

Currently, various safety indicators are being announced as surrogate safety measures
for evaluating crash risks, and most of them have set one to three indicators as evaluation
scales for analysis. However, the analysis results may appear differently depending on
the geometry and traffic conditions of the analyzed section of roadway. Therefore, this
study did not focus on determining which safety indicators are most appropriate for
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crash risk assessment. Rather, a framework was established to derive an appropriate
set of safety indicators according to the analyzed road section and to build a model to
classify dangerous situations. A notable feature of this study is that by developing a
crash risk analysis methodology based on safety indicators, it is possible to derive a set
of safety indicators suitable for the traffic conditions and environment of any analyzed
road section. The DTG data we used was the trajectory data of commercial vehicles such as
buses and freight trucks with large vehicle body displacement behavior, and we obtained
a set of safety indicators suitable for Korea freeway characteristics. Additionally, this
study improved the reliability of analysis results by verifying various safety indicators by
matching actual accident data and trajectory data.

Hopefully, these methodologies, as applied in the future, will extend to many sections
of Korean roadways, to extract safety indicators appropriate for the characteristics of each
segment in order to determine the crash risks in real-time and to prepare effective road
safety pre-accident countermeasures. This type of crash risk analysis is expected to be able
to predict and proactively respond to road sections with high accident probabilities.

This study has a limitation in that there was a shortage of samples, because only about
two months of DTG data was used due to data acquisition problems. If additional data can
be acquired in the future, it is expected that more accident data can be matched, and more
reliable results can be obtained because the number of samples will increase. In addition,
in the case of DTG data, since data is collected from commercial vehicles, debate may arise
as to whether the driving information of all individual vehicles in a studied road section
should be reflected. Therefore, there is a need to increase the analytical reliability by adding
the driving trajectory data of general passenger vehicles in the future. Due to the limited
number of samples herein, the ratio of the hazardous traffic flows to the normal traffic
flows was extracted as 1:5, but questions about the appropriateness of that sample number
ratio may arise. More research to overcome the problem of accident class-imbalanced crash
prediction needs to be conducted in the future.
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Appendix A

In this study, various safety indicators were calculated by referring to previously
published studies. The safety of longitudinal and lateral driving was evaluated using
indicators that can be calculated using the speed, acceleration, jerk, and yaw variables of
the subject vehicle. Detailed information on the calculated equations and thresholds for
safety indicators is presented in Table A1.
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Table A1. Description of safety indicators.

Indicator Measurement Variable
Name Threshold Equation

Peak to peak jerk Jerk P to p jerk - Max jerk–Min jerk
(Analysis unit: 5 s)

SRI

Speed SRI_speed

Average of link
∑n

i=1 Time step when (xi > threshold)
n × 100%

(n: Total time step)

Acc SRI_acc

Jerk SRI_jerk

Yaw SRI_yaw

EDI

Speed EDI_speed

Average of link

A
T , I f V(t) = ∑T

i=1 |V(i)−threshold|
ti+1−ti

= A
V(n): Measurement at time step n
A: Total areas where the variables

exceeded the thresholds
T: Total time step

Speed EDI_acc

Acc EDI_jerk

Jerk EDI_yaw

Dangerous
driving events

rate

Speeding Speed

Dangerous event

Speed: 20 km/h or more

Total o f Dangerous events
n × 100%

Rapid
Acceleration Speed, Acc

Speed: 6 km/h or more
Acceleration over 6 km/h

per second

Rapid
Deceleration Speed, Acc

Speed: 6 km/h or more
Acceleration over 9 km/h

per second

Sudden stop Speed, Acc
Speed: 5 km/h or less

Acceleration over 9 km/h
per second

Rapid turn Speed, Yaw
Speed: 25 km/h or more
Yaw: Cumulative value

within 4 s 60~120◦

RDEs Acc RDE 7.35 m/s2 ∑n
i=1 Time step when (xi > threshold)

n × 100%

LNJ/LPJ Jerk

LNJ_
threshold −1.5, −2, −3, −4 m/s3

∑n
i=1 Time step when (xi > threshold)

n × 100%
LPJ_

threshold 1.5, 2, 3, 4 m/s3

Peak to peak jerk rate Jerk P to p jerk rate 14.7 m/s3 ∑n
i=1 Time step when (xi > threshold)

n × 100%

Yaw rate Yaw Yaw rate 4◦ ∑n
i Time step when (xi > threshold)

n × 100%

Driving
volatility

Standard
deviation

Speed S.D_speed

-

√
1

n−1

n
∑

i=1
(xi − x)2Acc S.D_acc

Jerk S.D_jerk

Yaw S.D_yaw

Mean
absolute
deviation

Speed MAD_speed

1
n

n
∑

i=1

∣∣xi − x
∣∣Acc MAD_acc

Jerk MAD_jerk

Yaw MAD_yaw

TVSV (Time-
varying

stochastic
volatility)

Speed TVSV_speed √
1

n−1

n
∑

i=1
(ri − r)2

ri = ln ( xi
xi−1

)× 100

Acc TVSV_acc

Jerk TVSV_jerk

Yaw TVSV_yaw
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