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Abstract: Railway transportation systems are generally used to transport minerals from large-scale
mines. Any failure in the railcar components may cause delays or even catastrophic derailment
accidents. Failure mode and effect analysis (FMEA) is an effective tool for the risk assessment of
mechanical systems. This method is an appropriate approach to identify the critical failure modes
and provide proper control measures to reduce the level of risk. This research aims to propose an
approach to identify and prioritize the failure modes based on their importance degree. To achieve
this, the analytical hierarchy process (AHP) is used along with the FMEA. To compensate for the
scarcities of the conventional FMEA in using the linguistic variables, the proposed approach is
developed under the fuzzy environment. The proposed approach was applied in a case study, a
rolling stock operated in an iron ore mine located in Sweden. The results of this study are helpful to
identify not only the most important failure modes but also the most serious and critical ones.
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1. Introduction

Today, transportation is a vital service in which all economic resources such as assets,
labor, time, and technology are employed for delivering goods and resources to consumers
and revenue to producers. In the mining industry, like all industries, transportation plays a
key role in increasing profitability and economic advantages. Material handling is such
important that a successful mining operation depends on the shipping condition and needs
special equipment and machinery to deliver services and goods. The securing of a load
is a primary concern in all trucking, railroads, waterway, port, and airport transportation
modes. It is of such important that the incorrectly secured load endangers the safety of road
traffic, human health and life, and even the load properties. There are numerous techniques
to secure loads against slipping, overturning, rolling, and shifting by load locking and
increasing the load restraint or friction [1]. For example, in the railway transportation
systems, the bogie and superstructure, inside of the wagons, and stanchions and bolsters of
wagon walls need to be secured to reduce the risk of the cargo movements [2]. Transporting
oversize cargos is another issue in all transporting modes. Excessive cargo transportation
not only needs to obtain a special permit but also requires more attention to be immobilized
during the transportation [3].

Regardless the problems, mentioned earlier, mineral transportation includes a major
part of the operational cost in mining. There is different equipment to transfer the blasted
material in and out of the mine such as trucks, conveyor belts, and rolling stocks. Among
them, railcars are in an exceptional place, especially for long and low-slope distances. Rail
transportation systems move a high volume of materials, have long-life assets, and require
minimum maintenance operation [4]. Moreover, this system is of high priority because of
safety, energy consumption, and environmental issues. That is why they are an attractive
system for mineral transportation. Safe and efficient transportation and keeping the vehicle
performance at an acceptable level is a major concern for not only vehicle operators but also
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mine managers and contractors. Any unexpected failure in each part of the railcars affects
the performance of the system and might cause delays or even catastrophic derailment
accidents. In such circumstances, the required transportation capacity might not be fulfilled
and consequently, the scheduled services cannot be covered by the operator. Furthermore,
having a reliable railcar ensures on-time transportation and keeps it available. To achieve
this, identifying the failure modes and their impact is essential to improve the performance
of the rolling stocks.

Identification and evaluation of the risks associated with the failure of components
are essential to improve the maintenance strategy and management. It obtains more impor-
tance in complex engineering systems. To achieve this, several techniques such as failure
mode and effects analysis (FMEA), fault tree analysis (FTA), reliability block diagram
(RBD), Monte-Carlo simulation (MCS), Markov snalysis (MA), and Bayesian networks
(BN) have been developed and applied [4]. Among them, FMEA is an appropriate fault
diagnosis technique to identify and record the effect of failures on the system operation and
prioritize each failure regards to the performance of the systems. Some conceptual frame-
works such as reliability-centred maintenance (RCM) have utilized the FMEA to improve
maintenance programs. As an important part of RCM, FMEA is one of the extensively used
methods for designing and prioritizing preventive maintenance activities [5,6]. It plays a
crucial role in the reliability design and identifying the critical bottlenecks. FMEA is an
appropriate fault diagnosis tool to identify and record the effect of failures on the system
operation and prioritize each failure regards to the performance of the systems [7]. This is a
systematic approach for the reliability and safety analysis that identifies the critical failure
modes, causes, and mechanisms of the failure to prevent the failure or reduce its effects [8].
Nowadays, numerous guidelines and standards such as SAE J1739, AIAG FMEA-4, and
MIL-STD-1629A have been published with recommendations and requirements to improve
the failure mode and their effects analyses [9]. Recently, the Automotive Industry Action
Group (AIAG) of the United States of America and Verband der Automobilindustrie (VDA)
of Germany published a handbook, named the AIAG-VDA FMEA Handbook, in order to
develop FMEA. This handbook provides a guideline for designing a FMEA, processing a
FMEA, and monitoring the system response. The handbook addressed products or pro-
cesses, defect prevention, effects to determine severity score, top three causes, determining
occurrence score, and continual improvement prioritization. In this approach, the action
priority is calculated based on three elements including the severity of the effect, probability
of the hazard occurring and the probability of detection [10]. In the traditional FMEA, the
risk priority number (RPN) is calculated by multiplying three factors with crisps values
that are the severity, occurrence, and the probability of detection [11]. The risk priority
numbers are usually determined by considering the linguistic variable for these parameters.
The fuzzy approach is the most common method to reduce uncertainties and ambiguity in
such circumstances. Application of the fuzzy method along with the FMEA technique has
been widely used to calculate the RPN in the various sectors of industries such as product
design, medicine, construction industry, offshore engineering, manufacturing engineering,
chemical industry, metro rail project, water supply system, health care industry, aircraft
systems, and food industry [12].

To date, numerous attempts have been made to detect and assess the potential failures
for the rolling stocks to decrease the severity and occurrence level. Dinmohammadi
et al. [13] studied the potential risks for the unexpected failures of rolling stocks. They
applied the failure mode, effects, and criticality analysis-based approach to finding the
most critical failure modes for a door system of a passenger train in the UK’s railway
network. In this research, all possible failure modes were detected, and then, the likelihood
of occurrence and the severity of damage caused by the failure is obtained and ranked
the risk factor. Rezvanizaniani et al. [14] focused on the failure data of a passenger coach
of the rolling stock in an Iranian railway company to analyze the reliability of critical
subsystems. They stated that wheelsets shared more than 76% of the total number of
rolling stock failures. Therefore, they collected time between failure data for different
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types of wheelsets and then propose the appropriate reliability-based maintenance interval
for each one. Teshome [15] evaluated the availability of a fleet of rolling stocks in the
Netherland. They applied the Markov chain approach to developing their model. They
showed that, by considering the suitable number of standby trains, the availability of
the fleet can reach 100% while, a high number of spare trains may not be economical.
Dinmohammadi [16] proposed a stochastic approach to determine the optimal preventive
maintenance activities for rolling stocks. A risk-based modeling approach was created
by considering the safety-related costs, maintenance costs, penalty charges, and loss of
fares costs. The model was applied to estimate the likelihood of failure occurrence for a
pantograph system of rolling stock in a Scottish train company. Dinmohammadi stated
that the proposed model reduces the corrective maintenance cost and meets higher safety
and quality levels.

Conradie et al. [17] studied the reliability of rolling stocks in a case study; passenger
rail service of South Africa. They analyzed the failure data of the machine’s subsystems to
evaluate the impact of component failures on the reliability of the overall system. The criti-
cal subsystems were proposed and it was recommended that to reach the reliability target,
preventive maintenance schedules should be proposed instead of time-based maintenance.
Len et al. [18] applied the Bayesian approach to analyzing the degradation of locomotive
wheels. They evaluated the service lifetime and reliability of a locomotive wheel from
a Swedish company. They found that the lifetime of the wheels in the second (or back)
bogie is longer than the first (or front) ones. Len et al. stated that this deference might be
because of environmental and operational conditions and also the gravity center of the
locomotive. In another research, Babeł and Szkoda [19] studied the cost-based efficiency
for both modernized and non-modernized diesel locomotive in Poland. Analysis of the
failure showed that the deiseal engine encountered more than half of the machine failures.
They stated that the maintenance cost sheared about one-fourth of the total overhaul cost.
It was also mentioned that the fuel cost was the major share in the life cycle cost of the
locomotive. Cai et al. [20] analyzed the reliability, availability, maintainability, and safety
of the air brake system of an urban train in China. The failure data analysis showed that
the bogies and brake system respectively comprised the highest frequency of failures. They
applied the Go-Bayes method for the safety assessment of the braking system. In this
approach, they mentioned that the influence of the system’s parts in the system safety
analysis had been possible. In another study, Appoh et al. [21] proposed a hybrid dynamic
probability-based model for the failure analysis of rolling stock. The model was applied for
the door interlock failure analysis of a rolling stock operated in the UK. They concluded
that the proposed model improves isolation and notification of failure, rapidly.

Reviewing the above-mentioned papers shows that numerous attempts were made to
analyze the failure of the rolling stocks. Most of these studies have focused on the passenger
rolling stocks and there are not enough studies for the failure analysis of fright rolling stock
like mining railcars. Some scholars have tried to identify the failure modes of rolling stock
and then analyze their effects using the traditional FMEA technique. Evaluation of the
risk factors in these circumstances is usually difficult and not accurate [22]. However, to
remove uncertainties and ambiguities in using the crisp values and also the dependency
of RPN on the variation of the risk factors, it is better to use the fuzzy logic approach.
Moreover, the failure modes don’t have the same effect not only on each other but also on
the system performance. Therefore, prioritizing the failure mode based on these influences
is essential. Ghodrati et al. [23] applied the FMEA to identify the potential failure modes
of rolling stocks in LKAB Malmtrafik (Sweden). This research was carried out using the
analytical hierarchy process (AHP) method under the fuzzy environment (fuzzy AHP,
FAHP) to gather with the RPN method. Results of this study showed that the crack and
flat spots of wheels and axles is the most hazardous failure mode. The AHP is one of
the comprehensive multi-criteria decision-making methods that creates an overall view
of the complex relationships for experts to structure the problems systematically and
calculating the criteria weights [24]. In Ghodrati et al.’s study, the conventional fuzzy logic
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was used not only for the multiplication of risk factors but also for the defuzzification of
the priority numbers. The current paper is aim to applying the developed fuzzy FMEA
method by using the rule-based fuzzy logic approach for mining railcar machines. In this
approach, first, the FAHP is used to obtain the importance measure of the critical failure
mode. Then, the fuzzy risk priority numbers are obtained for each failure mode by using
the rule-based fuzzy logic system. This method processes the inputs nonlinearly based
on the “IF-THEN” rules. The rule-based systems, designed by using expert knowledge,
make reasonable predictions and exploit the tolerance for uncertainty. Moreover, in the
application of the fuzzy rules, the judgment process is interpreted, decision-makers are
allowed to understand how the final classification was arrived at and helped to reduce the
computational complexity in their comparisons [25]. The proposed approach is applied for
the priority ranking of the failure modes at a case study, the Kaunis iron ore mine located
in the north of Sweden.

Results of this research are helpful for rolling stock managers and operators to identify
the critical failure modes and accordingly plan the efficient maintenance strategy. The
proposed approach can be used in other machines, as well.

The rest of this paper is organized as follows: In Section 2, the theoretical foundation
and research methodology are described. The application of the improved FMEA is
provided in Section 3. Finally, conclusions are given in Section 4.

2. Materials and Methods

This section is devoted to present the theoretical foundation of the paper. First, the
AHP method is presented. Then the FMEA technique is introduced under the fuzzy
environment. The conceptual framework for the fuzzy-based FMEA is configured in
Figure 1 (phases 1 to 3). In phase 1 (fuzzy AHP), the AHP technique is used to obtain the
weight of each failure mode. Then in phase 2, after identifying the potential failure mode,
the occurrence, severity, and probability of detection them are defined in the form of fuzzy
numbers. Then the fuzzy RPN for each failure mode is obtained. Finally, in phase 3, the
overall fuzzy RPN is obtained to rank the failure modes.
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2.1. AHP under the Fuzzy Environment (Phase 1)

In the first phase, the AHP method under the fuzzy environment is applied to calculate
the importance degree of failure modes. AHP is one the most common multi-attribute
decision-making methods, presented by Saaty [26], which has been broadly employed as
an appropriate methodology for decision making [27]. This is an appropriate method to
weighting the decision factors, which can incorporate inherent inconsistencies of a decision
process. It is understandable that structures the problems systematically and calculating the
criteria weights. In a decision-making process, it is impossible for the decision-makers to
exactly evaluate the conflicting criteria and alternatives. Zadeh [28] presented the fuzzy set
theory dealing with uncertainty and vagueness. In this approach, the standard set theory
has generalized to the fuzzy sets. A fuzzy set contains a class of objects with a continuum
memberships’ grades. Contrary to the crisp set that only allows full- or non- membership,
the fuzzy set allows partial membership ranging from 0 to 1. A fuzzy set is a generalization
of a crisp set considering the sets of memberships in logical reasoning. In this concept,
values 0 and 1 indicate the complete non-membership and membership respectively, and
helps to specify the intermediate degree of membership [29]. The fuzzy set is characterized
by a membership function, which assigns to each object a grade of membership ranging
between 0 and 1. The triangular fuzzy number (TFN) is one of the most used fuzzy numbers
and simply shown as ã = (l, m, u) in which parameters l, m, and u respectively present
the smallest, most promising, and largest possible values. In recent years, fuzzy logic
theory and AHP were combined to model imprecision and uncertainty. The fuzzy AHP has
been extensively used in different areas such as manufacturing, maritime, pharmaceutical,
electronic, automobile, logistics, food industry, airline, chemistry, and agriculture [29].

Steps of the fuzzy AHP method, introduced by Chang [30], are summarized as follows:

Step 1. Establishing the fuzzy judgment matrix

In the first step, each member of the expert group individually made the pairwise
comparisons to state the relative preference of failure mode i and j. By using TFNs via
pairwise comparison, the mathematical form of the fuzzy judgment matrix Ã = (aij) can be
expressed as follows:

Ã =


1 ã12 . . . ã1n

ã21 1 . . . ã2n
...

... 1
...

ãn1 ãn2 . . . 1


The judgment matrix Ã is an n× n fuzzy matrix with fuzzy numbers ãij and ãji = 1/ãij.

Regarding the uncertainties in human ideas about the fuzzy linguistic variables from
equally important to extremely importance, the fuzzy numbers correspond with linguistic
variables are in Table 1.

Table 1. Linguistic terms and the corresponding fuzzy numbers and membership functions [23,30].

Linguistic Scale for Importance Fuzzy Number Membership Function

Equally importance 1 (1,1,2)
Intermediate level between 1 and 3 2 (1,2,3)
Moderately importance 3 (2,3,4)
Intermediate level between 3 and 5 4 (3,4,5)
Essential or strong importance 5 (4,5,6)
Intermediate level between 5 and 7 6 (5,6,7)
Very strong importance 7 (6,7,8)
Intermediate level between 7 and 9 8 (7,8,9)
Extremely importance 9 (8,9,10)
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Step 2. Calculating the value of fuzzy synthetic extent

Consider F = {f 1, f 2, . . . , f n} as the set of the failure modes, where n is the number of
failure modes and A = {A1, A2, . . . , Am} is a set of the expert with m numbers. Moreover,
consider M1

f i, M2
f i, . . . , Mm

f i (i = 1, 2, . . . , n) as the values of extent analysis of the ith failure
mode from m experts. It is noted that all the Mm

f i values are TFNs. Then, the value of fuzzy
synthetic extent Si with respect to the ith failure mode is defined as [23,30]:

Si =
m

∑
j=1

Mj
f i ⊗

[
n

∑
i=1

m

∑
j=1

Mj
f i

]−1

(1)

This equation has two terms. To obtain
[
∑n

i=1 lj ∑m
j=1 Mj

f i

]−1
the fuzzy additional operation

Mj
f i(j = 1, 2, . . . , m) values are performed as ∑n

i=1 ∑m
j=1 Mj

f i =
(

∑m
j=1 lj, ∑m

j=1 mj, ∑m
j=1 uj

)
.

Then, inverse of this vector is calculated as follows [23,30]:[
n

∑
i=1

m

∑
j=1

Mj
gi

]−1

=

(
1

∑m
j=1 lj

,
1

∑m
j=1 mj

,
1

∑m
j=1 uj

)
(2)

Step 3. Calculating of the degree of possibility

The degree of possibility of M1 = (l1, m1, u1) ≥ M2 = (l2, m2, u2) is obtained as
follows [23,30]:

V(M2 ≥ M1) = µM2(d) =


1, if m2 > m1
0, if l1 < u2

l1−u2
(m2−u2)−(m1−l1)

, otherwie

 (3)

where d is the highest intersection point µM1 and µM2. To compare M1 and M2, both values
V(M1 ≥M2) and V(M2 ≥M1) are needed.

Step 4. Obtaining the weight vectors

To obtain the set of weight values a principle of comparison for fuzzy numbers is
considered as mentioned in Equation (3). The degree possibility for a convex fuzzy number
to be greater than k convex fuzzy numbers Mi = (i = 1, 2, . . . , k) can be defined as [23,30]:

V (M ≥M1, M2, . . . , Mk) = V [(M ≥M1) and (M ≥M2) and (M ≥M3) . . . and

(M ≥Mk)] = min V (M ≥Mi), I = 1,2, . . . , k.

Regarding Equation (3), if d′(Ai) = min V (Si ≥ Sk) for k = 1, 2, . . . , n; k 6= i, then a
weight vector is calculated as [23,30]:

W′ = (d′(A1), d′(A2), . . . , d′(An))T (4)

where Ai (I = 1, 2, . . . , n) are n experts. The weight vector is normalized by using the
following equation:

W = (d(A1), d(A2), . . . , d(An))T (5)

where W is the non-fuzzy weight number.

2.2. Fuzzy FMEA (Phase 2)

FMEA is a structural hierarchy method to identify failure modes of a system and their
influence. This method is a preventive approach that is based on a team working to identify,
evaluate, remove or control the potential failure modes and their impact on a system or
process to enhance reliability and safety. Therefore, the selection of team members with
enough specialty and knowledge about the system or process is crucial to perform the
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FMEA. In the first step of the FMEA, all possible failure modes are identified. Then the risk
factors including occurrence (O), severity (S), and the probability of detection (D) for each
failure mode are obtained. The priority risk of failure is performed through risk priority
number (RPN) that is calculated by multiplying O, S, and D:

RPN = O × S × D (6)

In traditional FMEA, a 10-point scale with 1 corresponding to the best and 10 corre-
spondings to the worst-case is used to evaluate each risk factor. Then the failure modes
are ranked based on the PRN values. In this approach, the failure modes with higher RPN
values are considered more important and the proper actions need to be done for them.

Nevertheless, the traditional FMEA has been widely used in numerous fields in-
cluding manufacturing [31,32], marine [33,34], aerospace [35,36], healthcare [37–39] and
electronics [40–42]. The application of crisp values in the traditional FMEA has been
strongly criticized by researchers [43–45]. Because the traditional FMEA assumes the same
importance degree for all risk factors and obtains the same RPN values for failure modes
even with the different risk factors. Moreover, in most cases of the traditional FMEA, the
dependency of RPN on the variation of the risk factors give vague information. Some
scholars have been tried to overcome these shortcomings and limitations. The application
of fuzzy logic is one of these attempts [46].

To evaluate the FMEA under the fuzzy environment, the Mamdani fuzzy logic sys-
tems [47] have been widely used by different researchers [48]. There are three steps to
obtain the fuzzy priority number in this system, named fuzzification, rule evaluation,
and defuzzification. In the fuzzification step, the occurrence, severity, and probability
of detection risk factors are defined according to the expert’s judgment and knowledge
for each failure mode in the form of fuzzy numbers. The fuzzy numbers with the verbal
description used to interpret the linguistic terms of experts are given in Table 2. In the
present paper, triangular fuzzy numbers [49] are applied to describe a fuzzy event.

Table 2. Linguistic variable with their corresponding fuzzy number for risk factors.

Severity (S) Occurrence (O) Probability of
Detection (D) RPN Fuzzy

Number
Membership

Function

None (N) Almost never (AN) Almost certain (AC) None (N) 1 (1,1,2)
Very slight (VS) Remote (R) Very high (VH) Very low (VL) 2 (1,2,3)
Slight (SLT) Slight (SLT) High (H) Low (L) 3 (2,3,4)
Very low (VL) Low (L) Moderately high (MH) High low (HL) 4 (3,4,5)
Low (L) Moderately low (ML) Moderate (M) Low moderate (LM) 5 (4,5,6)
Moderate (M) Moderate (M) Low (L) Moderate (M) 6 (5,6,7)
High (H) Moderately high (MH) Very low (VL) High moderate (HM) 7 (6,7,8)
Very high (VL) High (H) Remote (R) Low high (LH) 8 (7,8,9)
Serious (SR) Very high (VH) Very remote (VR) High (H) 9 (8,9,10)
Hazardous (HAZ) Almost certain (AC) Almost impossible (AI) Very high (VH) 10 (9,10,10)

In the second step or the rule evaluation step, the fuzzy risk priority numbers are
created in the fuzzy logic system by matching them against the “If-Then” rules. These rules
are evaluated in an inferencing approach, named fuzzy inference to get the final results.
The “If-Then” rules are created based on the expert’s knowledge about the interactions
between various risk factors that comes from Table 1. As an example, a fuzzy “If-Then” rule
for a failure mode assumes in the form of “If the severity is none and occurrence is almost
never and the probability of detection is almost certain Then the risk is not important”.
To evaluate each rule, the results are combined to calculate the rule consequences based
on the system’s input values. This process is called the fuzzy inference process. In this
paper, the “min-max” inference technique is used as the widely used method [48]. In this
process, the true value of the rule is defined as the minimum rule antecedent and then
it is applied to all consequences of the rule. If the output of fuzzy sets is more than one
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rule, then the output is set to the maximum truth value of all the rules that include it as a
consequence. A set of consequences whose true values are greater than zero is considered
as the result of the inferencing approach. In the third step, the defuzzification algorithm is
applied to creates a crisp RPN value from the fuzzy results set and accordingly define the
prioritization level of each failure mode. There are numerous methods for defuzzification.
In this work, the center of the area method [50], as the most common method, is used to
return the corresponding crisp value.

2.3. Overall Fuzzy RPN (Phase 3)

In this step, the importance measure of each failure mode (from the fuzzy AHP) is
integrated into the fuzzy RPN (from the fuzzy inference process) to obtain the overall
priority ranking of the failure modes. The overall fuzzy risk priority number for each
failure mode is calculated as:

FRPNi
overall = wi.FRPNi (7)

where FRPNi
overall is the overall fuzzy RPN for ith failure mode, wi is the weight of the

failure mode, and FRPN is the fuzzy risk priority number for failure mode i.

3. Results

This section is devoted to analyzing the failure mode of a rolling stock operated in
Kaunis Iron [46], a Swedish mining company. The Kaunis iron ore mine, located in the
north of Sweden, operates two trains to transport iron ore from Svappavaara in Sweden
to Narvik in Norway (Figure 2). The iron ore is transported by truck from Kaunisvaara
to the reloading station Pitkäjärvi at the Svappavaara railway line and then, transported
by rail to the port in Narvik. The Railway Specialist Railcare Group is responsible for
planning train production from truck to railway at the terminal in Pitkäjärvi and in the
port of Narvik. Railcare runs two train journeys per day, seven days a week with a volume
of about 2.3 million tons of iron ore per year [51]. The failures of the Bombardier TRAXX
wagons used by Railcare Group are analyzed in this section. The primary failure data
analysis shows that the wheelsets share the highest number of failures that consistent with
the past studies [14,18,21]. It also shares the highest maintenance cost of rolling stock in
comparison to the other subsystems. Wheelsets consist of different parts including wheels,
wheel tires or steel hoops, disk brake, roller bearing, axle guide, and oil pipelines in the
bogie frame. The recorded failure data in 2020 showed that the flange height over the
prescribed limit, rolling contact fatigue, and hollow wear were the main causes of the
wheelset failure.
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The rest of this section is devoted to analyzing the failure mode of the wheelset system
of wagons for Kaunis Iron using the procedure presented in the previous section. The
failure modes that correspond to the main component of the wheelset are summarized in
Table 3.

Table 3. The failure mode for the wheelset component of the studied rolling stocks.

Component Failure Mode Code

Wheelset axle Torsion of the wheelset axle F1
Wheel flange Flange height over the prescribed limit F2
Wheel flange Flange thickness below the prescribed limit F3
Wheel tire Overheated wheels F4
Wheel tire Wheel flat F5
Wheel tire Wheel diameter below the prescribed limit F6
Roller bearing Rolling-contact fatigue F7
Wheel tire Wheel profile clearance F8
Wheel tire Scaled wheel (skidding or spalling of the wheel tread) F9
Wheelset axle Overheated axle rolling bearing F10
Bearing housing Grease leakage from the roll bearing F11
Wheelset axle Wheelset axle crack F12
Wheel disc Wheel disc broken F13
Wheel tire Wheel hollow wear F14

3.1. Importance Degree of Failure Modes

As stated earlier, the failure modes don’t have the same effect on the system perfor-
mance. Therefore, prioritizing the failure mode based on their importance is essential. To
reach this, the fuzzy AHP technique is used. In the first step, the importance of each failure
mode is obtained using the decision-maker group. In this step, the linguistic variables,
given in Table 1, are applied and then the fuzzy judgment matrix was created (Table 4).

After creating the fuzzy judgment matrix, the fuzzy synthetic extent values (Si) were
calculated from the Equation (1) for each failure modes as follows:

SF1 = (0.013,0.023,0.041), SF2 = (0.001,0.003,0.015), SF3 = (0.003,0.009,0.021),
SF4 = (0.011,0.024,0.052), SF5 = (0.003,0.008,0.026), SF6 = (0.001,0.004,0.015),
SF7 = (0.008,0.018,0.046), SF8 = (0.001,0.005,0.015), SF9 = (0.007,0.014,0.029),
SF10 = (0.003,0.008,0.026), SF11 = (0.003,0.008,0.026), SF12 = (0.001,0.007,0.015),
SF13 = (0.001,0.004,0.015), SF14 = (0.011,0.023,0.052)

Table 4. The triangular fuzzy judgment matrix.

F1 F2 . . . F13 F14

F1 (1,1,1) (2.667,7.000,10) . (1.600,2.947,5.0) (2.667,6.222,10)
F2 (0.100,0.143,0.375) (1,1,1) . (0.200,0.421,1.5) (3.000,0.889,3.0)
F3 (0.250,0.388,0.500) (0.2,0.388,0.625) . (0.400,1.145,2.5) (5.000,2.417,5.0)
F4 (0.800,1.050,1.250) (2.667,7.350,10) . (1.600,3.095,5.0) (2.667,6.533,10)
. . . . . .
. . . . . .
. . . . . .

F11 (0.200,0.357,0.625) (0.667,2.500,5) . (0.667,2.000,5) (0.200,0.357,0.625)
F12 (0.100,0.286,0.375) (0.333,2.000,3) . (0.333,1.600,3) (0.100,0.286,0.375)
F13 (0.100,0.179,0.375) (0.333,1.250,3) . (1,1,1) (0.100,0.179,0.375)
F14 (0.800,1.000,1.250) (2.667,7.000,10) . (2.667,5.60,10) (1,1,1)

In the next step of the fuzzy AHP, the degree of possibility for all failure modes in
comparison to others was calculated. Accordingly, the final importance degree of each
failure modes was calculated through the normalization of the weight vector and shown in
Figure 3. Regarding Figure 3, failure modes no. 14 (hollow wear), 4 (overheated wheels), 7
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(rolling-contact fatigue), and 9 (skidding or spalling of the wheel tread), respectively have
the highest weight, while the failure modes F2, F6, F8, F12, and F13 have the lowest one.
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3.2. Fuzzy Weighted Risk Priority Number

In this subsection, the fuzzy risk priority number for all failure modes is obtained.
To achieve this, the numerical scales 1 to 10, as given in Table 2, are considered for all
risk factors. The needed information was obtained from the FMEA expert team. These
results are used to design the fuzzy logic system. To perform this the Mamdani fuzzy logic
systems, as described in Section 2.2, are applied in the MATLAB software [52]. This design
is shown in Figure 4.
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In the first step, the occurrence, severity, and probability of detection as input variables
and the RPN as output variables are defined in the form of fuzzy numbers. In the second,
the fuzzy RPNs are created in the fuzzy logic system by matching them against the “If-
Then” rules. The experts with enough experience and knowledge of the rolling stock are
requested to define the rules. Considering 10 different statuses for the severity, occurrence,
and the probability of detection of the risk factors, (10 × 10 × 10 =) 1000 rules are created.

In the last step of the fuzzy logic inference, the center of area defuzzification algorithm
was applied to create a crisp RPN value from the fuzzy results set. Considering the
importance degree values, the overall risk priority numbers are obtained. Moreover, for a
better comparison of the risk factor influence on the risk priority numbers, the results in
the form of a 3D plot are given in Figure 5. This figure shows that how the risk factors and
their combinations change the RPN values. It is concluded that all risk factors significantly
change the risk priority numbers. As is seen, both severity and occurrence risk factors
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have approximately the same impact on the RPNs. That is because the slope change of
the RPN-occurrence area is the same as the RPN-severity area. It can also be seen that the
probability of detection of the failure modes in comparison to the severity has a greater
impact on the RPNs. These results indicate that the failure risk is significantly affected by
fault detectability. Therefore, application of the reliable fault detection tools reduces the
probability of failure risks.
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After calculating the fuzzy RPN, the overall fuzzy RPN was estimated by multiplying
the importance measure of failure modes, obtained from FAHP, in the FRPNs for each
failure mode. It is noted that for the defuzzification of the FRPNs, the center of the area
was used and the results is given in Table 5.

Table 5. Risk factors and the fuzzy RPN for the failure modes.

Failure Mode FRPN Weight Overall RPN Rank

F1 7.54 0.099 0.745 4
F2 5.53 0.015 0.085 12
F3 5.53 0.054 0.299 7
F4 5.47 0.159 0.870 3
F5 2.42 0.071 0.173 9
F6 3.5 0.016 0.055 13
F7 6.54 0.136 0.887 2
F8 5.53 0.016 0.090 10
F9 5.53 0.099 0.547 5
F10 2.48 0.073 0.182 8
F11 4.46 0.073 0.324 6
F12 4.9 0.018 0.089 11
F13 2.47 0.016 0.039 14
F14 8.43 0.155 1.305 1

Regarding Table 5, the hollow wear has the highest RPN value and then rolling-contact
fatigue, overheated wheels, and the torsion of the wheelset axle, respectively are in the
2nd to 4th places that need to be maintained, effectively. Hollow wear of the wheel is
one of the main damage types of wheels that contact geometry, increase the dynamic
response between the wheel and the rail, and consequently result in the deterioration of
the wheel rail. The statistical analysis for Kaunis wagons in 2020 shows that the hollow
wear of wheels accounts for more than half of the total wheel damage incidents. It can be
reduced by optimization of the vehicle suspension and track parameters and matching the
wheel-rail profile. The rolling-contact fatigue is another failure mode of the ball and rolling
element bearings that cause the surface pitting and spalling. This also can be strongly
affected by the track geometry parameters such as the rail longitudinal level and rail
alignment. Wear monitoring approaches that are direct or indirect ones can be applied
for the wear measurements and finding irregularities characteristic. It is good to mention
that the failure modes F6 (wheel diameter below the prescribed limit) and F13 (wheel disc
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broken) have the lowest risk number. Furthermore, a similar situation can also be found
between failure modes F2 (high flange), F8 (wheel profile clearance), and F12 (wheelset
axle crack).

4. Conclusions

In this study, FMEA together with the AHP method is used to prioritize the failure
modes. The analysis was carried out using the fuzzy linguistic variables for all risk factors
to reach fuzzy risk priority numbers. In the first step and after determining the most
common failures, fuzzy AHP was used to calculate the importance measure of each failure
mode. Then, the fuzzy FMEA based on the Mamdani fuzzy logic systems was applied to
obtain risk priority numbers of failure modes. This method was used for the identification
of undesired states of a mining rolling stock. The results of this study show that the hollow
wear followed by the rolling-contact fatigue, overheated wheels, and the torsion of the
wheelset axle is the most hazardous failure mode with the highest overall risk priority
number. Since the proposed approach in this study obtains the risk number considering
the weights of risk factors; the results are more accurate than the conventional RPN
method. The results of this study are useful and help the equipment designer, engineers,
operators, and also maintenance managers to have reliable equipment and knowledge
about the railcars. This research opens a new window to determine hazardous failure
modes according to their importance degree. It can also be extended for other complex and
critical mining machinery and equipment such as trucks, shovels, and drilling equipment.
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