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Abstract: Continuous advancements in Information and Communication Technology and the emer-
gence of the Big Data era have altered how traditional power systems function. Such developments
have led to increased reliability and efficiency, in turn contributing to operational, economic, and
environmental improvements and leading to the development of a new technique known as Demand
Side Management or DSM. In essence, DSM is a management activity that encourages users to
optimize their electricity consumption by controlling the operation of their electrical appliances to
reduce utility bills and their use during peak times. While users may save money on electricity
costs by rescheduling their power consumption, they may also experience inconvenience due to the
inflexibility of getting power on demand. Hence, several challenges must be considered to achieve
a successful DSM. In this work, we analyze the power scheduling techniques in Smart Houses as
proposed in most cited papers. We then examine the advantages and drawbacks of such methods
and compare their contributions based on operational, economic, and environmental aspects.

Keywords: smart grids; power scheduling; demand side management

1. Introduction

An electrical grid is a huge complex network designed to provide electricity to con-
sumers to satisfy their increasing daily needs. In 2016, the International Energy Outlook 2016
Reference case (https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf (accessed on 11 June
2021) projected a notable increase in worldwide energy demand over the 28 years from
2012 to 2040.

This global consumption increase has led to an urgent need to improve the existing
(traditional) grid to meet the growing demand. This is because the traditional grid [1]
still faces many issues as it operates the way it did many years ago. There are several
problems that are related to the traditional, outdated grid: (1) it is a centralized grid,
where power is carried from a central generator to the users. Usually, traditional grids are
powered by non-renewable energy resources such as diesel and natural gas; (2) it has a
one-way communication infrastructure, where the user is receptive and cannot include his
power needs and preferences into the grid; and (3) it is not well equipped with advanced
sensors and monitors which weakens its capabilities in detecting anomalies and problems.
All these problems led to increasing the grid’s vulnerability, leading to high failures and
power outages risks. It is worth noting that the world has witnessed significant power
blackouts [2] resulting in catastrophic consequences on the countries’ economic and social
situations. These blackouts were due to either natural or human-made disasters. Here are
some most recent examples
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• On 4 August 2019 [3], tens of millions lost power in Jakarta and surrounding cities. The
outage happened two days following a 6.9 magnitude earthquake that struck Indonesia.

• On 12 October 2020 [4], India’s financial capital in Mumbai suffered one of its worst
blackouts in decades as technical glitches caused its power-transmission network to
shut down, leaving millions of people without power for hours.

• On 9 January 2021 [5], a total grid collapse occurred in Pakistan, affecting 200 million
people. The power outage was due to a frequency drop resulting from a “fault”
at Guddu.

• From 13 February to 17 February 2021 [6], an enormous snowstorm caused over
5 million inhabitants to lose power across the United States.

Therefore, huge investments are required to make the existing grid more reliable and
efficient. According to the International Energy Agency (http://www.worldenergyoutlook.
org/media/weowebsite/2008-1994/weo2003.pdf (accessed on 11 June 2021) , the global
expenditures needed in the energy sector over the period 2003–2030 are estimated at 16
trillion dollars.

In order to overcome the traditional grid limitations and provide reliable energy
supplies, new services and opportunities have been emerging in the electricity domain.
One renowned solution is the ‘Smart Grid’ (SG) concept. An SG is an electrical grid that
uses digital technologies to provide better reliability and monitoring of the grid. Smart
Grid is based on two-way communication infrastructure, enabling real-time information
exchange between the electrical components. The SGs make the grid more flexible and
intelligent, significantly improving efficiency, cost, and adaptability.

The SG is expected to transform the traditional grid by enabling two-way communica-
tions to enhance performance, security, economics, and sustainability of the generation,
transmission, and electrical power distribution. However, Smart Grids face several limita-
tions that need to be addressed [7–11] most importantly:

1. Smart Grid Security : Cyber-attacks [8,12,13] have become widely spread due to the
grid’s digitalization. One serious threat is the possibility to remotely switch off the
SG operators, generating cascade damages on the grid. Hence, to reduce the grid
invasions, one of the SG critical challenges is ensuring reliable identification of the
components (for secure authentication and better traceability).

2. Electric Mobility: Electric vehicles (EVs) [14] will shape the energy market, contribut-
ing to significant changes in SGs, leading to a cleaner and more digitized environment.
Therefore, the SG should model and resolve the EVs’ local constraints and stability
problems to benefit from their flexibility while ensuring the grid’s stability.

3. Smart Grid Interoperability [15–17]: An SG usually consists of a considerable number
of heterogeneous components such as power production, storage systems, electrical
loads, and prosumers [18,19]. Such components are designed by various organizations
with different protocols. The heterogeneity is also due to the diverse communication
between the SG components and the main grid. Hence, there is an urgent need to
develop an information model able to cope with the SG heterogeneity allowing a
semantic and seamless interaction between the components.

4. Smart Grid Cooperation: An SG is a two-way communication infrastructure where the
consumer can communicate and share his power needs with the grid. Consequently,
good cooperation [20–22] should be established between the SG components to meet
their needs. However, a non-cooperative SG will result in harmful operational,
economic, and environmental consequences. From an operational prospect, a non-
cooperative SG would increase the transmission and distribution losses by allowing
the power exchange between distant components rather than favoring exchange
between neighboring components. From an economic prospect, a non-cooperative SG
would lead to a rise in the power costs by allowing components to exchange power
with the main grid rather than exchanging power locally inside the SG, which is often
more expensive. A non-cooperative SG would be environmentally harmful from
an environmental prospect as it allows power exchange between the loads and the

http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo2003.pdf
http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo2003.pdf
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pollutant non-renewable energy sources, rather than encouraging the exchange with
the renewable sources.

Indeed, Information and Communications Technology (ICT) facilitated the move of
power systems from one way to two-way communication systems. This transition allowed
their components to communicate and express their needs in the grid, which produced a
new concept called: Demand-Side Management (DSM) [23]. The DSM [24] refers to the
planning and implementation of the utility companies’ programs designed to influence
consumer consumption (directly or indirectly) by reducing the system peak load and
electricity costs. A proper DSM technique can maximize the SG efficiency. In general, DSM
techniques can be classified into two main categories:

• Load shifting: involves encouraging the consumer to shift his power consumption
from one period to another (on-peak to off-peak) to reduce energy costs and the power
peak of the grids.

• Energy efficiency and conservation: consists of any technology that requires less
energy or behavior that results in lower energy consumption.

Despite the importance of energy efficiency and conservation approaches, load shift-
ing is our survey’s focus and, more specifically power scheduling. Our choice is related to
our belief that it is easier to motivate users to reschedule their needs rather than asking
them to reduce their consumption. While power scheduling techniques have been dis-
cussed in the literature, to the best of our knowledge, none of them has addressed power
consumption, storage, and production while considering the operational, economic, and
environmental perspectives.

In this work, we address the following challenges in order to show the advantages
and limitations of current solutions:

1. Operational: Several limitations can be mentioned regarding the operational aspect:

• Consumer Comfort: thanks to the two-way communication protocols, SGs pro-
vide the consumers with the capacity to communicate and express their needs
in the grid, which increases their integration and, consequently, their comfort.
However, while the consumers enjoy their reduced electricity bills when shifting
their consumption from on-peak to off-peak periods, they might experience
inconvenience due to the inflexibility of getting power on demand.

• Peak Load Reduction: the peak load [25] is a period when power demand on
an electrical grid is at it is highest. Reducing the peak load is very important
and can be realized when the generated power matches the needed power. This
would conduce to increase the reliability of the components and decrease the
possible failures.

• Threefold Scheduling Coverage: the key to successful power scheduling relies
on considering the scheduling of not only the power production but also the
consumption and storage because of their critical roles in shaping the peak load,
reducing the electricity bills, and minimizing the gas emissions.

2. Economic: knowing that the electricity price relies on the demand and supply over a
specific period, adequate scheduling is expected to shift loads during periods of high
market prices (peak hours) and consequently minimize the electricity costs.

3. Environmental: renewable energy sources play an essential role in ensuring sus-
tainable energy with less toxic emissions. Hence, it is essential to provide a power
production scheduling that reduces the harmful emissions and effects on the environ-
ment by lowering simultaneous and excessive toxic power production and increasing
the reliance on renewable energy sources.

This paper aims to provide a profound literature review of the most cited power
scheduling techniques. In section two, the advantages and drawbacks of the existing meth-
ods concerning the aforementioned challenges are discussed. The final section concludes
the work and opens up new perspectives.
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2. Research Methodology

Research in the field of demand side management started in the last decade. Since
then, few surveys have been conducted [26–28]. In [26], the survey mainly focused on
analyzing the approaches based on their objective functions goals such as reducing the
electricity bills, minimizing the power consumption, etc. In [27], the authors compared
the scheduling techniques based on consumer interactions, optimization strategy, and
time scale. The latest survey, published in 2019, reviewed some of the existing scheduling
techniques per their objective functions, pricing schemes, and datasets [28]. We aimed
through our survey to provide an actual and deeper analysis of papers that target the
power scheduling related to demand side management. To conduct our survey, we used
Publish or Perish tool (https://harzing.com/resources/publish-or-perish (accessed on 11
June 2021 ) in order to include a variety of data sources (e.g., Google Scholar and Microsoft
Academic). We run two test categories:

• The first category was related to smart power scheduling in general (since demand
side management is part of it). The objective here was to identify the most related
impacting works. To do that, we run different combinations of the following keywords
and synonyms: Smart Home and Power Scheduling. We found 980 papers, with the
oldest paper published in 1999 and cited 71 times [29]. Out of the list, we extracted
and analyzed those having high citations (>400) and addressing in a way or another
the demand-side management. We considered 15 papers connected in a way that each
work is a continuation or improvement for the previous one.

• The second category was related to demand-side management in particular. The objec-
tive here was to identify all the related works until now. To achieve this, we searched
for the following keywords and synonyms: Smart Home, Power Scheduling, and
Demand Side Management. Based on that, and after eliminating the duplicates and
the unavailable papers, we gathered 14 additional articles, with the oldest published
in 2011.

In order to understand the tendency of each category of papers, we used an unsuper-
vised LDA-based clustering algorithm [30]. We observed the following:

• In the first category, we obtained the following keywords cloud (Figure 1). The papers
were clustered into 10 clusters, semantically disjoint (except three of them) as shown
in Figure 2. We also observed that main papers’ topics were not fully addressing the
demand-side management.

• In the second category, we obtained the following keywords cloud (Figure 3). The
papers were clustered into two main clusters, visually disjoint but semantically closed
when checking the terms shaping each cluster as shown in Figure 4. This demonstrates
that the tendency of topics addressed in these papers is stable within this specific area
of demand-side management.

Figure 1. Keywords generated from the papers of the first category.

https://harzing.com/resources/publish-or-perish
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Figure 2. Clusters generated from the first category.

Figure 3. Keywords generated from the papers of the second category.

Figure 4. Cont.
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Figure 4. Keywords of the two clusters generated from the second category.

In the following sections, we will detail each category separately.

3. Power Scheduling for Smart Home Approaches

In this section, the approaches are categorized based on the optimization technique
used to perform the power scheduling. The following nine different optimization tech-
niques were identified: MILP (Mixed Integer Linear Programming), VCG (Vickrey–Clarke–
Groves Auction), BPSO (Binary Particle Swarm Optimization), IPM (Interior-point method),
CPSO (Cooperative Particle Swarm Optimization), SHM (Shrinking Horizon Method),
NLP (Non-Linear Programming), Nash Equilibrium, LP (Linear Programming). Hence,
we identified four main optimization categories: CPLEX, including the linear and non-
linear programming techniques; Game theory-based including the Vickrey–Clarke–Groves
auction and Nash Equilibrium techniques; Swarm-based including the cooperative and
binary particle swarm optimization; and Spatial methods, including the interior-point and
shrinking horizon methods, to compare and analyze the effectiveness of each category.

3.1. CPLEX Techniques

In [31], a Home Energy Management (HEM) system is developed using a Mixed
Integer Linear Programming (MILP) approach. The proposed HEM considers the priority
of appliances’ operation based on Demand Response (DR) programs while considering the
energy prices. To achieve this, the authors assigned a Value of Lost Load (VOLL), which
determines each appliances’ operation’s priority based on time-varying tariffs. These
tariffs include the Time of Use (TOU) and the Inclining Block Rate (IBR). The optimization
problem’s objective aims at reducing the power cost of the consumer and represented as:

Min(Cost) = EC + RC (1)

where:
EC = ∑

t∈T
γ(t)E(t) = α ∗ El + β ∗ (E− δ) (2)

and
RC = ∑

a∈A
VOLLaLEa (3)

Cost is the overall cost paid by the consumer, EC is the energy cost function of the
consumer, and RC is the reliability cost. For EC, t is the time step-index and T is the
maximum time for scheduling; E(t) is the electricity consumption at t, γ(t) is the TOU
tariff at time t. El is the electricity consumption per day that should be lower than the
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threshold δ, while (E − δ) is the electricity consumption. For RC, a is the appliances’
index, and A is a set of appliances. Additionally, VOLLa is the VOLL of an appliance
a, predefined by the consumer based on the value of the appliance’s operation for him,
and LEa is the energy loss of an appliance a. Experiments showed that using appliances
operation prioritization can lead to an electricity cost reduction of 7.5 %.

In [32], the authors developed a framework for home appliances scheduling to reduce
the electricity cost for their operation based on time-varying electricity tariffs using MILP.
To do so, the authors discretized the execution time into time slots. Then, they denoted
the number of appliances for scheduling as n and uninterruptible energy stages for each
appliance. Also, they modeled the power profiles describing real continuous decision
variables as Pk

ij, which represents energy provided for the energy stage j for appliance i at
a given time k. To identify whether a particular energy stage is being attended to or not,
the auxiliary binary variables consisting of two values are used, denoted as xk

ij ∈ {0, 1}.
If an appliance is being processed then xk

ij = 1. Otherwise, the decision variables are
not required since there is no appliance being processed. Two sets of binary decision
variables are required to design a decision problem. sk

ij = 1, indicates an appliance i is

already finished at a given time slot k then xk
ij = 0, which means there is no appliance being

processed. tk
ij denotes the other set of decision variables, which indicates if an appliance

is changing after processing stage j − 1 and is waiting to begin stage j. Therefore, the
proposed scheduling problem is a minimization cost function, subject to energy and timing
constraints. The cost function is used to reduce the power cost for an appliance’s operation
based on a daily electricity tariff. Thus, the total power cost for the operation of all home
appliances is:

m

∑
k=1

ck(
N

∑
i=1

ni

∑
j=1

Pk
ij) (4)

where ck indicates electrical energy tariff for given time slot k. Several energy constraints
were introduced to ensure that energy requirements are completed for each energy stage
and whether the energy stage is attended or not. The timing constraints need to design
endpoints on energy stage processing time for the uninterruptible operation, sequential
processing, between-phase delay, and user time preference. A classical optimization
paradigm is represented as follows:

Pk
ij ∈ R, ∀i, j, k

xk
ij ∈ {0, 1}, ∀i, j, k

sk
ij ∈ {0, 1}, ∀i, j, k

tk
ij ∈ {0, 1}, ∀i, k∀j = 2, ...., ni

(5)

The proposed approach realized about 47% of maximum cost saving.
In [33], the authors proposed an optimal management system for a microgrid inte-

grated with a Vehicle-To-Grid (V2G) system, electric vehicle (EV) system, and renewable
energy resources to allow the system to generate different kinds of elements. This can be
achieved by considering the EV with its state-of-charge (SOC), three load profiles, critical,
adjustable and shiftable load, and the effectiveness of the microgrid components within
the advance price. The objective function is:

(a) ∑
t∈T

∆T(CI2(P
Ip
t + PIs

t ) + CI1
t (P

Ip
t − PIs

t ))

+(b) ∑
t∈T

∑
w∈W

∆TCEV PEVd
t,w

+(c) ∑
t∈T

∆TKA(DA
t − dA

t )

(6)
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where (a) indicates the cost related to the grid-tie, i.e., the power exchanged to the grid
and the power acquired from the grid). CI2(P

Ip
t + PIs

t ) denotes the total cost for power

acquired from the grid and power exchanged to grid, and CI1
t (P

Ip
t − PIs

t ) denotes energy in
the advance price for power acquired from the grid and for power exchanged to the grid,
(b) indicates the energy being discharged from the electric vehicle’s battery, and (c) indicates
the adjustable load not being delivered. Experiments showed a 10 % cost reduction.

In [34], a new convex programming (CP) system was proposed to manage different
appliances’ power consumption. The authors considered four types of appliances: schedule-
based appliances with interruptible load (SA-IL), uninterruptible load (SA-UL), battery-
assisted appliances (BAs), and Model-based appliances (MAs). Renewable energy sources
are also incorporated. The proposed system handles schedule-based appliances (SAs)
focusing on the ’on’ and ’off’ status of the home appliances, which are indicated by the
binary decision variables. The binary decision variables {x = 0, 1} are relaxed initially from
integer to continuous values {x >= 0, x <= 1} in order to prevent the use of complicated
mixed integer non-linear program (MINLP). This is achieved using an L1 regularization
term, which is added in the objective function to change it into a convex programming
problem, where the continuous values can produce the best schedules for the appliances
by considering the price information. Also, the DR optimization problem is retained as
a convex problem. The appliances are characterized by a characteristic function and a
convex constraint. The characteristic function Ca(ea,t) can compute consumer’s energy
consumption dissatisfaction ea,t or quantity in relation with energy consumption ea,t. It
can also be used to represent the property of the SAs. The characteristic function can also
be referred to as L1 regularization term, which is convex, makes it possible to prevent the
mixed integer problem. On the other hand, the convex constraint is associated with the
appliance’s operating constraints and can be assumed to have a linear equality function
La,t(ea,t) = 0 and convex inequality function Fa,t(ea,t) ≤ 0. The renewable energy sources
can provide energy of vt up to an estimated energy limit at different times t of V(t), the
net energy is denoted by ut = ∑a∈A ea,t − vt at time t i.e., the difference between total
energy consumed and energy produced from renewable energy. The DR problem with its
constraints is written as:

min ∑
t∈T

Pt(ut) + ∑
t∈T

∑
a∈A

Ca(ea,t)

where :

ut ≥ max{0, ∑
a∈A

ea,t − vt}, t ∈ T

0 ≤ vt ≤ V(t), t ∈ T

La,t(ea,t) = 0, a ∈ A, t ∈ T

Fa,t(ea,t) = 0, a ∈ A, t ∈ T

(7)

ut is energy consumed at time t, Pt(u) is the energy price at a given time t for consumption
of ut and sumt∈T Pt(ut)is the total cost. Users’ dissatisfaction of an appliance a ∈ A is
modelled as Ca,t(ea,t), where ea,t denotes the amount related with energy assumption ea,t .
The DR problem is subject to operating constraints. The types of appliances are important
for the DR problem formulation and for the functions for users’ dissatisfaction because
they rely on them. The L1 regularization provides a more effective solution which is closer
to the optimal solution than other solutions. There is a slight deviation which is normally
not more than 1%. The proposed approach realized about 14% of maximum cost saving.

In [35], the authors addressed the same problem with a different angle by incorporating
two interesting concepts:

• The incentive: consists of encouraging users to consume during peak hours so to
reduce their consumption,

• the inconvenience: aims at finding the minimal difference between baseline and
optimal schedule of devices.
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This has led to solve the optimization problem using the MINLP algorithm, which
utilizes the Mixed Integer Programming (MIP) [36] and the Non-Linear Programming
(NLP) [37] using the following objective function:

Min
T

∑
t=1

I

∑
j=1

[Pi(γt ∗Uopt
i,t − βt ∗ δ(Ubl

i,t −Uopt
i,t )) ∗ ∆.t + (Ubl

i,t −Uopt
i,t )2] (8)

where Pi is the rated power of the appliance i, Uopt
i,t is the new on/off status of the appliance

i at time t, and Ubl
i,t is the baseline on/off status of the appliance i at time t.

δ(Ubl
i,t −Uopt

i,t ) = 1 if (Ubl
i,t −Uopt

i,t ) > 0. δ(Ubl
i,t −Uopt

i,t ) = 0 if (Ubl
i,t −Uopt

i,t ) < 0.
Related simulations results showed that consumers would be able to reduce of about

25% their electricity cost.
In [38], a HEMS using a MILP is proposed to evaluate and generate a scheduling

pattern for household appliances subject to cost and peak demand restricting based on DR
schemes. It considers thermostatic and non-thermostatically controllable appliances, EVs,
energy storage systems (ESS), and a distributed generation (DG). The EV discharges energy
from the vehicle to the household (V2H) or vehicle to grid (V2G), and the ESS is used as a
backup. A thermostatically controllable appliance such as AC and a non-thermostatically
controllable appliance such as a washing machine are also used. Two energy consumption
limits are imposed on consumers. The first is the “hard” power limit, which requires users
to consume energy for just a few hours, depending on how long their DR program is.
The second is the “soft” power limit imposed, which helps manage the amount of power
consumed daily. It requires consumers to pay for excessive use of energy. This approach
aims to reduce consumers’ electricity costs. The objective function of this approach is:

min(∑
t
(Pgrid

t .∆T.λbuy
t − Psold

t .∆T.λsell
t )) (9)

where Pgrid
t , Psold

t denotes power obtained from the grid and power sold to the grid
respectively. λ

buy
t , λsell

t denotes price power purchased from the grid and power sold to
grid respectively. ∆T represents time interval.

The authors in [39] proposed another solution that considers grouping the electricity
loads by day periods into three time zones, each representing a cluster with its expected
loads to be launched during a given period. The cost required to satisfy the power needs of
a given cluster is computed as follows:

Cj =
K

∑
m=1

∑
h∈Tj

{(Eh,m + Bc
h,m − Bd

h,m) ∗ rh} (10)

where Eh,m is the power purchased by m to meet appliance needs at period h, K is the
number of appliances, Bc

h,m and Bd
h,m are the charging and discharging power profiles, and

rh is the power price. In order to satisfy the consumers’ requirements, at the lowest cost in
each period, linear programming was applied in resolving the optimization problem with
the following objective function:

Min
3

∑
j=1

(Cj) (11)

Simulation results showed a 20% of peak load reduction and a 17% of costs savings.
In [40], an energy hub model for residential is developed and is integrated into an

automated decision system. This solution considers the consumer energy consumption,
energy storage, and energy production elements. In the energy hub, a central hub controller
is used in the decision-making to produce a schedule for energy hub components by making
use of the formulated model, external information (energy price, weather forecast, emission
forecast, etc.), and parameter settings. Different mathematical problems resulting in a
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MILP problem have been formulated for household appliances such as freezers, washing
machines, lighting, solar panels, and storage devices. The proposed approach aims to
decrease consumers’ power usage, the energy price of consumers, reduce gas emissions,
and decrease consumer peak loads. The objective function is:

min(w1 ∗ J1 + w2 ∗ J2 + w3 ∗ J3 + w4 ∗ J4) (12)

where J1, J2, J3, and J4 represent the objective functions of energy cost of consumer, en-
ergy consumption of consumer, total emissions costs peak load charges respectively; and
w1,w2,w3, and w4 represent weights added to the objective functions, respectively. Experi-
ments showed a 20 % cost reduction.

3.2. Game Theory Based Techniques

In [41], the authors developed a Vickery-Clarke-Groves (VCG) system with the sole
aim of shifting the energy consumption to off-peak hours regularly to increase the social
welfare for consumers which will help in ensuring the efficient consumption of energy by
consumers. VCG mechanism retrieves information from users for utility companies and
determines the energy consumption schedule and price for each user. The following is the
problem formulated:

maximizexn∈Xn ,n∈N ∑
n∈N

∑
a∈An

Un,a(xn,a)− ∑
t∈T

Ct( ∑
n∈N

lt
n) (13)

The VCG uses a unified price to assign power for all users. It is implored to convince
users in disclosing their utility functions. Users are required to provide their utility function,
which results in a vector wn and a set of constraints xn both denoted as a single matrix.
Depending on wn for each user n, Un,a is used to identify the utility function and Un to
identify the utility function vector of each user n. For U, the VCG system selects the vector
for energy consumption x(U) as the result for the problem formulated above. The optimal
energy consumption vectors and the payments are computed as:

x(U) = argmaxxn∈Xn ,n∈N ∑
n∈N

∑
a∈An

Un,a(xn,a)− ∑
t∈T

Ct( ∑
n∈N

lt
n) (14)

θ(U) = −( ∑
m∈N−n

∑
a∈An

Um,a(xm,a)− ∑
t∈T

Ct( ∑
m∈N

lt
m)) + hn(U−n) (15)

To maximize each energy consumption xn ∈ Xn for each user n ∈ N. Where lt
n is the

overall load of the user at time t ∈ T. Un,a(xn,a) represents the utility function for each
appliance a ∈ An and xn,a is the scheduled consumption vector. Cost term Ct(.) represents
the energy consumption variable, xn for each user n and causes the problem formulation
to become a utility maximization problem and a cost minimization problem. Part of the
properties of the VCG mechanism need to be validated in order to make any modification to
the problem formulation. It proposes that, the optimal consumption vectors and payments
to be used in choosing electricity price values and declaring the Utility function vector
Un = Un for each user n is a dominant strategy. A Clarke tax, hn(U−n) will be integrated
into the payment structure excluding user n which will lead to an efficient allocation.

hn(U) = ∑
m∈N−n

∑
a∈An

Um,a(xm,a(U−n))− ∑
t∈T

Ct( ∑
m∈N

lt
m(U−n)) (16)

where xm,a denotes VCG allocation choice. Therefore, the payment of user n is:

θ(U) = −( ∑
m∈N−n

∑
a∈An

Um,a(xm,a(U))− ∑
t∈T

Ct( ∑
m∈N

lt
m(U)))+

∑
m∈N−n

∑
a∈An

Um,a(xm,a(U−n))− ∑
t∈T

Ct( ∑
m∈N

lt
m(U−n))

(17)
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Payment of user n is the difference between the social welfare of other users with the
presence of user n and social welfare of other users without user n. The proposed approach
realized about 48% of maximum cost saving.

In [42], the authors developed a scheduling algorithm aiming at saving energy while
relying on renewable energy sources. Based on game-theory, the provided solution allows
players (consumers) to generate storage schedule vectors as possible strategies. The
objective function was defined as follows:

Pi(si, s−i)
H

∑
h=1

(sh
i + lh

i ) (18)

where si is the storage schedule vector of all the players expect i, Pi(si, s−i) is the power
price determined using a continuous and supply curve, and lh

i is the amount of power
required by the player i at time h. Thus, the solution computes the Nash equilibrium which
corresponds to the storage schedule si that minimizes the global generator costs given by
∑h=1

H
∫ qh

0 bh(x)dx, where bh() is the supply curve and qh is the the total amount of power
traded by all the players at time h.

Simulation results showed possible electricity bill saving of 13% per consumer with a
storage capacity of 4KW.

3.3. Swarm-Based Techniques

In [43], a framework for residential users is proposed based on a pricing scheme
and a Binary Particle Swarm Optimization (BPSO) to organize the appliance’s energy
consumption and operations. This can be achieved using the Smart Scheduler (SS) in-
tegrated into the HEMS in the model, which uses price signals provided by the grid to
regulate consumer’s power consumption with regards to the price of energy. The SS helps
in scheduling appliances to predict energy consumption and reduce the customer’s energy
price by changing the energy demand to low peak periods rather than high peak periods. It
uses the grid’s energy, electricity generated through renewable resources, and energy from
storage systems. Based on BPSO, the SS computes and produces a scheduling pattern for all
the appliances. Also, it monitors the daily time horizon and decides to finish the operation
of household appliances based on the scheduling pattern produced. The objective function
proposed by the authors is:

min(
24

∑
t=1

(Ch)) (19)

subject to:
N

∑
a=1

24

∑
h=1

Eh,a ≤ Egrid (20)

Experiments showed a 19.36 % cost reduction.
In [44], the authors propose a scheduling algorithm with the aim of reducing consumer

dissatisfaction and the energy cost of a neighborhood of houses. They used the Cooperative
Particle Swarm Optimization (CPSO) to find the optimal scheduling of the appliances of
two categories: power-shift appliances and time-shift appliances. The algorithm uses the
following objective function:

Min
T

∑
t=1

S

∑
j=1

[Iij(t) ∗Uij(t) + α ∗ (γ(t) ∗
S

∑
j=1

Pij(t))

+β ∗ (
T

∑
t=1

S

∑
j=1
∗Pij(t)− 1/|T| ∗

N

∑
i=1

T

∑
t=1

S

∑
j=1

Pij(t))2]

(21)

where T is the set of time interval, N is the set of houses, S is the set of appliances, Iij(t) is
a Boolean denoting the status (On/Off) of the appliance j in i at time t, Uij(t) denotes the
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dissatisfaction of operating an appliance j in house i at time t. In other terms, it represents
the difference between the desired temperature and the actual indoor temperature for
the space heater at time t, and the difference between the desired hot water temperature
and the actual hot water temperature for the water heater at time t, γ(t) is the electricity
sale price at time t, and Pij(t) is the working power of the appliance j in house i at time
t. Experimental results showed the positive impact of the consumption coordination in
decreasing the peak loads and reducing the power costs by 6.4%.

3.4. Spatial Techniques

In [45], the authors presented a new energy consumption planning algorithm whose
purpose is twofold: (1) to reduce electricity bills and (2) balance total energy demand.
To achieve this, the authors proposed an approach based on game theories. Each player
(consumer) has a strategy that corresponds to all appliances’ consumption schedules
represented as a vector. The objective function of each consumer n a a strategy xn can be
represented as follows:

Min
H

∑
h=1

Ch( ∑
n∈N

∑
a∈An

xh
n,a) (22)

where Ch is the cost function, xh
n,a is the schedule appliance a. The pseudo-code of the

distributed algorithm proposed is provided in Algorithm 1.

Algorithm 1: Executed by each consumer n ∈ N
Randomly initialize xn and x−n
repeat

Do (at random time instances)
Solve the objective function using IPM
if xn changes compared to current schedule then

Update xn according to the new schedule
Broadcast the message ln to the other consumers

if a control message is received then
Update ln accordingly

until no new schedule is announced

Initially, the power consumption schedule is generated randomly for each player. The
authors considered that initially, the players do not necessarily know each other or know
their respective consumption. A loop is executed until the algorithm converges with an
objective function that is solved using the IPM [37] algorithm, generating a new schedule
for each player and informing all the other players about the newly generated schedule.
This is repeated as long as there is a new schedule announced. The simulation results
showed that the proposed algorithm supports achieving both objectives and makes it
possible to reduce each consumer’s electricity bills and reduce the peak loads. Experiments
showed a 72 % cost reduction.

With the same objective (reducing the electricity bills of the consumers), the authors
of [46] propose another interesting scheduling approach while considering the consumers’
preferences. Note that these preferences have been considered here by including the time
intervals where energy scheduling is performed. The consumption has been defined as a
vector Xi = [xi,1, xi,1, ..., xi,H ] for each unit i, where H consists of M segments comprised of
m time intervals (i.e., H = M ∗m). Then, the scheduler has been designed as a shrinking
horizon optimization problem [47] defined as follows:

S (j)(H) =
jm

∑
h=jm−m+1

S(th) +
jm

∑
h=jm+1

Ŝ(th) (23)
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where S (j)(H) is the total electricity cost in the jth optimization step, ∑
jm
h=jm−m+1 S(th) is

the energy cost for m intervals in the jthtime segment based on actual electricity prices, and

∑
jm
h=jm+1 Ŝ(th) is the estimated energy cost based on the forecasted electricity prices for

subsequent time intervals.
The proposed model optimizes the end user’s electricity cost by 12.16 % while meeting

preferred comfort levels.
In [48], the authors developed a smart home energy management (HEM) system. It

aims at monitoring, optimizing energy, improving reliability, and conserving energy for
distribution systems. HEMS architecture consists of several components: an advanced
metering infrastructure (AMI) such as smart meter ensuring communication between
power utilities and energy consumers, home appliances, i.e., schedulable appliances such
as washing machine, iron, etc., which operates automatically to finish their task and
non-schedulable appliances such as a printer, refrigerator, etc., which works manually to
complete an operation. It also consists of energy storage used to store energy from the
grid or renewable sources such as wind, solar, etc., which helped improve the quality and
efficiency of energy. Plug-in electric vehicles (PEVs) are also used to provide power to other
home appliances. Two energy scheduling strategies are implemented: an incentive-based
demand response and the price-based demand response. In the price-based DR, a pricing
scheme is used, tracing the electricity price varying hourly. In the incentive-based DR, the
users are motivated to modify their consumption induced by non-price signals, for which
the involved users receive compensations. Findings showed that the home scheduling
strategies for smart appliances and renewable energy had reduced household electricity
costs and increased power utilization from electric power utilities.

4. Smart Power Scheduling for DSM Approaches

Similar to the previous section, the approaches are categorized based on the optimiza-
tion technique used to perform the power scheduling. Hence, we identified three main
optimization categories: CPLEX, including the linear, stochastic linear, and non-linear
programming techniques, Game theory-based, including the Nash Equilibrium techniques,
and Genetic optimization techniques. Here we noticed the great use of genetic optimization
that plays an essential role in giving the “Smart” aspect of the scheduling.

4.1. CPLEX Techniques

In [49], the authors presented a stochastic mixed-integer linear programming model
for scheduling a wind integrated Smart Energy Hub (SEH). The model fulfills thermal and
electrical demands and maximizes revenue by considering the volatility of power prices
in the different hours. The authors proposed a DR program to achieve an economical
operating schedule by shifting from moments of peak prices to off-peak prices.

The algorithm uses the following objective function to minimize the SEH operational
costs taking into consideration the start-up and shut-down constraints:

Min ∑
t∈NT
{ ∑

w∈NW
pw ∗ ( ∑

i∈CH
OCCHP

i,w,t + ∑
j∈CB

OCBoiler
j,w,t

+PCw,t + GBw,t − GSw,t) + SUCt + SUDt}
(24)

where: OCCHP is the operation cost of CHP unit at time t and scenario w, OCBoiler is the
operation cost of boiler at time t and scenario w, PCw,t is the penalty cost at time t and
scenario w, GBw,t is the cost of purchasing electricity from network at time t and scenario
w, GSw,t is the income of selling electricity to network at time t and scenario w, SUCt is the
start-up cost of SEH at time t, and SUDt is the shut-down cost of SEH at time t.

In [50] an optimum production side scheduling is proposed to analyze the impacts of
dynamic pricing on demand patterns and achieve a dynamic price variation. The main goal
of the day-ahead energy market clearing procedure is to minimize the total costs associated
with electricity production as follows:
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Min ∑
t∈T

∑
i∈I

(SUCi ∗ yi,t + SDCi ∗ zi,t) + ∑
t∈T

∑
i∈I

∑
f∈F

ci, f ∗ bi, f ,t (25)

where SUCi ∗ yi is start-up cost of unit i, SDCi ∗ yiis shut-down cost of unit i, ci, f is marginal
cost of step f of unit i marginal cost function, and bi, f ,t is portion of step f of the i-th unit’s
marginal cost function loaded in hour t.

In [51], the authors present two power demand scheduling policies to reduce the
operational cost of a power grid. In the first policy, Threshold Postponement (TP), the
controller decides (based on the current consumption) whether to serve a new demand
request at arrival or delay it. On the other hand, per the Controlled Release (CR) policy, a
new request is activated immediately if the current power consumption is lower than the
set threshold. Otherwise, it waits until it approaches the deadline or until the consumption
falls below that threshold. The results have shown that the CR policy resulted in an 18–24%
reduction in cost compared to the default one.

In [52] the authors developed a strategy for scheduling the electric water heater
consumption based on the PV production forecasting. The goal of the proposed method
is twofold, consisting of maximizing the PV self-consumption while reducing the overall
energy bill. A linear optimization problem was presented, shown below.

MinPe

N

∑
i
|max(Ps)− Ps

i /max(Ps)|Pe
i (26)

where Ps is the forecasted PV energy, Ps is the water heater power consumption pro-
file. Experiments showed a reduction in energy bill of 15% compared to the traditional
thermostatic controller saving around 0.15 euro per day.

4.2. Game Theory Based Techniques

In [53], the authors proposed two distributed reinforcement learning algorithms to
model the power consumption scheduling problem for a group of residential users. The
idea behind this is that each device of the system produces its best schedule autonomously,
based on the difference between the paid electricity price and the cheapest schedule. A
Markov chain is used to model the decision problem where each proposed schedule is
linked to a chain state, updated using the users’ electricity bills, formalized as follows:

Min(Un(In, I−n)) = ∑
t∈T

(ynt ∗ ct(yt)), ∀n ∈ N. (27)

where Un is the utility of player n, In is the set of strategies of player n, ynt is the power
demand of a player n, at time slot t, Ct is the cost function, yt is the total power demand of
all users at time slot t. Experiments achieved 5% of electricity price reduction.

The authors in [54] presented a residential power scheduling model to achieve a
trade-off between the user discomfort and the electricity payments. To do so, the authors
identified two appliances’ categories: those having flexible starting time and work contin-
uously with a fixed power and others with flexible power in a predefined working time.
In this model, the consumers will adjust their power scheduling based on the one-day-
ahead published electricity price. A convex optimization programming model is proposed
considering two components: the first component in the objective function indicates the
electricity payments, and the second represents the total discomfort. Experiments showed
decreased electricity bills when using the day ahead pricing compared to the flat price.

4.3. Genetic Optimization Techniques

The authors in [55] modeled a load schedule algorithm for shiftable and non- shiftable
appliances via a distribution channel based on day-ahead, hour-ahead prices, and real-time
imbalances. This channel acts as an aggregator that collects the appliances’ schedules.
Then, it decides what to turn off and on to reduce the peak load and the delay cost



Sustainability 2021, 13, 6768 15 of 19

of the appliances. To do so, they used a genetic algorithm to optimize the following
objective function:

Min ∑ Ci ∗ Pt + di
n ∗ λi

n (28)

where Ci is the power consumption of the user i, Pt is the day-ahead price at time t, λi
n is

the delay price of the appliance n of the user i, and di
n is the maximum delay time.

Results showed 85% per day of cost savings of price-based scheduling and 100 dollars
per day of total cost savings of power-based scheduling.

In [56] the authors proposed four power-demand scheduling scenarios to reduce
the peak demand in an SG. The focus of the proposed scenarios is on both task and
energy scheduling. The programs consider the number of appliances of different power
demands and different operational times for each consumer. The authors labeled the four
scenarios as the Default Scenario (used to determine the power consumption upper bound),
Compressed Demand Scenario (CDS), Delay Request Scenario (DRS), and Postponement
Request Scenario (PRS). The paper analyzes and provides examples of each scenario.
In terms of power consumption, PRS did better than the other scenarios, with a 14.7%
reduction, where power requests arrive at the Central Load Controller when the power
consumption exceeds the first threshold are postponed for a constant time until the power
consumption drops below a second threshold.

In [57], the proposed scheduling method combines the Real-Time Pricing (RTP) model
with the Inclining Block Rate (IBR) model to achieve lower electricity costs for the residents
and end-users while at the same time reducing the power Peak-to-Average Ratio (PAR).
High PAR can lead to damage to the entire electricity system. Due to the non linearity of
the optimization problem, the proposed scheduling method uses a Genetic Algorithm (GA)
to solve the problem. Simulation results show a reduction in the average electricity cost by
15.5% during three months, and the PAR is reduced from 4.26 to 3.42.

In [58], a Hybrid Genetic Ant Colony Optimization (HGACO) system is proposed as
the basis of an optimization methodology that uses real-time pricing signals and power
generation from utility and photovoltaic battery systems to adapt consumer power us-
age patterns. The objective function was developed to reduce electricity costs, minimize
carbon emissions, reduce user frustration, and alleviate PAR through the scheduling
of consumers’ energy consumption. Three scenarios are used for the simulations con-
ducted in order to evaluate the optimization algorithm proposed. The three scenarios are:
without photovoltaic-battery systems, with photovoltaic systems, and with photovoltaic-
battery systems. The simulation results revealed that the scenario that does not include
photovoltaic-battery systems produced electricity cost reduction by 49.51%, carbon emis-
sion reduction by 48.1%, and peak load reduction by 25.72%. The second scenario results,
which included photovoltaic systems, led to reductions in electricity cost, carbon emission,
and peak load by 55.85%, 54.22%, and 21.69%, respectively. Finally, the third scenario
included photovoltaic battery systems and produced electricity cost, carbon emission, and
peak load savings by 59.06%, 57.42%, and 17.40% respectively.

5. Comparative Analysis of Dsm Techniques

In this section, we compare current DSM approaches [31–35,38–46,48–58] while high-
lighting their strengths and drawbacks concerning the challenges presented in Section 1).
An important DSM aspect is its capability to achieve multi-objective scheduling. In that,
the scheduling should consider not only the electricity costs but also toxic emissions, un-
necessary transmission losses, and the peak load. A comparative table is presented in
Table 1.



Sustainability 2021, 13, 6768 16 of 19

Table 1. Comparative table of the selected power sceduling techniques.

Operational Criteria Economic Criterion Environmental Criterion

Approach Consumer Comfort Peak Load Reduction Threefold Coverage RES Integration Optimization Technique

[31] X X × X MILP
[32] X × × × MILP
[48] X X × X Modular
[34] X X × X CPLEX
[41] X × × × VCG
[33] X × × X MILP
[43] X X × X BPSO
[38] × X × X Convex Optimization
[40] X × × X MILP
[45] × X × × IPM
[44] X X × × CPSO
[46] X × × × SHM
[35] X × × × MILP and NLP
[42] X × × X Nash Equilibrium
[39] X X × × LP
[49] × X × X Stochastic MILP
[50] × X × × MILP
[53] × × × × Nash Equilibrium
[55] X X × X Genetic
[51] × X × × Stochastic MILP
[56] X X × × Recursive Formulas
[52] × × × X LP
[54] X X × × CPLEX
[57] × X × × Genetic
[58] × X × X Genetic

1. Operational Criteria

• Consumer Comfort: A main criterion to be considered when developing a DSM
technique is the consumer’s preferences. Besides reducing the electricity bills, the
proposed schedule should also reduce the delay in receiving the desired power.
For instance, recharging a consumer’s EV at 7:20 a.m instead of 7:00 a.m before
leaving to work (at 7:30 a.m.) will result in a deficiency in the battery charging
and increase the risk of the EV breakdown. This criterion was addressed in
many approaches in different ways. In [44], the user’s comfort is ensured by
decreasing the gap between the desired and the actual hot water and indoor
temperature. In [32,34,39,42,43,48,54–56], the satisfaction is measured by the
delay time between the expected start time and the actual operation of the
appliances. In [31], consumer satisfaction is considered by assigning a VOLL
value to denote a home appliance’s operation based on its electricity cost; the
appliance with the highest VOLL value has the highest priority. In [41], the
system schedules the appliances’ operation based on the user’s time preference.
In [33], it gives the user the privilege to control the household’s energy and
stored energy. [40] considers user satisfaction by providing users the freedom to
choose what is more convenient for them. Contrary to [38,45,49–53,57,58], which
lacks this aspect.

• Peak Load Reduction: This criterion was addressed in most of the papers
[31,34,38,39,41,43–45,48–51,54–58], where the authors aimed at shaving the peak
load when scheduling the consumption. However, this aspect was not fully
considered in [32,33,35,40,42,46,52,53].

• Threefold Scheduling Coverage: By definition, a DSM technique shapes the con-
sumption plans in different ways, such as monetary incentives and behavioral
change through education. This explains the single purpose of all the approaches
[31–35,38–46,48–58] aiming at scheduling the consumption only without consid-
ering the generation and storage scheduling. However, orchestrating the three
mechanisms helps increasing user comfort by scheduling a power generator that
avoids delays in delivering the desired power. Also, it lowers the toxic emissions
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by prioritizing the RES generation when available. Also, it is essential to consider
the prosumers’ [18], referring to some devices’ ability to PROduce and conSUME
simultaneously. Hence, a DSM technique should also consider the heterogeneity
of the SG components.

2. Economic Criterion

• Electricity Bills Reduction: All the selected DSM methods [31–35,38–46,48–58]
target electricity bills reduction. It is essential to note that the results depend on
several parameters such as the heterogeneity and numbers of appliances, energy
sources, and storage, and hence do not reflect the efficiency of the approaches.

3. Environmental Criterion

• RES Integration: There is a broad expansion of renewable energy, which pro-
vides lower toxic environmental impact than conventional energy technolo-
gies. Hence, an environmental-friendly DSM should include renewable energy
sources. The models proposed in [33,34,38,40,42,43,48,49,52,55,58] use energy
from the main grid, renewable resources, and storage systems to operate the
appliances. However, the only power source considered in the remaining papers
[31,32,35,39,41,44–46,50,51,53,54,56,57] is the main grid.

6. Conclusions

This paper reviews several highly cited research papers in power scheduling as
well as a collection of papers targetting power scheduling in Smart Homes. The various
Demand-Side Management (DSM) approaches discussed in these papers and their pro-
posed algorithms for scheduling household appliances were analyzed and examined. Our
review aimed to explore the methods’ capability to address operational, economic, and
environmental challenges.

From the operational perspective, our analysis showed that the current techniques
limit their focus to consumption scheduling and cannot cope with the power production
and storage scheduling. From an economic perspective, our survey found that the primary
goal of all the existing DSM is to reduce electric bills. However, many DSM techniques do
not integrate renewable energy sources, which negatively impacts the environment. Hence,
an ideal DSM should cover the scheduling of power production, consumption, and storage
while considering user comfort and simultaneously reducing electricity bills.
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