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Abstract: This paper proposes a biobjective continuous transportation network design problem
concerning road congestion charging with the consideration of speed limit. The efficiency of the
traffic network and the reduction of pollution in the network environment are improved by designing
a reasonable road capacity enhancement and speed limit strategy. A biobjective bilevel programming
model is developed to formulate the proposed network design problem. The first target of the
upper problem is the optimization of road charging efficiency, and the other target is the total cost of
vehicle emissions; these objectives are required to devise the optimal road capacity enhancement
scheme, speed limiting schemes for different time periods, and the road pricing scheme. The lower-
level problem involving travellers’ route choice behaviours uses stochastic user equilibrium (SUE)
theory. Based on the nondominated sorting genetic algorithm, which is applied to solve the bilevel
programming model, a numerical example is developed to illustrate the effectiveness of the proposed
model and algorithm. The results show that the implementation of congestion charging measures on
the congested road sections would help to alleviate road congestion in the transportation network,
effectively save transportation infrastructure investment and limited urban land resources, increase
fiscal revenue, and open up new sources of funds for urban infrastructure construction.

Keywords: transportation network design problem; speed limit; bilevel programming; genetic
algorithm; biobjective optimization; road congestion charging

1. Introduction

The conventional continuous network design problem (CNDP) aims to optimally
balance the transportation and investment costs of a network subject to traffic congestion.
Since its first formulation as a bilevel programming problem by Abdulaal and LeBlanc [1],
CNDP has become one of the most difficult yet challenging problems in the transportation
research field [2,3]. In the past two decades, many scholars have studied the solution
under constraint adjustment. This research mainly focuses on the speed limit in the
continuous traffic network design problem while adding the control strategy of road
congestion charging. In this way, the operating efficiency of the transportation network
will be improved, and the pollution discharge to the environment will be reduced.

CNDP has been a subject of substantial research, and a number of solution methods
have been proposed to find a local optimum solution [4]. Meng et al. [5] presented the
augmented Lagrangian method to solve CNDPs, especially for large networks. Xu et al. [6]
proposed the use of simulated annealing (SA) and the GA to achieve good results when
solving CNDPs. Unlike Xu et al. [6], Mathew and Sarma [7] reported that the GA model is
more efficient for CNDPs than the other compared algorithms that were available in the
literature. Gao et al. [8] and Wang and Lo [9] tried to solve a CNDP by considering it as
a single-level problem. Recently, Li et al. [10] and Baskan [11,12] also attempted to solve
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the bilevel formulation of a CNDP using three powerful heuristics for solving CNDPs.
However, Karoonsoontawong and Waller [13], Yinghui et al. [14], and Lu et al. [15] all tried
to use heuristic methods to solve NDPs and finally found that the genetic algorithm (GA)
produced better results than those of other algorithms in terms of some performance indica-
tors. Therefore, this paper further adopts the genetic algorithm based on the nondominated
sorting.

The first study of CNDPs based on SUE traffic assignment was presented by Davis [16],
in which two different methods considering the effects of stochastic user equilibria were
proposed for solving CNDPs, and these methods were applied to several test networks.
Liu and Wang [17] and Du and Wang [18] proposed different methods for achieving the
global solution of a CNDP by considering the SUE assumption. Similar to this study, Long
et al. [19] developed a bilevel programming model to solve the turning restriction design
problem with SUE. A recent study on the multimodal network design problem (MNDP, a
combination of a CNDP and DNDP) was conducted by Gallo et al. [20], in which an SUE
traffic assignment was considered at the lower level of the problem, while the total travel
time in the network was minimized at the upper level via the scatter search method. As
opposed to these articles, the lower-level problem of this research compares the stochastic
user equilibrium (SUE) traffic assignment and the user equilibrium (UE) traffic assignment.

Speed limits are an effective means of traffic control, and their implementation can
effectively improve traffic efficiency, the traffic environment, and traffic safety [21]. In
recent years, many scholars have studied speed limits from the perspective of entire road
network systems, including the impact of a speed limit on travel behaviour [22,23], dynamic
speed limits [24], and the combinations of speed limits and other traffic policies [25,26].
Travel time is regarded as the principle of passenger route selection, which realizes the
user equilibrium of speed limit and reliability [27]. Moreover, the travel time cost and
congestion risk are perceived in advance, and the speed limit scheme composed of a specific
network is realized [28]. The above speed limit research on the improvement of traffic
network performance has important reference value for the proposal and integration of a
speed limit strategy in this paper.

Congestion pricing is one of the most widely contemplated methods to manage
traffic congestion by charging fees for the use of roads: a higher fee where and when it
is congested, and a lower one where and when it is not [29,30]. At present, there have
been many studies on congestion pricing, especially in urban network pricing. In the
past two years, cumulative prospect theory (CPT) has been used to quantify the travel
satisfaction of tourists, and the perceived service level of tourists has also been taken into
account, so as to reduce the travel demand during peak hours based on regional congestion
pricing [31]. The economic scale of the hub and network is also taken into account. The
optimal design of hub and network space is realized by taking economic scale as the
concave linear function and the congestion degree as the convex linear function [32]. In
addition, a two-stage distributed solution is proposed to solve the optimal time congestion
pricing problem in large-scale networks, so as to realize the whole network capture of
the congestion charging area effect [33]. Therefore, it can be seen from recent studies that
congestion pricing is still used as a separate efficiency improvement strategy in the problem
of network smoothness, and it does not achieve the integration of congestion pricing and
speed limit-related strategies. In this paper, we propose an efficiency improvement method
integrating congestion charging and speed limit, in an attempt to further solve the problems
of network congestion and operation efficiency in the new method integration.

Additionally, it is necessary to use both speed limit and congestion charging to im-
prove efficiency and solve the CNDP problem. The influence of these two measures on
the objective function can be observed more comprehensively, so as to better improve the
efficiency of the network and the emission of pollutants.

Based on the traditional network design problem, this paper proposes a dual-objective
transportation network design problem. The contribution and innovation of this article are
as follows:
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(1) Different from previous studies, this paper simultaneously considers the optimization
of speed limit strategy and congestion pricing strategy under different traffic demand
periods. Instead of the independent CNDP solutions, the speed limit strategy and
congestion charging strategy are not only combined in this study, but they are also
able to play their advantages under different needs, which could better solve the
CNDP problem and provide a new idea for CNDP by the combination of multiple
strategies.

(2) Secondly, this paper compares the differences between the two allocation models
when solving the lower-level problem. In CNDP, the underlying problem is generally
defined as UE or SUE traffic allocation [19,20]. This paper compares the results of
traffic allocation based on these two methods and finds that the traffic assignment
method based on SUE avoids the large sensitivity problem. Although the impedance
based on SUE is larger than that based on UE, the traffic flow is more even when
using SUE.

(3) Moreover, this research designs an NSGA-II algorithm to solve the biobjective and
bilevel programming model. The introduction of the NSGA-II algorithm realizes an
innovative solution of the CNDP problem and solves the complex calculation process
of CNDP optimization. For the method itself, it not only maintains the diversity and
distribution uniformity of the population in the solution process, but it also ensures
that the best individuals at all levels will not be lost. Finally, a numerical example is
provided to verify the effectiveness and practicability of the model and algorithm.

The rest of the paper is presented as follows. The biobjective bilevel programming
model for solving the CNDP described above is given in Section 2. A GA based on the
nondominated sorting method is presented in the subsequent section. In Section 4, the
Nguyen-Dupuis network is used to verify the effectiveness of the proposed model and
algorithm. Finally, conclusions are given in Section 5.

2. Biobjective Bilevel Programming Model

Congestion pricing refers to charging vehicles at specific times and sections of a road
to change the travel times, modes, and routes of travellers; this scheme plays a regulatory
role in terms of the volumes (in time and space) of traffic trips to alleviate traffic congestion.

W set of OD pairs, where w ∈W denotes an OD pair
M set of different times of the day, m ∈ M
Pw set of paths between an OD pair, p ∈ Pw
A0 a collection of sections with their speed limits
La length of section a
dm

w travel demand between OD pair w ∈W during m ∈ M
f m
r,w the r-th path flow between OD pair w ∈W during m ∈ M

ta(vm
a ) time impedance function of section a during m ∈ M

vm
a traffic flow of section a during m ∈ M

t0
a free-flow travel time within section a

ya increased capacity of section a
sa average driving speed within section a
sC

a lowest speed limit of section a
sa speed limit value of section a
Ca maximum practical capacity of section a
δa,k the correlation factor between section a and path k

2.1. Stochastic User Equilibrium Assignment Problem

In the case where speed limits exist on urban road sections, the link impedance
function of a section with a speed limit will differ according to the changes in the traffic
volume within that road section. Under speed limit conditions, the section impedance
function can be expressed as
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ta(va) =

{
ta 0 ≤ va ≤ va

t̃a(va) va < va ≤ Ca
(1)

where va represents the traffic flow of road section a under the speed limit, and ta represents
the travel time when road section a has a speed limit. t̃a(va) represents the travel time
function when there is no speed limit imposed on the road section, and ta = t̃a(va). Under
the speed limit sa, ta = La/sa and va = t̃a

−1(La/sa), where t̃a
−1(·) is the inverse of the

impedance function for road section a under the condition of infinite speed.
The model for the lower-layer problem uses an SUE model to describe travellers’ path

selection behaviour. First, we separately consider the generalized road travel time function
under congestion charging measures. A congestion charge ga is imposed on section a ∈ A+,
and no congestion charges are imposed on the rest of the sections. Then, considering the
congestion charging condition, the section impedance function is as follows:

ta(va) =

{
t̃a(va) + ga a ∈ A+

t̃a(va) a ∈ A+C (2)

where A+ refers to a road section with crowded tolls, and A+C denotes a section without
congestion pricing.

When we consider both congestion pricing and speed limits, the section impedance
function is as follows:

ta(va) =


ta + ga 0 ≤ va ≤ va, a ∈ A+

t̃a(va) + ga va < va ≤ Ca, a ∈ A+

ta 0 ≤ va ≤ va, a ∈ A+C

t̃a(va) va < va ≤ Ca, a ∈ A+C

(3)

Considering the widening of road capacity, we adopt the following impedance func-
tion:

t̃a(va, ya) = α + β(va/(Ca + ya))
4 (4)

where α and β are the retardation coefficients. In the traffic flow assignment program of
the United States Federal Highway Administration, the values of α and β are α = 0.15
and β = 4, respectively. In a practical application process, these parameters can also be
adjusted through regression analysis. Equation (3) shows that the section impedance ta(va)
is also a function of the speed limit sa, congestion charge ga, and widening capacity ya.

Similar to the general random user-balanced distribution model, the selection proba-
bility f rs

k of path k can be calculated by the cross-nested logit model. The flow of path k in
the OD matrix (w) during period m can be expressed as follows:

f m,w
k = dm

w Pm,w
k (5)

where Pm,w
k represents the selection probability of path k in the OD matrix (w).

According to the relationships between sections and paths, the flow of section a in
period m can be obtained:

vm
a = ∑

w
∑
k

f m,w
k δa,k = ∑

w
∑
k

dm
w Pm,w

k δa,k (6)

According to Yang et al. [25], the section balance flow of SUE traffic allocation based
on the logit model can be obtained through the above flow conservation relationship.

2.2. Upper Biobjective Optimization Problem

From the perspective of traffic management, the upper level of the network design
problem can improve the operating efficiency of the traffic network and reduce the total
vehicle exhaust emissions by improving the traffic capacity of each section and setting
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reasonable speed limits for the section during different periods. Therefore, the upper-level
problem can be described as a biobjective optimization problem.

(1) System Travel Costs

Time is the most important factor in many traffic impedances. In some traffic networks,
the travel time and distance of a section can be regarded as an approximate proportional
relationship, and they have nothing to do with the traffic flow in the section, such as in an
urban rail transit network. However, in some traffic networks, the driving time of a section
is not necessarily proportional to the driving distance but is related to the traffic flow of
a section in the traffic network, such as an urban road network. The function form of the
total system travel cost C is as follows:

C = ∑
a∈A

va · ta(va) (7)

(2) Investment Expenses

In urban road network design, the expansion of the traffic capacities of existing
sections is considered. There are generally two forms of capacity expansion: one is discrete,
that is, to expand the number of lanes in a section. The other is continuous, which involves
expanding the existing traffic capacity of a section. The expansion cost is usually converted
into the travel cost of the system through a matching coefficient, and its functional form is
as follows:

E = φ∑
a

Ga(ya) (8)

ya ≥ 0, ∀a ∈ A (9)

where φ represents the investment expense matching coefficient, namely for matching the
investment expense to the travel time of the system. Equation (9) indicates that there is a
nonnegative constraint on the expansion of the section capacity. When ya is an integer, it
represents the number of expanded lanes; otherwise, it is merely the expansion of existing
capacity.

(3) Vehicle Emission Cost

It is assumed that the exhaust emissions of a given road section are a function of the
average vehicle speed and have the following functional form:

ϕn
a (v

m
a ) =

An exp{Bnsm
a }

Cnsm
a

(10)

where An, Bn, and Cn are the coefficients of the exhaust emission function of pollutant n,
and sm

a is the average driving speed in section a during period m. Therefore,

sm
a =

La

ta(vm
a )

(11)

The total exhaust emissions of the whole network can be calculated as follows:

E = ∑
m∈M

∑
n∈N

∑
a∈A

ηn · vm
a · ϕn

a (v
m
a ) · ta(vm

a ) (12)

where ηn is the unit emission cost of pollutant n, and ϕn
a (vm

a ) is the tail gas emission factor
of pollutant n when the flow rate of road section a is va during period m.

(4) Biobjective Optimization Model

The upper-layer problem aims at reducing the total impedance of the system and the
total exhaust emissions of the traffic network to improve the performance of the network.
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Considering different traffic demand levels in different periods, the upper-level biobjective
optimization problem can be expressed as follows:

min Z1 = ∑
m∈M

∑
a∈A

ta(vm
a ) vm

a + θ∑
a

Ga(ya) (13)

min Z2 = ∑
m∈M

∑
n∈N

∑
a∈A

ηn · vm
a · ϕn

a (v
m
a ) · ta(vm

a ) (14)

s.t. 0 ≤ ya ≤ ya ∀a ∈ A (15)

sm
a ≥ sC

a ∀a ∈ A0, ∀m ∈ M (16)

Objective function (13) minimizes the total impedance of the system and the invest-
ment matching cost, objective function (14) minimizes the total network exhaust emissions,
and constraint conditions (15) and (16) are the section capacity expansion constraints and
section speed limit conditions, respectively. The section flow vm

a is obtained by solving the
balance distribution problem for lower users.

Considering the speed limit, the traffic management method of road congestion pricing
is also added. Therefore, in addition to the total network impedance and the investment
matching cost of the upper problem, the road pricing benefit is also considered. When
congestion pricing is increased, considering different traffic demand levels during different
periods, the upper biobjective optimization problem can be expressed as follows:

min Z1 = ∑
m∈M

∑
a∈A

ta(vm
a ) vm

a + θ∑
a

Ga(ya)− τ ·∑
a

ga · va (17)

min Z2 = ∑
m∈M

∑
n∈N

∑
a∈A

ηn · vm
a · ϕn

a (v
m
a ) · ta(vm

a ) (18)

s.t. 0 ≤ ya ≤ ya ∀a ∈ A (19)

sm
a ≥ sC

a ∀a ∈ A0, ∀m ∈ M (20)

Objective function (17) is used to minimize the system total impedance (including the
travel cost, investment cost, and congestion charging benefit), and objective function (18) is
used to minimize the overall emissions of the network. Constraint conditions (19) and (20)
are the restriction conditions with respect to road section capacity expansion, road section
speed limits, and road congestion charging, respectively. The section flow vm

a is obtained
by solving the equilibrium allocation problem of lower random users.

3. Solution Algorithm
3.1. Solution of the Lower Level Problem

The lower-layer model adopts the SUE allocation model. For lower-layer network
users with a given road section capacity and road section speed limit, their path selection
behaviour conforms to the SUE criterion. In general, the method of successive averages
(MSA) is mostly used to solve the lower-level stochastic user balance problem. In the MSA,
a deterministic step size method is used, which causes the algorithm to converge slowly
because the step size is typically too large or too small. The self-adaption of the weighted
average method (SRAM) proposed by Liu and Yu [34] overcomes this shortcoming of the
MSA and can solve the SUE problem quickly and effectively.

The SUE model can be solved using the following formula to calculate the descent
direction d = [da]:

da = ∑
rs

∑
k

qrsPrs
k δrs

ak − va

The steps for solving the SUE model using the SRAM algorithm are as follows:

(1) Initialization. Calculate the path selection probability for the zero-flow network, and
complete the flow loading process to obtain the initial section flow v0. The parameters
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are set as follows: k = 1 , η > 1 , 0 < γ < 1 , β0 = 1, and the convergence accuracy
is 1.

(2) Calculating the direction of descent. Calculate the descent direction dk by the above
equation.

(3) Determining the search direction. Obtain the step length λk = +1/βk, where

(4) βk =

{
βk−1 + η,

∣∣∣∣∣∣dk
∣∣∣∣∣∣≥∣∣∣∣∣∣dk−1

∣∣∣∣∣∣
βk−1 + γ, else

(5) Updating the road traffic. Calculate vk+1 = vk + λkdk.

(6) Determining whether the convergence condition is met. If
∣∣∣∣∣∣dk

∣∣∣∣∣∣≤ ε, terminate the
loop; otherwise, return to the second step, and k = k + 1.

3.2. Multiobjective Genetic Algorithm

There are many GAs available for solving the above biobjective optimization model.
Among them, the nondominated sorting genetic algorithm (NSGA-II) proposed by Deb
et al. [35] is the most widely used. This paper uses NSGA-II to obtain the Pareto optimal
solution of the proposed biobjective bilayer optimization problem. The detailed design of
the algorithm is given below.

(1) Nondominated Sorting of the Population

Before performing the selection operation in NSGA-II, a nondominated sort is per-
formed for all individuals. Individuals are classified according to their noninferior solution
levels, and their ordinal values are calculated. The basic method of nondominated sorting
is to first set the initial sequence value to 1. An unsorted individual p in the population is
then compared with all remaining unsorted individuals q in turn. If there is no individual
q that can dominate individual p, then individual p is assigned the current order value.
Subsequently, individual p participates in the next round of sorting. The next round of
the sequence value is set to the current sequence value plus 1, and the above process is
repeated until all individuals are assigned sequence values.

(2) Crowding Distance

We define the sum of the distance differences between each individual and its neigh-
bours on each subobjective function as the crowding distance of the individual. The
crowding distance calculation can reflect the distribution of other solutions around each
solution. The sum of the length and width of the dashed rectangle shown in Figure 1 is the
crowding distance of individual i. In Figure 1, the crowding distances of the two individu-
als at both ends are set to infinity. In NSGA-II, individuals with large crowding distances
have more opportunities to participate in reproduction and evolution to ensure that the
algorithm can converge to a uniformly distributed Pareto surface, thereby maintaining the
diversity of the population.
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(3) Genetic Strategy

First, we define the genetic parameter variables: population size PS, maximum num-
ber of genetic generations T, mutation probability pm, and crossover probability pc.

(a) Solution encoding

Individual coding uses real vector coding. The capacity expansion value ya and speed
limit value sa during different time periods in the network are used as the solution variables
for real number vector coding.

(b) Generation of the initial population

The number of members PS in the initial group P0 is generally 50–100, and this number
can also be determined by trial-and-error calculation. The individual PS of the initial group
P0 is randomly generated using the expansion constraints imposed on the road section
capacity and the road section speed limit conditions.

(c) Fitness evaluation

For each individual, the path-based double gradient projection algorithm is used to
solve the lower-level variational inequality problem, and the order value and crowding
distance of the individual are obtained through the nondominated sorting method and the
crowding distance calculation. The smaller the individual’s order value, the higher the
fitness. The greater the crowding distances of individuals with the same ordinal value, the
higher the fitness.

(d) Genetic manipulation

The operations of GAs generally include three basic types: selection, crossover, and
mutation. From the initial group PS, PS individuals are selected through the championship
method to form the parent group Pt, and the crossover and mutation operations are
performed on the parent group. Among them, the crossover operation uses the simulated
binary crossover operator (SBX) on the parent individual encoded by the real number,
randomly selects the crossover point for the two paired chromosomes, and then exchanges
the parts after the crossover point to generate two new individuals. The mutation operation
uses a polynomial mutation operator to select some genes from group Pt according to the
mutation probability pm, which helps NSGA-II jump out of local optimal states.

(e) Elitism selection

To maintain the diversity of individuals in the population, the nondominated ranking
method and championship method are used to select PS excellent individuals from the
current generation Pt and its children Qt to inherit the next generation. The selection
process is as follows: the current generation Pt and its children Qt are first combined into a
new population Rt; nondominated sorting is performed on population Rt; the order value
and crowding distance of each individual are calculated; and PS excellent individuals are
selected through the championship method.

The specific process of using NSGA-II to solve the biobjective optimization model is
as follows:

Step 1. Initialization. The population size PS, maximum algebra T, mutation probability
pm, crossover probability pc, and other genetic parameters are set. The initial
parent population P0 is generated with a scale of PSt = 0.

Step 2. The individual fitness of population P0 is evaluated, the individual order value
and the crowding distance are obtained, and the individuals with order values
of 1 form the initial optimal surface of the Pareto front.

Step 3. Crossover and mutation operations are performed to generate the offspring
population Qt, the parent population Pt and the offspring population Qt are
combined to form the combined population Pt, and the individual fitness of Rt
is evaluated. The fusion of Rt updates the current optimal surface of the Pareto
front.
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Step 4. Using the method of competitive competition, PS good individuals are selected
from the combined population Rt to form a new parent population Pt+1.

Step 5. If t < T, t = t + 1, the process reverts to Step 3; otherwise, the process advances
to Step 6.

Step 6. The optimal Pareto front is output, and the algorithm is terminated.

4. Numerical Examples

The network of Nguyen and Dupuis [36] illustrates the effectiveness of the above
models and algorithms. The network consists of 4 ODs, 13 nodes, and 19 links, as shown in
Figure 2. The parameters of the emission rate functions and the monetary valuation of each
type of pollutant are shown in Table 1, where all data are taken from Lo and Szeto [37]. The
demand ratio among OD pairs 1–2, 1–3, 4–2, and 4–3 is 2:4:3:3, and the section capacity of
each lane is 2000 pcu/h. The investment cost function is Ga(ya) = 3ya

2, and the congestion
pricing function is Ga(ga)= ga.
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Speed limit control is carried out on sections 6 and 13; the speed limit in section 6
is within [52.17, 60.00], and the speed limit in section 13 is within [52.17, 60.00]. The OD
demands during the morning peak, evening peak, and flat peak hours are 800 × 12, 700 ×
12, and 600 × 12 vehicles/h, respectively. The constant pollution coefficients of different
pollutants and their unit emission costs are shown in Table 2.

ga = 0 solves the lower-level stochastic user balance model without considering the
speed limit and road extension. We can obtain the traffic flow before road congestion
charging is included, where we assume that the OD requirement is 800 × 12 vehicles/h.
Table 3 shows the traffic flow and saturation of each section.

The saturation levels of sections 15 and 19 are 73.4% and 90.1%, respectively. Since
they are clearly crowded, we can use congestion charges on road sections 15 and 19, which
can change passenger travel paths and alleviate the congestion in these road sections.
Assuming that we charge g15 and g19 in sections 15 and 19, respectively, we use the
expression of the road congestion pricing constraint (4.20), and the pricing range is set as
[0–27], [0–36].
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Table 1. Parameters of the emission rate functions and the monetary valuation of each type of pollutant.

Section
Number Origin Destination t0

a/min Ca(veh/h) smax
a (km/h) sa(km/h) Section

Length (m)
Number of

Lanes

1 1 5 0.6 6000 60 - 600 3
2 1 12 0.45 6000 60 - 450 3
3 4 5 0.6 6000 60 - 600 3
4 4 9 0.6 6000 60 - 600 3
5 5 6 0.6 6000 60 - 600 3
6 5 9 0.6 6000 60 s6 600 3
7 6 7 0.6 6000 60 - 600 3
8 6 10 0.6 6000 60 - 600 3
9 7 8 0.6 4000 60 - 450 2
10 7 11 0.45 6000 60 - 450 3
11 8 2 0.45 2000 60 - 450 1
12 9 10 0.6 6000 60 - 600 3
13 9 13 0.45 4000 60 s13 450 2
14 10 11 0.45 6000 60 - 450 3
15 11 2 0.6 6000 60 - 600 3
16 11 3 0.6 6000 60 - 600 3
17 12 6 0.6 6000 60 - 600 3
18 12 8 1 2000 60 - 750 1
19 13 3 0.6 2000 60 - 600 1

Table 2. Parameters of the emission rate functions and the monetary valuation of each type of
pollutant.

Section Length (m) NOx VOC CO

Am 1.5718 2.7843 3.3963
Bm 0.040732 0.015062 0.014561
Cm 10,000 10,000 1000

ηm (EURO/kg) 13.80 2.95 0.01

Table 3. Flow without considering the speed limit of the flow assignment for the lower-level problem.

Section Number x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Section Flow 1999.3 2800.7 3094.8 1705.2 3398.6 3022.7 911.9 1630.1 369.2 2496.9

Saturation 33.3% 46.7% 51.6% 28.4% 56.6% 50.4% 22.8% 27.2% 18.5% 41.6%

Section Number x11 x12 x13 x14 x15 x16 x17 x18 x19

Section Flow 2006.0 2110.8 1281.1 2400.0 4406.0 2718.9 1802.1 3797.9 1802.1

Saturation 33.4% 35.2% 64.1% 40.0% 73.4% 45.3% 45.1% 63.3% 90.1% 33.4%

4.1. Comparison of User Equilibrium Results

We use the lower flow model with the SUE model to describe travellers’ route choice
behaviours. Compared with UE, the flow of the SUE assignment model accounts for
travellers through their travel choices and personal understandings of random travel path.
We use two cases to show the difference between SUE and UE.

The traffic network and road section parameters are similar to those in the previous
sections. We assume that the unit traffic demand is 800, the nest size parameter u in the
random user equilibrium distribution (SUE) is 0.5, the sensitivity of path selection to the
path cost θ is 1, and the path similarity parameter of traveller selection γ is 1. The stop
parameter in the user balance distribution is set as ξ = 10−6. Table 4 shows the speed
limit and road congestion charging case based on the SUE and UE flow allocations. The
traffic assignment method based on SUE avoids the large sensitivity problem. Although



Sustainability 2021, 13, 7008 11 of 16

the impedance based on SUE is larger than that based on UE, the traffic flow is more even
when using SUE.

Table 4. The traffic assignment results yielded by UE and SUE.

Section Number Origin Destination
UE Configuration Results SUE Configuration Results

Flow Time
Remaining

System
Impedance Flow Time

Remaining
System

Impedance

1 1 5 4234.7 0.466 1974.21 1999.3 0.451 901.36
2 1 12 565.3 0.600 339.20 2800.7 0.604 1692.37
3 4 5 0 0.600 0 3094.8 0.606 1876.57
4 4 9 4800 0.637 3056.95 1705.2 0.601 1024.14
5 5 6 0 0.600 0 3398.6 0.609 2070.63
6 5 9 2634.7 0.602 1585.39 3022.7 0.606 1831.12
7 6 7 0 0.450 0 911.9 0.450 410.52
8 6 10 2634.7 0.603 1589.16 1630.1 0.600 978.87
9 7 8 1600 0.796 1273.73 369.2 0.750 276.95
10 7 11 565.3 0.600 339.20 2496.9 0.603 1504.86
11 8 2 0 0.600 0 2006.0 0.601 1205.88
12 9 10 2634.7 0.451 1189.04 2110.8 0.451 952.03
13 9 13 1600 0.478 764.24 1281.1 0.461 591.05
14 10 11 2400 0.602 1445.55 2400.0 0.602 1445.50
15 11 2 2400 0.453 1087.3 4406.0 0.470 2069.18
16 11 3 2400 0.602 1445.53 2718.9 0.604 1641.66
17 12 6 2965.3 0.471 1397.56 1802.1 0.453 815.98
18 12 8 2634.7 0.603 1589.19 3797.9 0.614 2333.58
19 13 3 2965.3 1.054 3126.67 1802.1 0.659 1188.21

System travel impedance 22,202.92 24,810.46

4.2. Parametric Analysis

According to the biobjective GA, a traffic network design model based on the UE
allocation is solved. The algorithm parameters are set as follows: the population size
ps = 100, number of evolutionary iterations gen = 1000, crossover probability p = 0.9,
mutation probability q = 0.1, and stop parameter ξ = 10−6. We set the model parameters as
follows: the investment matching coefficient θ = 0.001, matching coefficient for congestion
charging τ = 0.5, and understanding parameter u = 0.5. Every 250 iterations, we record
the current nondominated solution set. Figure 3 shows the comparison of the Pareto fronts
obtained under different numbers of iterations. It can be found that the more iterations
there are, the closer the Pareto front obtained by NSGA-II is to the optimal Pareto front.
When the number of iterations reaches 1000, NSGA-II is able to achieve optimal results.

Travel understanding parameters represent the sensitivity of travellers’ path selections
and path costs. The values of different understanding parameters can be regarded as the
errors between the traveller’s understanding of the trip cost and the actual travel cost.
The approximate Pareto optimal frontiers yielded when the understanding parameter u is
0.01, 0.1, and 0.5 under the same algorithm parameter settings are shown in Figure 4. The
higher the value of the understanding parameter u, the smaller the error of the traveller’s
perception of the path cost, and vice versa. Figure 4 shows that when the coefficient of u
rises from 0.01 to 0.1 and 0.5 in the process of traffic network exhaust pollutant emission
decline, the impedance of the traffic network falls, and the traveller’s path perception error
is smaller, so the traveller can more effectively choose the path with the optimal cost.
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The investment matching coefficient θ in the upper optimization model represents
the conversion coefficient that matches the investment expense to the travel time of the
system. Different values of the investment matching coefficient can be regarded as the
trade-off made by traffic planners to improve the traffic network to the greatest extent while
reducing the investment expense as much as possible. The approximate Pareto optimal
frontiers yielded when the investment matching coefficient θ is 0.001, 0.005, and 0.01 under
the same algorithm parameter settings are shown in Figure 5. Figure 5 shows that when
the matching coefficient θ drops to 0.01, 0.005, and 0.001, the total impedance of the traffic
network decreases continuously, and the total emissions of exhaust pollutants also decrease
continuously.
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The matching coefficient for congestion charging τ represents the conversion coeffi-
cient of the system travel time. The different values of the matching coefficient for charging
can be regarded as a trade-off between traffic managers’ efforts to minimize road con-
gestion and increase the travel impedance of the given road section for travellers. The
approximate Pareto optimal frontiers yielded when the matching coefficient for charging
τ is 0.5, 1, and 2 under the same algorithm parameter settings are shown in Figure 6.
The larger the charging matching coefficient, the stricter the management control of the
congestion charging section. The smaller the charging matching coefficient, the looser the
management control. In Figure 6, when the matching coefficient τ drops to 2, 1, and 0.5,
the total impedance of the traffic network decreases continuously, as do the total emissions
of exhaust pollutants.
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4.3. Speed Limit Control Comparison during Different Periods

We consider the differences in traffic demand levels during different periods and
set speed limits in different periods. The model parameter settings are: the investment
matching coefficient θ = 0.001, the matching coefficient for congestion charging τ = 0.5,
and the understanding parameter u = 0.5. Two situations are compared: setting the
speed limits during peak hours separately and setting the speed limit during each period
comprehensively. The approximate Pareto optimal fronts yielded in these two cases are
shown in Figure 7. Setting a speed limit can significantly improve the efficiency of urban
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network traffic and reduce urban traffic pollution by comprehensively considering the
traffic conditions inherent in various periods.
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4.4. Comparative Effects Analysis Regarding Congestion Pricing

The traffic control strategy of road congestion pricing is added to reduce the traffic
demand of congested sections and improve the operating efficiency of the whole network.
The investment matching coefficient θ = 0.001, the matching coefficient for congestion
charging τ = 0.5, and the understanding parameter u = 0.5. The parameter setting
compares the implementation of the road congestion charging strategy with the speed
limit and the noncharging congestion management approach. The approximate Pareto
optimal fronts for these two situations are shown in Figure 8. The average saturation levels
of sections 15 and 19 decrease to 35.2% and 50.8%, respectively. Based on a comparison of
the situations before and after charging, charging for crowded roads can change the travel
paths of travellers and alleviate road congestion. This also shows that the implementation
of the road congestion charging management strategy can improve the traffic efficiency of
the entire city network.
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5. Conclusions

In this paper, based on the traffic network design problem with the consideration of
speed limits, a method of road congestion charging is proposed to guide residents’ travel
decisions. This paper also establishes a congested road charging model based on SUE
to alleviate road congestion and reduce pollution. We use NSGA-II to solve this bilevel
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programming problem. The lower-level SUE allocation problem uses the adaptive weighted
average method, which is analysed through a simple calculation example. From the
obtained results, the SUE-based traffic allocation method avoids the problem of excessive
sensitivity in deterministic traffic allocation situations. Although the total impedance of
the traveller system obtained by using the SUE-based traffic distribution model is larger
than that based on UE, the SUE-based traffic distribution is more uniform. Analyses
of the results regarding calculation examples and key parameters effectively prove the
applicability of the proposed algorithm and model. The innovation of this paper is to study
the speed limit in the continuous traffic network design problem while adding the control
strategy of road congestion charging. After the implementation of the road congestion
charging management method, the two situations of implementing the road congestion
charging strategy and the noncongestion charging management under the condition of
the speed limit were compared by setting and adjusting the relevant parameters. It was
concluded that the saturation of the corresponding road section under different conditions
was reduced by 35.2% and 50.8%, respectively. By comparing the situations before and
after the toll, charging the congested road is found to effectively alleviate the operating
condition of the congested road section and improve the traffic efficiency of the entire city
network.
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