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Abstract: The ever increasing demand for electricity and the rapid increase in the number of au-
tomatic electrical appliances have posed a critical energy management challenge for both utilities
and consumers. Substantial work has been reported on the Home Energy Management System
(HEMS) but to the best of our knowledge, there is no single review highlighting all recent and past
developments on Demand Side Management (DSM) and HEMS altogether. The purpose of each
study is to raise user comfort, load scheduling, energy minimization, or economic dispatch prob-
lem. Researchers have proposed different soft computing and optimization techniques to address
the challenge, but still it seems to be a pressing issue. This paper presents a comprehensive review
of research on DSM strategies to identify the challenging perspectives for future study. We have
described DSM strategies, their deployment and communication technologies. The application of soft
computing techniques such as Fuzzy Logic (FL), Artificial Neural Network (ANN), and Evolutionary
Computation (EC) is discussed to deal with energy consumption minimization and scheduling
problems. Different optimization-based DSM approaches are also reviewed. We have also reviewed
the practical aspects of DSM implementation for smart energy management.

Keywords: demand response; demand-side management; energy consumption optimization; energy
efficiency; load scheduling; smart grid; smart home

1. Introduction

The emerging era of the smart grid not only assists utilities in conserving energy,
reducing cost, increasing grid transparency, sustainability and efficiency, but also has capti-
vated consumer attention via Demand Side Management (DSM), which is an important
aspect of the smart grid. However, the exponentially increasing demand for electricity
at consumer premises is still a pressing issue for both utilities and consumers. According
to the forecast by the National Institution for Transforming India (NITI) Ayog, the electric-
ity demand in India for the residential sector is predicted to grow 6–13 times by the year
2047 [1]. Smart energy management refers to planning, monitoring, controlling, and op-
timizing energy through smart solutions or intelligent means whose ultimate objective
is to maximize productivity and comfort on the one hand, and to minimize the energy cost
and pollution on the other hand [2]. To achieve these objectives effectively, there is a need
for the electric grid to transition from the traditional centralized version to one that uses
smart technologies and is known as the smart grid [3]. A smart grid is an electricity net-
work based on digital technology that has the provision for full-duplex communication,
as well as bidirectional power flow between utilities and customers [4]. To ensure grid
sustainability, the residential customers, as a part of electricity demand, must have a bet-
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ter understanding and awareness of the evolving grid’s worth. In India, the domestic
sector accounts for 24.76% of the total electricity consumption in 2019 [5].

The smart home (utilizing home automation, or domotics), one of the key components
of a smart grid, is a dwelling that serves the residents with security, healthcare, comfort,
and remote control of the home appliances through smart technology [6,7]. Smart home
energy management plays an important role in Demand Side Management (DSM), one
of the aspects of the smart grid [8], which deals with controlling and optimizing the various
smart home appliances according to the user needs and preferences to reduce the elec-
tricity consumption and therefore the cost, enhancing energy efficiency, and maintaining
a clean and green environment [9]. Although various researchers have been working in
this field for years in achieving said objectives, still there is a need for state-of-the-art
technologies and developments to provide optimal solutions in maximizing user comfort
levels and assisted living as well as energy consumption and wastage reduction. Figure 1
shows the block diagram of the energy management framework.

Figure 1. Energy management framework.

The main contributions of this paper are as follows:

1. Description of various DSM strategies.
2. Conduct of a comprehensive review of previous and current research works on DSM

through soft computing and optimization techniques.
3. Proposal of new viewpoints and challenges for further research.

The rest of the paper is organized as follows: Section 2 describes DSM strategies.
Section 3 addresses the hardware and communication technology in DSM. Section 4
provides the application of soft computing techniques for DSM. Section 5 discusses
the optimization-based DSM approaches. Section 6 reviews DSM approaches and their
hardware implementation. Section 7 discusses the challenges for future research. The
paper is concluded in Section 8.

2. Demand Side Management

Demand Side Management is the planning, controlling, and execution that directly
or indirectly influences the user-side demand of the electric meter. The DSM program
reduces the energy costs of electricity, which in the long run will restrict the need for more
capacity building transmission and distribution networks [10].

The significant objectives of demand-side management [11] are as follows:

1. Reduction in generation margin;
2. Improvement of the economic viability of the grid and its operating efficiency;
3. Improvement of the economic viability of the distribution network;
4. Maintenance of demand-supply balance with renewable;
5. Increasing the efficiency of the overall energy supply system.
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Reducing the generation side peak demand is very expensive and according to a study
done in [12], at least 10% of supply cost provides only 1% hours per year. To deal with
such a challenge, DSM offers a cost-effective opportunity. DSM reduces the overall peak
load demand by modifying the energy consumption pattern of the consumer that en-
hances the grid stability, which in turn reduces the energy consumption cost and carbon
footprints [13,14]. Various DSM strategies (as shown in Figure 1) include—Energy Conser-
vation and Energy Efficiency, Energy Consumption Optimization and Scheduling, Demand
Response, Distributed Generation, and Energy Storage. Figure 2 illustrates the role of
DSM strategies [15]. These roles include peak shaving, valley filling, strategic conservation,
load shifting, and time-shifting. Peak shaving and valley filling are the direct load control
techniques. Strategic conservation involves direct consumer-side demand reduction. Load
shifting and time shifting shift the demand from peak hours to off-peak hours. Peak shav-
ing is carried out through energy efficiency, incentive-based DR, and distributed generation,
valley filling through price-based DR, strategic conservation through energy conservation
and energy optimization, load shifting, and time-shifting through scheduling and energy
storage, respectively.
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Figure 2. Role of DSM strategies.

2.1. Energy Conservation and Energy Efficiency

Energy conservation is at the heart of energy management that should be considered
as a moral, religious, and societal duty. Both energy conservation and energy efficiency
aim at saving energy and the environment, but with different methodologies. To clarify
the subsequent confusion among consumers, we compared the two with examples in Table 1,
which shows the basic differences between energy conservation and energy efficiency.
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Table 1. Comparison between energy conservation and energy efficiency.

Attributes Energy Conservation Energy Efficiency

Meaning Changing behavior or habits
for using less energy

Using the technology that uses
less energy

User-interaction Yes May or may not
Type of load Traditional loads Digital loads
User comfort Compromise Maximum

Examples

• Switching off lights or fans
when leaving the room

• Using natural day light
• Walking instead of driving

• Replacing incandescent
bulbs with LEDs

• Using Solar panels
• Using Electric vehicles

The government of India has adopted certain approaches to maintain the consumer
demand with the view to minimize carbon dioxide growth rate to protect citizens and
environment from its hazardous effects [16]. These approaches include:

• Greater use of renewable energy sources.
• Shifting towards super-critical technologies for conventional power plants.
• Energy efficient innovative measures under the overall realm of the Energy Conserva-

tion Act 2001.

The Ministry of Power has implemented many energy efficient programs through
the Bureau of Energy Efficiency (BEE) in the fields of household lighting, commercial
buildings, standards, and product marketing, and demand-side management.

2.1.1. Energy Conservation and Energy Efficiency Programs

• Standards and Labeling programs—To provide consumers with a choice regarding
the energy-saving potential and thus the cost-saving potential of the related product
in the market. These programs aid the vision of energy surplus India with 24 * 7
power to all [1].

• Energy Conservation Buildings Code—To set minimum energy standards for large
commercial buildings having a connected load of 100 kW or contract demand of 120 KVA
and above. For the residential sector, Eco-Niwas Samhita is launched to set various
standards for limited heat gain and heat loss and for achieving natural ventilation and
daylighting. Figure 3 shows the Eco-Niwas Samhita Scheme in the Residential sector [1].

• Strengthening Institutional Capacity of States—To set up State Designated Agencies
for initiating the energy conservation activities at the state level.

• School Education Program—To promote energy efficiency in schools through the for-
mation of Energy Clubs. BEE is realizing the Students Capacity Building Programme
under the Energy Conservation awareness scheme for the XII five year plan.

• Human Resource Development—To implement energy-efficient technologies and
practices in various sectors, a sound policy is required for the creation, retention, and
up-gradation of skills of human resources.

• National Mission for Enhanced Energy Efficiency—One of the eight missions un-
der the National Action Plan on Climate Change (NAPCC) is the National Mission
for Enhanced Energy Efficiency (NMEEE). The goal of NMEEE is to improve energy
efficiency by establishing a favorable regulatory and policy regime for encouraging
innovative sustainability in energy efficiency.
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Figure 3. Eco-Niwas Samhita Scheme in the residential sector [1].

2.1.2. Energy Efficiency Projects in India

• Energy Efficiency in light Bulb: Domestic Efficient Lighting Program (DELP) scheme
(now renamed as Unnat Jeevan by Affordable LEDs and Appliances for All (UJALA))
is designed to monetize energy consumption reduction in the household sector and
to attract investments therein. Approximately 45,865 mn kWh of energy were saved per
year according to the Ministry of Power, and carbon emissions were reduced by 3, 71, 50,
810 tonnes. For the fiscal year 2019-20, nearly 40 crores of LED bulbs were distributed
under UJALA Yojana, resulting in cost savings of Rs 18,341 crores per year [17].

• Energy Efficiency in Street Lighting: The inefficient sodium and mercury vapor street
lights were replaced by efficient LED street lights in many cities with a payback period
of nearly two years. New technologies in LED-based street lights offer noise and
pollution sensors, with remote control facilities.

• Energy Efficiency in Water Pumping: Five States in the Agricultural sector and 8
States in the Municipal sector replaced the traditional pump with its energy-efficient
counterpart. The profound transition towards solar energy is making the water
pumping system even smarter and efficient than the previous technologies.

Table 2 shows the international collaboration with India in energy efficiency.

Table 2. International collaboration under energy efficiency programs [1].

S. No. International Collaboration Programmes

1 Indo-US
Development of ECBC, Energy Efficient HVAC

systems, Capacity Building for Institutional
Financing

2 Indo-UK Industrial Energy Efficiency, DSM Action Plans,
Carbon Budgeting Approach

3 Indo-Japan

Energy Conservation Guidelines and Manuals,
Waste Heat Recovery Projects, Joint Policy

Researchers, Capacity Building and Industrial
Energy Efficiency Programmes

4 Indo-German
Energy-Efficient Cooling, Energy Efficiency

Standards for Multistorey Buildings, Perform,
Achieve, and Trade (PAT) cycle

5 Indo-Switzerland
Smart GHAR Project, Energy Efficient Buildings

via Integrated Design Method, Training
Programmes
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2.2. Demand Response

Demand response (DR) is a process in which the utility may curb the load at customer
premises or remotely detach such customer appliances to avoid huge capital investments
in generation capacity. DR acts as a resource to deal with a high spike in fuel prices,
brownouts, blackouts, and other emergency conditions. DR engages customer participa-
tion through various incentives and penalties [10,18]. Scientists and researchers are now
showing interest in residential DR programs, which enable a customer to decrease their
electricity consumption and manage smart appliances [19–21]. The DR classification as
given by the US Department of Energy [22] is shown in Figure 4, and its functional strategy
is shown in Figure 5.

Figure 4. Demand response classification.

Figure 5. DR functional strategy.

Utility sends the DR request to the consumer via Advanced Metering Infrastructure
(AMI), which is an integration of smart meters, communication networks, measurement
terminals, data concentrators, and data management systems [23]. AMI replaces the conven-
tional meters with smart meters to promote two-way communication for remote monitoring
and control applications. Table 3 highlights the basic differences between the aforesaid DR
programs. Price-based DR programs are time-dependent programs that require price de-
sign and involve voluntary participation. On the other hand Incentive-based DR programs
are time-independent programs that require baseline estimation and involve voluntary,
mandatory, or market-based participation.
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Table 3. Difference between price-based and incentive-based DR programs.

Attributes Price-Based DR Incentive-Based DR

Price-variation Time-dependent Time-independent
Requirement Price-design Baseline estimation

Discounts
offered Time-varying Fixed or Time-varying

Consumer
participation Voluntary Voluntary, mandatory,

or market-based

Applicability
Mostly addressed to have

a propensity for less electricity use
during peak hours

Mostly addressed during overload
periods or emergencies

2.2.1. Price-Based DR Program

In a price-based DR program or indirect load control, consumers modify their energy
consumption patterns at peak demand times in response to different time-based pricing
schemes called tariffs. This in turn offers financial benefits to users. The various pricing
schemes include Time-Of-Use pricing (TOU), Critical Peak Pricing (CPP), and Real-Time
Pricing (RTP). TOU is a widely used tariff in which usage charges are divided into different
time slots for different seasons of the year or hours of the day [24]. Generally, prices are
higher during peak hours and lower during off-peak hours, so consumers may respond
through scheduling. CPP is quite similar to TOU, but here the prices change periodically
often during the summer when the system is overloaded. The participants are notified
of the new price a day ahead [25,26]. RTP or dynamic pricing is the one where the hourly
prices fluctuate and participants are notified about the time beforehand. RTP implemen-
tation requires real-time communication between utilities and customers and an energy
management controller for modifying the energy consumption pattern resulting in overall
price reduction [21].

2.2.2. Incentive-Based DR Program

In incentive-based DR programs, participants reduce their energy consumption dur-
ing overload periods, and they avail financial incentives in return. Incentive-based DR
programs include Direct Load Control (DLC), demand bidding, and interruptible programs.
In DLC, as the name signifies, the utility can directly switch on or off the customer’s air con-
ditioner or water heater based on the mutual contract [19,27,28]. Demand bidding is also
known as negawatt or buyback program, is a market-based program where customers bid
for the load they are willing to reduce [29]. Once the bid is accepted and customers commit
according to the requirement, and is paid for that. Interruptible programs allow customers
to shift their load to off-peak hours or shut down especially during emergencies. Enrolled
customers may get penalties if they fail to respond during the event [30].

2.3. Energy Optimization and Scheduling

Optimization refers to the selection of the best possible element from several alternatives
to achieve a target. Mathematically, it deals with finding the maxima or minima of a function
that is subjected to some constraints [31]. Energy consumption optimization is used to find
the optimal parameters needed for smart energy management [32]. Two important parameters
include current indoor parameters and user-desired parameters [33]. The difference between
the two produces the error, which is minimized using optimization to minimize energy con-
sumption. Traditional energy management that is based on load forecasting and machine
learning where the data is taken from traditional meters fails to predict hourly consump-
tion [34]. The issue is overcome either by replacing these meters with digital ones or by using
DR-based load forecasting [26]. Energy prediction is a prerequisite for energy consumption
optimization [35]. The user comfort level is a prime factor in considering the optimization
problem. Many researchers have proposed various optimization techniques for controlling
energy consumption without jeopardizing user comfort.



Sustainability 2021, 13, 7170 8 of 23

As the conventional grid is transforming into a decentralized grid, load schedul-
ing is now replacing load shedding. Demand-side management involves scheduling of
home appliances by modifying their energy consumption pattern. Scheduling is a load
management technique wherein the smart home appliances are shifted from on-peak
hours to off-peak hours (during DR programs) [36], thereby shaving the peaks and filling
the valleys resulting in load factor improvement.

2.4. Distributed Generation

Distributed Generation or Decentralized Generation (DG) is an electricity source
directly connected to the distribution level or on the user-end side [37]. DG serves as
a backup plan to the demand side, which not only mitigates the transmission losses, but
also improves well-being, as no one wants the high transmission lines to pass over their
residence. DG technologies provide economic benefits for cogeneration, peak-shaving, and
standby power applications [38]. The DG technologies in smart homes include renewables
(solar and wind), gas turbines, microturbines, and fuel cells [39].

With the rapid sustainable development and the need for emission-free generation,
renewable energy penetration seems to the largest among the DG technologies. These are
some of the sources of cost-effective, clean, and green energy. In the solar energy domain,
photovoltaic technology is the most prevailing among smart homes. Another renewable
technology is wind power, which is also growing worldwide after solar. Wind power
is generated by wind turbines, which include a fan, generator, gearbox, tower, and safety
mechanisms [40]. Biomass is also used in smart homes, especially for cooking and heating.
Biomass technologies include combustion, gasification, and biogas [41,42]. According
to the annual report of the Ministry of New and Renewable Energy (MNRE), nearly 86 GW
of renewable power capacity has been set up by December 2019 in India, and the target
is to extend it further to 175 GW by the year 2022 [43].

Now, in the era of renewable energy sources coupled with information and communi-
cation technology, the devices are becoming smart. The LED light bulb, LED street light,
and energy-efficient water pump are enriched with smart technology and get power from
solar photovoltaic systems and are now called smart home lights, smart street lights, and
smart water pumps. In India, the present solar energy contribution includes 1,721,343 smart
home lights, 679,772 smart street lights, and 246,074 smart water pumps, respectively, [43].

2.5. Energy Storage

Energy storage is the ultimate solution to overcome the intermittency challenges
associated with renewable power [44]. Storing renewable power will abort the dependency
on the grid power supply. With intelligent energy management, customers are engaged
to buy and store electricity when it is available in plenty or when prices are low. With
smart metering, customers can reduce their consumption and therefore cost during peak
load hours (or high price periods). Energy storage technologies in the smart home include
batteries, ultracapacitors, and electric vehicles [45,46]. Commonly used batteries are
lead-acid, lithium-ion, zinc-bromine, zinc-iron, etc. [10]. Electric Vehicle (EV) or portable
energy storage replacing the conventional vehicles are one of the promising green energy
technologies that will turn the entire energy scenario shortly. EV technology comprises
a battery, hybrid, plug-in hybrid, and fuel cell. In India, Faster Adoption and Manufacturing
of Electric Vehicles (FAME-II) provides inputs on different aspects of electric mobility.
Renewable energy-based charging infrastructure is in progress [43].

3. Hardware and Communication Technology

Home Energy Management System (HEMS) uses smart sensors to collect information
and communicate with the smart appliances to perform the specific action. Various research
projects have been carried out in the framework of intelligent HEMS, leveraging smart
technologies to build HEMS hardware and control algorithms. In [47], authors presented
a hardware demonstration for DR management comprising of home energy management
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unit, load controllers, PC, communication module, and a smart meter. A hardware HEMS
is developed for controlling domestic loads in response to pricing signals in the department
of Electrical Power Systems of Politehnica University of Bucharest [48]. The system employed
a smart meter, bipolar fuses, relays, Raspberry PI, and wireless router. The work in [49]
proposed an intelligent HEMS for DR management. The hardware setup consists of wireless
modules, controllers, and smart plugs. The study in [50] provided the architecture and
practical implementation of an IoT and cloud computing-based HEMS on a project circuit
board. The hardware components used are the WeMos D1 Mini microcontroller with a built-
in Wi-Fi module, current and voltage sensors, power module, multiplexer, and relay.

To apply appropriate appliance scheduling and energy management measures, smart
HEMS needs communication technology. A smart home uses wireless sensor networks
to connect home appliances with HEMS. Most widely used communication technologies
include BACnet [51], Digital Addressable Lighting Interface (DALI) [52], Zigbee [53], Blue-
tooth [54], Wi-Fi [55], and Power Line Communication (PLC) [56]. BACnet was developed
by Ashrae for controlling HVAC systems. The authors in [57] introduced the building
automation and communication requirement using BACnet. The DALI protocol is used
to provide communication between the fuzzy controller and LED luminaires [58]. Zigbee,
Bluetooth, and Wi-Fi are wireless communication technologies. Zigbee is mostly preferred
for communication in smart homes due to its low power requirement, simplicity, reason-
able range, low cost, and support to a large number of network nodes [59]. An intelligent
HEMS is designed for demand response and load management via Zigbee based on IEEE
802.15.4 standard [60]. A Zigbee-based protection system is constructed for building safety
against fire [61]. An intelligent cloud home energy management system is proposed using
the Zigbee protocol to overcome the intermittency challenges associated with renewable
power [62]. HEMS based on Zigbee technology is developed that is capable of monitoring
energy usage with accuracy, and thus is well suited to energy conservation and plan-
ning [63]. The hardware demonstrations for DR management using the Zigbee protocol
are presented [47,64].

The use of Bluetooth is limited as it provides short-range communication (up to
10 m) and requires more power consumption than Zigbee. Researchers introduced a novel
Bluetooth-based HEMS capable of reducing the peak load demand and electricity cost
while maintaining user comfort [65]. Wi-Fi on the other hand provides a communication
range of more than 100 m with high speed, but it requires more power consumption and ad-
ditional components than Zigbee. The hardware demonstration of DSM for controlling air
conditioners through Wi-Fi technology and DR programs is discussed [66]. A Wi-Fi smart
plug is designed for monitoring and controlling smart home appliances. This inexpensive
solution enables a user to remotely switch on/off the devices [67]. PLC provides high secu-
rity at low cost, but it offers low speed and low data transmission quality. The study in [56]
described HEMS that used power line communication to provide real-time information
on energy consumption patterns.

4. Soft Computing Based DSM

Owing to the myriads of applications, soft computing techniques have been success-
fully applied to solve complex problems (imprecise or uncertain) of intelligent building
control [68]. Based on the type of soft computing techniques, the DSM can be classi-
fied as Fuzzy Logic (FL) based DSM, Artificial Neural Network (ANN) based DSM, and
Evolutionary Computation (EC) based DSM.

4.1. FL Based DSM

Fuzzy logic has been extensively used for controlling and monitoring home appliances
for many years due to its simplicity, adaptability, flexibility, and outstanding capability in
dealing with uncertainties and nonlinearities [69,70]. D. Kolokotsa et al. [71] designed fuzzy
PD, fuzzy PID, and adaptive fuzzy PD controllers. They proved that the adaptive controller
gives optimum performance and results in effective energy saving (25–30% more than ON-
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OFF controller) when user preferences are critical and suggested to use fuzzy PD for visual
control and adaptive fuzzy PD for thermal and air quality control. A genetic algorithm (GA)
tuned fuzzy controller is proposed in [72] for controlling the indoor building parameters
and energy consumption minimization. The study in [73] showed that the fuzzy P controller
yields an annual energy saving of 76% for electric lighting as compared to the fuzzy PD,
fuzzy PI, fuzzy PID, and adaptive fuzzy PD controllers. These three works focused on
providing thermal, visual, and air quality comfort via a smart card. An adaptive fuzzy
controller is developed for ensuring the thermal comfort of the Heating Ventilation and
Air-Conditioning (HVAC) system [74]. A fuzzy-based automatic roller blind [75] was
designed for luminance control on account of the availability of solar radiation. The aim
is to utilize the maximum daylight illumination effectively [75]. Improved adaptive fuzzy
controllers are developed for controlling the air handling unit of the HVAC system in real-
time where the GA is used for rule matrix and membership adjustment [76,77]. Authors
in [78] presented an intelligent coordinator control with five fuzzy controllers for thermal,
visual, and air quality control.

A scheduling problem for air conditioner temperature control based on day-ahead
pricing is modeled using FL, and the temperature forecasting is done through immune
clonal selection programming [79]. The concept of adaptive actively spheres integration
with FL [80] is proposed, where the system learns and adapts to the changing human be-
havior and artifacts. As the era of the smart grid is emerging, various technologies like
smart sensors, communication, and smart home appliance commitment are becoming
a topic of interest to many researchers. The work in [81] applied fuzzy logic for scheduling
smart home appliances based on the day-ahead pricing scheme and user comfort. Novel
agent-based energy optimization of the HVAC system for higher education building is pro-
posed [82]. Intelligent agents are used for prediction, control, sensing, and data processing.
The experimental results showed 3% energy saving while maintaining user thermal com-
fort [82]. Authors used the synergy of wireless sensor networks, fuzzy logic, and smart
grid incentives to design a smart thermostat for the HVAC system using a programmable
communicating thermostat [83]. Then an adaptive model is developed to adjust the user’s
changing preferences [84]. The results are compared with the existing thermostat and it
is observed that developed systems automatically respond to DR programs and resulted in
a significant reduction in load demand without user discomfort [83,84]. Researchers in [85]
proposed a fuzzy logic-based behavioral controller for HEMS.

A fuzzy logic-based smart LED lighting system is designed to provide visual com-
fort. The experimentation encompasses the DALI protocol for communication, daylight,
user movement, and preferences [58]. The HVAC system is controlled using FL concepts
and the performance is compared with the conventional on-off controller. The study
implemented the simulation using the Building Control Virtual Test Bed platform [86].
The thermal comfort provided by the fuzzy controller is found superior to the on-off
controller. A fuzzy logic-based smart HEMS for battery and load management was pro-
posed in [87], which used Wi-Fi communication technology and IoT based monitoring.
An additional humidity parameter is introduced in the fuzzy system and the rules are
generated automatically using the combinatorial method [88]. Additionally, the study also
utilized IoT-based sensors and a feedback loop. It is concluded that the proposed method
can reduce energy consumption by up to 50%. The study in [8] classified the appliances
based on their energy consumption pattern [89] and accordingly designed fuzzy controllers
to control the HVAC and the illumination system.

4.2. ANN Based DSM

ANN is a machine learning approach that is flooded with numerous applications
due to its simplicity, adaptability, real-time fast solution, and self-organization. An ANN-
based predictive and adaptive control logic is developed for providing thermal comfort.
The proposed logic used two predicted models and a hardware framework that resulted
in accurate prediction and better thermal comfort than the conventional logic [90]. They also



Sustainability 2021, 13, 7170 11 of 23

considered the humidity factor. Then a discrete model predictive approach is developed
for an HVAC system. ANN is used for model prediction and branch and bound approach
for optimization [91]. Simulations showed an energy saving of 50%.

An ANN-based HEMS is proposed with the DR program to maintain the energy con-
sumption below the demand limit, and the system is trained using a Levenberg–Marquardt
and feed-forward network [92]. An hourly energy consumption predictor [93] is developed
using a multilayer perceptron. Recently, ANN was used for forecasting DR signals and energy
consumption patterns for maintaining an energy-efficient smart home [94–96]. A hybrid Light-
ning Search algorithm (LSA)-ANN-based HEMS was developed [97]. For optimal scheduling,
the LSA selects the appropriate neurons and learning rate. Deep Extreme Learning Machine
(DELM) based energy consumption predictors were proposed and subsequently compared
with other machine learning methods [98,99]. The DELM predictor outperformed the other
methods. A hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) controller [100] was pro-
posed to control the temperature and air quality concerning changing demands [101].

4.3. EC Based DSM

Evolutionary computation is well known for its highly optimized solutions, and there-
fore is widely used to solve complex nonlinear, nonconvex, and constrained optimization
problems. An efficient energy management reset scheme using evolutionary program-
ming was proposed [102] with 7% energy-saving potential. Authors used Binary Particle
Swarm Optimization (BPSO) for scheduling interruptible loads for cost and interruption
minimization [103]. They divided the swarms into subswarms for significant scheduling
improvement. A day-ahead load scheduling method capable of handling a variety of loads
was developed using a heuristic evolutionary algorithm [13].

The authors in [104] proposed an energy management system for micro-grids equipped
with wind-turbines. The economic dispatch problem is solved by Ant Colony Optimization
(ACO). The study in [105] used the dual pricing model RTP with Inclined Block Rate (IBR)
for efficient load scheduling. The optimization of the operational time of the appliances
is performed using GA [106]. GA was compared with ACO [107] and also with Particle
Swarm Optimization (PSO) [108,109] for maximizing user comfort. Multi-objective optimiza-
tion problems were solved using a non-dominated sorting GA [110,111] and PSO [112]. The
works in [113,114] used Artificial Bee Colony for appliance scheduling for energy manage-
ment considering renewables as well. The algorithm yields a cost reduction of about 47%.
Different heuristic algorithms GA, ACO, BPSO, Wind-Driven Optimization, Bacterial Forag-
ing Optimization, and Hybrid GA-PSO were compared, wherein the GA based controllers
outperformed the other methods [115–117]. They also considered TOU and IBR dual models.

A multi-agent control system [118] with hybrid multi-objective GA is developed
for energy-efficient buildings. The developed method resulted in 31.6% energy efficiency.
A real-time appliance scheduling is performed by Binary Backtracking Search Algorithm
for energy management [119]. For electricity cost and peak load reduction, HEMS com-
prising of GA, Cuckoo Search Algorithm, BPSO, and Crow Search Algorithm [120] were
designed with RTP and TOU pricing models, respectively, [121,122]. The studies also
considered energy storage and renewable energy options. An optimal energy sched-
uler for load reliability was investigated and the optimization problem was solved using
PSO [123]. A real-time electricity scheduler was developed for smart home energy manage-
ment, considering renewables and energy storage resources [124]. GA was used to solve
the multiobjective optimization problem. A day-ahead load forecasting was assumed
before scheduling, and a hybrid Harmony Search-PSO algorithm was used for optimal
scheduling via a human–machine interface, central controller, and different loads [125].

The study in [126] introduced and implemented the Lightlearn controller based on
reinforcement learning. Due to its adaptive nature, it learned the user’s behavior and
adapted to controlling actions accordingly. Recent research presented a bi-level deep
reinforcement learning approach for appliance scheduling. Besides, it incorporated charge
and discharge schedules of energy storage and EV [127]. In [128], a load scheduling
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problem was solved via the Dijkstra algorithm, and the simulation results are compared
with GA, Optimal Pattern Recognition Algorithm, and BPSO. The results showed a cost
reduction of about 51%. Renewable generation and storage systems were also considered.
Table 4 summarizes the soft computing based DSM.

Table 4. Soft computing based DSM.

References Method Objective Contribution

[71–73] FL thermal, visual, and air quality
comfort

Fuzzy P, Fuzzy PD, Fuzzy PID, Adaptive fuzzy PD
controller, and GA tuned Fuzzy controller

[74] FL thermal comfort An adaptive fuzzy controller
[75] FL visual comfort fuzzy-based automatic roller blind

[76,77] FL air quality comfort Improved adaptive fuzzy controllers in real-time

[78] FL thermal, visual, and air quality
comfort intelligent coordinator control with five fuzzy controllers

[79,81] FL thermal comfort A scheduling problem for air conditioner temperature
control based on day-ahead pricing is modeled

[83,84] FL thermal comfort
smart thermostat for the HVAC system using

a programmable communicating thermostat and
an adaptive model to adjust the user’s changing preferences

[58] FL visual comfort A fuzzy logic-based smart LED lighting system

[86] FL thermal comfort Fuzzy based controller for HVAC system using the Building
Control Virtual Test Bed platform

[87] FL - A fuzzy logic-based smart HEMS for battery and load
management

[8] FL thermal, visual and air quality
comfort

fuzzy controllers to control the HVAC and illumination
system

[90] ANN thermal comfort ANN-based predictive and adaptive control logic
[91] ANN thermal and air quality comfort discrete model predictive approach is developed for an

HVAC system

[94–96] ANN thermal comfort forecasting DR signals and energy consumption patterns
for maintaining an energy-efficient smart home

[97] ANN visual comfort hybrid Lightning Search algorithm LSA-ANN-based HEMS

[100,101] ANN thermal and air quality comfort hybrid Adaptive Neuro-Fuzzy Inference System
(ANFIS) controller

[103] EC load scheduling Binary Particle Swarm Optimization (BPSO) for scheduling
interruptible loads for cost and interruption minimization

[13] EC load scheduling A day-ahead scheduling method using a heuristic
evolutionary algorithm

[104] EC economoc dispatch problem an energy management system for micro-grids equipped
with wind-turbines using ACO

[105] EC load scheduling dual pricing model RTP with Inclined Block Rate (IBR)
[107–109] EC user comfort GA is compared with ACO and PSO

[113,114] EC load scheduling used Artificial Bee Colony for energy management
considering renewables as well

[115–117] EC energy cost reduction
Different heuristic algorithms GA, ACO, BPSO,
Wind-Driven Optimization, Bacterial Foraging

Optimization, and Hybrid GA-PSO are compared

[119] EC energy management A real-time appliance scheduling is performed by Binary
Backtracking Search Algorithm

[120–122] EC electricity cost and peak load
reduction

home energy management schemes comprising of GA,
Cuckoo Search Algorithm, BPSO, and Crow Search

Algorithm
[123] EC load scheduling An optimal energy scheduler for load reliability using PSO
[124] EC load scheduling A real-time electricity scheduler considering renewables and

energy storage resources
[125] EC load scheduling A hybrid Harmony Search-PSO algorithm
[126] EC visual comfort Lightlearn controller based on reinforcement learning
[127] EC load scheduling a bi-level deep reinforcement learning approach

[128] EC load scheduling Dijkstra algorithm compared with GA, Optimal Pattern
Recognition Algorithm, and BPSO
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5. Optimization Based DSM

Game Theory is one of the most powerful and widely used optimization techniques.
Autonomous Game-Theory-based DSM is presented in [129,130]. The players act as users
and their strategies as daily home appliances schedules [131]. There is only interaction among
participating users rather than utilities, and a single energy source is shared by the users.
Their ultimate objective was to minimize energy costs and Peak to Average Ratio (PAR).
Then, Game Theory was also used for load scheduling considering renewable sources [132],
EV [133], and for realizing user-aware DSM considering user preferences [134].

Researchers in [135] used two optimization methods for RTP-based DSM. Stochas-
tic optimization was used for price minimization and controlling associated financial
risks. On the other hand, robust optimization deals with the price uncertainty inter-
vals [136]. A mixed-integer programming optimization was used for smart home appliance
scheduling [137–139], with EV and energy storage in [140]. Reference [141] transformed
the Mixed-Integer Linear Programming (MILP) problem into a convex programming opti-
mization one for flexible and efficient performance. To deal with the uncertainties such as
price-elasticities of demand, [24] proposed a TOU tariff design using stochastic optimiza-
tion based on quadratically constrained quadratic programming and RTP design in [142].
Simulated Annealing was used for DSM [143], which uses white tariff, an extension of
TOU tariff. Researchers introduced a cost-efficient scheduling approach using fractional
programming while considering service fees and renewables [144].

To implement an incentive-based DR program [145] proposed a practical load schedul-
ing optimization algorithm for user satisfied energy management. A comparative study
among Linear programming, PSO, Extended PSO, adaptive dynamic programming, and
self-learning procedures was made for smart load scheduling while considering data uncer-
tainties [146]. In a study, a multiobjective mixed-integer non-linear programming optimiza-
tion was used for energy saving and maintaining thermal comfort [147]. The scheduling
problem was solved by interval number optimization in [148]. At first, the uncertain
parameters were transformed into interval numbers and then successively solved by
BPSO coupled with Integer linear programming. A metaheuristic optimization method
that is a hybrid bacterial foraging-GA is proposed to handle multiple constraints and
improve search efficiency [149]. Dynamic programming is used for real-time appliance
scheduling. A heuristic optimization based appliance scheduling and energy manage-
ment system was developed, which considered both renewable sources as well as user
preferences [150].

A recent study [151] used MILP with normalized weighted sum and compromise
programming for solving scheduling problems considering the TOU pricing scheme.
The work in [8] scheduled the appliances using the Bat algorithm [152], Flower polli-
nation, and hybrid Bat Flower pollination optimization techniques, respectively. A novel
appliance scheduling optimization for a flexible and comfortable environment contributed
to peak load reduction while considering socio-technical factors [153]. Table 5 summarizes
optimization-based DSM.
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Table 5. Optimization based DSM.

References Optimization Method Objective Contribution

[129,130] Game Theory
minimize energy costs and

Peak to Average Ratio
(PAR)

Autonomous Game-Theory-based DSM

[132–134] Game Theory load scheduling realizing user-aware DSM considering
user preferences and renewable sources

[135] Stochastic-Robust price minimization RTP-based DSM
[137–140] Mixed-integer programming load scheduling smart home appliance scheduling

[143] Simulated Annealing energy optimization DSM using white tariff

[146] Linear programming load scheduling

A comparative study among Linear
programming, PSO, Extended PSO,

Adaptive dynamic programming, and
Self-learning procedures

[148] Interval number
optimization load scheduling BPSO coupled with Integer linear

programming

[150] Dynamic programming load scheduling

A heuristic optimization based energy
management system considering both

renewable sources as well as user
preferences

[151] MILP load scheduling

normalized weighted sum and
compromise programming for solving

scheduling problems considering the TOU
pricing scheme

[152]
Bat algorithm, Flower

pollination, and hybrid
Bat Flower pollination

load scheduling Energy management scheduler for smart
home

Table 6 shows the comparison between the soft computing DSM and optimization DSM.

Table 6. Comparison between the soft computing DSM and optimization DSM.

S. No. Soft Computing Based DSM Optimization-Based DSM

1. Set of computational techniques and algorithms
that are used to deal with complex problems [154].

Selection of the best possible element from several
alternatives to achieve a target [31]

2. Does not require a mathematical model Requires mathematical model
3. Approximate solutions Accurate solutions
4. Fast Time-consuming
5. May use heuristics or learning methods Require iterative methods
6. Simplicity, adaptability, and flexibility Robustness, stochastic, and optimality
7. Best suited for real-world problems It may be difficult to solve real-world problems

8.

Examples- Fuzzy logic [8], Artificial neural
network [101], Genetic algorithm [124], Particle swarm

optimization [125], Ant colony optimization [104],
Cuckoo search algorithm [120], etc.

Examples- Game theory [129], Mixed-integer linear
programming [151], Dynamic programming [150],

Simulated annealing [143], Interval number
optimization [148], Stochastic and Robust

optimization [135], etc.

6. Miscellaneous

In addition to the soft computing and optimization based DSM, there are some other
approaches, and this very section summarizes those works in the literature. Two of the ma-
jor features of a smart grid are the integration of renewable energies [155] and storage
resources and increased customer participation. For integration, [156] designed and tested
an embedded system in which a microcontroller switches between the various power
sources. The energy peaks are managed by the home gateway and utility server via the GSM
modem. A net energy saving of about 33% is achieved. Since these integrations may also
cause power supply uncertainty. To overcome the issue, [157] developed TOU-based DSM
schemes for both prosumers and consumers. The latter is achieved by presenting a schedul-
ing algorithm that takes into account the customer preferences and RTP using Analytical
Hierarchy Process and Piecewise Cubic Hermite Interpolating Polynomial [158].
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In DLC, it is quite difficult to decide which appliance to turn on or off while main-
taining user comfort [159]. Researchers proposed a naïve control method for controlling
an electric water heater without a temperature parameter. Instead, a time-varied weight
matrix and heating durations are used to generate a customer satisfaction prediction index,
which in turn selects the appropriate heater for DLC [160]. Asha Radhakrishnan and
M.P. Selvan proposed a DR based off-line scheduling algorithm considering renewable
sources [36]. The method comprises load classification, load prioritization, and application
of tariff plans.

The hardware implementation of DR programs and cloud computing methods consider-
ing customer’s preferences and load priority for energy management are presented [62,161].
A smart residential energy management system is designed for appliances and battery
scheduling [162]. Graph theory and the Fast greedy approach [163] were used for efficient
load scheduling implementation of thermostatic devices [164]. Then model predictive
controllers [165] were used for scheduling both thermostatic [166–169] as well as non-
thermostatic appliances [170]. An energy-saving smart LED lighting system is developed
using sensors and microcontrollers. The experimental results achieved 55% and 65% en-
ergy saving in continuous and discrete pattern environment [171]. The work in [172]
discussed DR management through practical implementation. The required algorithm
is designed based on user indices and engagement plans. The authors proposed an energy
management algorithm considering renewable power, battery state of charge level, grid
availability, and different tariffs [173]. From the simulation, it is shown that energy-saving
with the proposed algorithm with renewable energy is about 28% whereas it is 25% without
renewable energy.

Recently researchers developed a residential load simulator using MATLAB-Simulink
graphical user interface [174], which cannot only model the smart appliances, but also
the local generation resources for extracting the power profiles. In [47] and [64], authors
presented a hardware demonstration for DR management using the Zigbee protocol, con-
sidering load priority [175] and user preferences. The performance analysis of global
model based anticipated building energy management system was developed for energy
management [176]. A real-time rule-based DR controller with load shifting and curtailment
mechanisms was proposed in [177]. The study in [178] conducted a quality of experi-
ence perception analysis and based on user profile proposed a smart HEMS considering
the degree of annoyance and renewable energy resources. The hardware demonstra-
tion of DSM for controlling air conditioners through Wi-Fi technology and DR programs
was discussed [66]. The control methodology in [64] used the combination of fuzzy con-
troller, rolling optimization, and real-time control strategy for appliance scheduling in
a DR environment. For efficient utilization of energy storage systems [179] developed
a nonhomogenous hidden Markov model that formulates the energy storage management
problem and used piecewise linear approximation for further solving. Table 7 summarizes
the miscellaneous DSM approaches.
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Table 7. Miscellaneous DSM approaches.

References Contribution

[156] Integration of renewable energies through microcontroller based
embedded system

[157] TOU-based DSM schemes for both prosumers and consumers and
a scheduling algorithm that takes into account the customer preferences

[160] A naïve control method for controlling an electric water heater without
a temperature parameter

[36] DR based off-line scheduling algorithm considering renewable sources

[62,161] The hardware implementation of DR programs and cloud computing
methods considering customer’s preferences and load priority

[162] A smart residential energy management system for appliances and battery
scheduling

[163] Efficient load scheduling implementation of thermostatic devices using
Graph theory and the Fast greedy approach

[165–169] Model predictive controllers for scheduling thermostatic appliances
[172] DR management through practical implementation

[173] Energy management algorithm considering renewable power, battery state
of charge level, grid availability, and different tariffs

[174] Residential load simulator using MATLAB-Simulink graphical user
interface

[47,64] Hardware demonstration for DR management using Zigbee protocol

[177] Real-time rule-based DR controller with load shifting and curtailment
mechanisms

[66] Hardware demonstration of DSM for controlling air conditioners through
Wi-Fi technology and DR programs

[64] Appliance scheduling in a DR environment using the combination of fuzzy
controller, rolling optimization, and real-time control strategy

7. Discussion and Future Works

From a technical point of view, the most challenging proposals are as follows:

1. As the number of HVAC systems is increasing, heat dissipation from the condensing
coil is also increasing, thereby causing environmental issues indirectly affecting
human comfort. To overcome the challenge there is a need for the development of
a DSM scheme that can accommodate this heat which can either be used for space
heating or in kitchen applications.

2. The majority of the research focused on thermal, visual, and air quality comfort, but
did not consider humidity, social comfort, and assisted living in their experiments.

3. Design and real-time implementation of hybrid DR controllers considering both
technical and economic aspects of the grid to provide enough knowledge of the system
(experience) concerning decentralized control and to maintain the reliability of the grid
(to control the peaks at off-peak hours).

4. Integration of Fuzzy Logic with metaheuristic algorithms capable of energy prediction,
optimization, and scheduling in real-time could give the best results for energy
consumption minimization without affecting the degree of comfort.

5. The system should also include renewable energy resources, energy storage devices, and
an IoT based protocol to maintain the flexibility and security within the smart home.

8. Conclusions

This paper provides a review of the previous and ongoing research on DSM. DSM
strategies are described and a comparison is made between energy conservation and en-
ergy efficiency, price-based and incentive-based DR programs, energy optimization and
scheduling, and distributed generation and energy storage. We addressed soft comput-
ing techniques namely FL, ANN, EC, and different optimization techniques for energy
management and scheduling using renewables and storage devices and finally compared
them. From a sustainable point of view, DSM is economically viable, provides grid stability,
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improves the demand and supply-side efficiency, and is environmentally friendly. It is still
a developing and promising area of the smart grid. We hope that this review can help
new researchers and readers gain insights into various terminologies and methodologies
adopted in DSM implementation.
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