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Abstract: The escalating number of aging sewer pipes necessitates an infrastructure asset manage-
ment approach to achieve an efficient budget allocation for maintenance. This study suggests a
risk-based prioritization framework for sewer pipe inspection considering the predicted condition of
sewer pipes and the criticality of the economic, social and environmental impacts associated with
them. The results from both models can be used to evaluate the risk of sewer pipes by classification
into risk groups. A risk matrix is used for the classification, and it divides the sewer pipes into five
risk groups. The results of this study show an improvement in the accuracy of finding sewer pipes in
a bad condition using this framework. The condition prediction model can successfully find sewer
pipes with a bad condition with over 70% precision. High-risk sewer pipes are highlighted using the
differences in the environmental features as well as in the physical features associated with other
sewer pipes. Additionally, through the combination of both the condition and criticality of sewer
pipes, the framework systemically prioritizes needed maintenance for sewer pipes with a very bad
condition. This prioritization framework is expected to help the process of deciding which sewer
pipes should be prioritized within a constrained budget.

Keywords: sewer pipe inspection; infrastructure asset management; condition prediction; criticality
assessment; risk-based prioritization

1. Introduction
1.1. Research Background

The American Society of Civil Engineers (ASCE) investigates the infrastructure in
the US, and it gave the wastewater infrastructure in the US an overall D+ grade [1]. One
of the issues in the wastewater infrastructure is deterioration of sewer systems due to
aging, excessive usage and lack of maintenance [2]. The sewer system is one part of the
capital-intensive infrastructure [3]; however, municipalities have been undergoing a budget
shortage for maintenance [4]. This funding gap makes it difficult to properly manage the
sewer system. The same problem has been occurring in Seoul, Korea. Sewer pipes of
10,728 km in length had been constructed in Seoul, and 53% (5743 km) of them are over
30 years old. The Seoul Metropolitan Government has increased the annual investment
in sewer system maintenance from KRW 260 billion to KRW 544 billion. However, this
is still insufficient compared to the total amount of investment needs, which is estimated
as KRW 2030 billion (Figure 1). Moreover, the amount of sewer pipes over 30 years old is
increasing consistently at more than 100 km every year. The escalating number of aging
sewer pipes necessitates an asset management approach for infrastructure sustainability.
Since the failure of sewer pipes can cause a huge inconvenience and threat to public health
and safety, the objectives of sustainable infrastructure asset management are to maintain
the assets to provide an adequate level of service and to maintain the assets in the most
cost-effective way [5].
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Seoul’s sewer pipes have commonly been repaired only after a failure occurs because
it is difficult to discover what the defect is in sewer pipes until it becomes visible [2]. The
advantage of this kind of reactive approach is that sewer pipes fulfill their whole service
life by continuous repair after a failure. However, researchers and practitioners pointed
out that the repair cost often exceeds the proactive maintenance cost as the failure of
sewer pipes leads to additional indirect costs caused by service interruptions and damage
to surrounding areas [6]. Therefore, many researchers have suggested that elements of
infrastructure asset management, such as strategies, policies and procedures, should shift
from the reactive to the proactive approach [7,8].
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The purpose of proactive maintenance is to prevent the failure of sewer systems and
subsequent consequences by constantly monitoring and controlling sewer conditions for
long-term sustainability. The main method that the Seoul Metropolitan Government has
implemented to proactively manage the sewer systems is to update the condition informa-
tion of aging sewer pipes regularly. Decision makers scrutinize the results of the condition
assessment to determine which sewer pipe is at risk and has to be rehabilitated. This
prioritization process can help municipalities allocate their limited budget to urgent assets
and, consequently, execute the overall budget more efficiently as a tool for infrastructure
asset management. However, since the failure of sewer systems causes a complex impact
on economic, social and environmental aspects (such as traffic disruption, flooding and
leaking wastewater, which can contaminate nearby soil and rivers [9–13]), the criticality
of these impacts due to the failure of sewer pipes, as well as the assessed condition of the
sewer pipes, should be considered in order to prioritize their rehabilitation given these
limited budgets.

In this area of research, many investigators have contributed to improving infrastruc-
ture asset management in various ways. Many researchers have used data-driven models
(such as statistical models or machine learning techniques) to predict the deterioration
of sewer pipes. Since the purpose of data-driven models is to discover the connection
pattern between the deterioration factors and the condition of sewer pipes, it is essential
to collect sufficient inspection data [14,15]. Earlier studies were limited to the simulation
method because of the difficulties in gathering a sufficient amount of historical sewer
pipe data. Additionally, some studies ignored or paid less attention to several factors that
might influence the deterioration pattern of sewer pipes for condition prediction (e.g.,
precipitation and population). Several researchers recommended that the consequences
of failure should be considered with the sewer pipe condition when prioritizing sewer
pipe rehabilitation [16,17]. These studies have identified and evaluated the economic,
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social and environmental impacts from the failure of sewer pipes. Despite their efforts and
contributions, since they suffered from a lack of data, more detailed investigations could
be made. For example, the environmental impact of the failure of sewer pipes (such as soil
contamination) has been ignored, and measuring various facilities within a single factor
called “land use” could not evaluate social impacts accurately.

1.2. Research Obejctive

In this context, the objective of this study is the development of prioritizing a sewer
pipe inspection framework for sustainable infrastructure asset management, by combining
a condition prediction model and a criticality assessment model. The condition prediction
model is developed to identify the pipes that are most likely to fail in Seoul using vast
historical data. Since the model predicts the condition of sewer pipes which have not yet
been inspected, it uses historical data to discover the patterns of how influence factors such
as the pipe attributes and the inspected condition of the pipes are linked. The criticality
assessment model is to identify the pipes expected to have the biggest failure impact in
terms of economic, social and environmental aspects. It takes into account the indirect
damage to adjacent facilities or natural objects as well as rehabilitation costs of the pipe
itself. This study includes diverse factors that were discovered to be influenced by the
failure of sewer pipes. The risk of failure is estimated by combining the results of the
criticality assessment and condition prediction. Finally, the framework can be utilized to
determine the prioritization of which sewer pipes should be inspected.

To achieve these objectives, this study was conducted with the following process:
First, the necessity of research and the corresponding body of knowledge were recognized
through a literature review. Second, the data for model development were identified,
collected and prepared. Third, the condition prediction model was developed by using the
random forest method, and the criticality assessment model was developed by using an
analytical hierarchy process (weight) and scoring method. Finally, a risk matrix was used
to prioritize sewer pipe inspection by combining the results from both models.

2. Literature Review
2.1. Factors Influencing Condition of Sewer Pipes

The condition of sewer pipes worsens through a complex process of a number of
influence factors. Previous research [18,19] explained that the condition of sewer pipes
is influenced by physical, operational and environmental factors. These three types of
influence factors can account for how sewer pipes deteriorate. This study, however, does
not consider operational factors since the sewer pipes used for this study are located in a
single municipality; hence, they are likely to have a limited impact on condition.

2.1.1. Physical Factors

The most representative physical factor is the pipe age. This factor represents the
degree of deterioration since deterioration begins right after the installation of sewer
pipes [20]. However, newly installed pipes can also lead to failure because of human errors
or damage to the pipes during construction [21]. Pipes that do not fail at this early stage
go through a plateau, and such pipes are usually damaged by an external interference,
such as extremely heavy loading. As the pipes become aged, the failure rate increases
since pipes are weakened. The component materials of the pipe also are an important
factor that affects the failure pattern. Material types can be classified into two categories:
rigid and flexible [22]. Rigid pipes, such as those made of concrete or cast iron, can carry
loadings on their own but are vulnerable to corrosion. On the other hand, flexible pipes
(such as those made of plastic or polyethylene (PE)) have to be supported by the soil, but
they are relatively light and strong against impact [23]. Since every material type has pros
and cons, they should be considered carefully when being assessed for installation. A
number of previous studies investigated the impact of diameter on deterioration, but they
showed conflicting results. Ariaratnam et al. [2] analyzed the impact of physical factors,
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and the results indicated that a larger diameter has a positive effect on the structural
condition of sewer pipes. Bakry et al. [24] also found the same implication: pipes with
larger diameters are less influenced by deterioration in terms of structural and operational
conditions. Conversely, several researchers have stated that larger pipes are more likely to
fail due to the larger surface, heavier weight and bulk [10,25]. Pipe length is also a factor for
which the impact on the pipe condition has not been clearly determined. Jeong et al. [25]
suggested that longer sewer pipes are less likely to fail since there are fewer bends where
blockages may occur. However, the results from Ana et al. [26] and Salman and Salem [27]
indicated that longer pipes are more vulnerable to deterioration due to a higher possibility
of exposure to deterioration factors. Moreover, longer pipes are structurally unstable
because of higher bending stress [28]. Since sewer pipes are installed under the ground,
the burial depth should also be considered. If the burial depth is too shallow, the sewer
pipes are exposed to more surface loading and become more susceptible to temperature
changes. On the other hand, if the burial depth is too deep, the pipes are influenced by a
huge dead load [18]. Therefore, a moderate burial depth needs to be set appropriately to
prevent a negative impact on deterioration. The last physical factor is the slope or gradient,
which is related to the flow velocity. As the pipe slope increases, the flow rate of sewage
becomes faster. A higher flow rate of sewage constantly rinses the inside of the pipe and
prevents the pipe from clogging by sediment [26,29,30]. Too steep a slope, however, can
accelerate the erosion process, as well as rendering the pipe unstable [18,25,27].

2.1.2. Environmental Factors

Environmental factors include all factors that affect the deterioration of sewer pipes
which are not considered as physical factors. One of the most representative environmental
factors is surface loading. Sewer pipes are repeatedly exposed to surface loading since it is
a part of the underground infrastructure; however, measuring the magnitude of surface
loading is quite complicated [15]. Thus, many researchers have estimated it with regard
to the location where sewer pipes are installed [18,26,31]. The location can be classified
based on the corresponding land use, such as industrial, residential and road. In particular,
several studies have divided roads by traffic volume or road type to estimate surface
loading [18,31,32]. They stated that the vibration caused by a large traffic volume can
deteriorate the pipe condition. Groundwater is also an important factor since it may
flow into the pipes when sewer pipes are installed below the groundwater level, thus
increasing structural defects [21]. Additionally, the infiltration of groundwater washes
the soil surrounding the sewer pipes, meaning that the soil support is weakened [18]. For
sewer pipes that are surrounded by soil, it is necessary to consider the type of soil. Different
types of soil affect the deterioration of sewer pipes, interacting with the other attributes [18].
For example, the degree of soil resistance against movement is dependent on attributes
of the soil such as density. Soil with a low density is vulnerable to external forces such as
the infiltration of groundwater or surface loading. Moreover, if the surrounding soil has
high corrosivity, the deterioration of sewer pipes can be accelerated. The performance of
sewer pipes is also influenced by precipitation [20,33]. Intense precipitation causes a large
soil discharge, meaning that the structural stability of pipes can be impaired (Kim et al.,
2018). Precipitation indirectly aggravates the pipe condition in conjunction with the soil
type, groundwater level, etc. [20]. Moreover, inflow/infiltration (I/I) leads to an overflow
which puts extra loading on the pipes [33].

2.2. Condition Prediction Models for Sewer Pipes

As for sewer assets, awareness of the current condition of individual sewer pipes
and estimation of the probability of failure are some of the main concerns [17]. Thus,
municipalities have collected and incorporated data items from general information on
sewer pipes, such as location, length and diameter, to maintenance information, such as
inspection history, into the database [34]. However, since keeping the data up to date
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is costly, many researchers have attempted to determine a model that would predict the
deterioration level of sewer pipes using just the general information.

Statistical methods have been widely used to predict the condition of sewer pipes.
Among the various statistical methods, the most commonly used method is the general
linear regression model. Salman and Salem [32] carried out similar research using three
statistical methods (ordinal regression, multinomial logistic regression and binary logistic
regression). They presented three different regression models which municipalities can
apply depending on the data type they have. Chughtai and Zayed [18] divided the defect
types into two groups (i.e., structural defects and operational defects) and identified the
corresponding condition influence factors. The comparison of impacts by different defect
types showed that the common factor (e.g., slope) had different levels of impact depending
on the defect type. Angarita et al. [35] specified the model into three versions based on the
dependent variable: overall defect, structural defect and detailed structural defect. This
study implemented the linear regression model for each defect type and suggested that
the consideration for the deterioration factors should vary with the dependent variable.
These regression models are simple statistical methods, and it is easy to understand which
deterioration factors are crucial since the factors are directly correlated to the sewer pipe
condition [14]. Nevertheless, the application of regression models is restricted to when the
relationship between the independent and dependent variables is linear [22,36].

Different statistical methods have been attempted for a better understanding about
the deterioration of sewer pipes. Ariaratnam et al. [2] used a logistic regression model
to provide decision makers a means for sewage management. This study adopted five
basic deterioration factors (age, diameter, sewer type, depth, material) and explored the
corresponding effect on the structural condition of sewer pipes. Montoya [17] carried out
a survival analysis to infer the impact of different attributes on the probability of defect
occurrence. This study analyzed the survival probability according to sewer type, material,
diameter, length and shape. Baik et al. [37] used an ordered, probit-based Markov chain
method to estimate the condition of sewer pipes. This study generated a transition equation
to predict the deterioration pattern over time considering length, diameter, material, age
and slope. Kleiner et al. [38] also used a Markov chain method, but they added a fuzzy
inference system. Although only the age of sewer pipes was considered in the method,
it could present a framework to determine the deterioration rate based on the age and
estimated condition of the pipes. The stochastic method, predicting the condition changes
over time, can be used as a powerful tool to rank the rehabilitation prioritization since
it produces probabilistic values [39]. However, this method requires a large amount of
inspection data that can reflect the condition changes of individual pipes [15].

Another representative method is models using machine learning techniques. Tran et al. [40]
adopted two types of artificial neural network. They used physical factors (e.g., diameter,
age, depth, slope) and environmental factors (e.g., tree, soil type) as input data and then
compared the performance of each neural network. This method is highly effective in
discovering the complex underlying relationship between input and output data; however,
the understanding of the model is limited since the process linking input data with output
data is hidden [15,40]. A decision tree model can be considered a method to provide further
insights that the neural network is not able to discover. This type of model predicts the
target variable through several tree-based rules and offers a visual presentation which
decision makers can easily utilize [41]. Syachrani et al. [41] compared the performance of
several models: a regression model, a neural network model and a decision tree model.
Random forest models are the approach of combining numerous decision tree models
into a single model so that a more generalized model can be established. Harvey and
McBean [42] used a random forest model to predict the structural condition of sanitary
sewer pipes considering the zonal factors which reflect nearby pipes. Machine learning
models can identify complex non-linear relationships between input and output variables.
However, the aforementioned technique requires an extensive amount of data to develop
relationships [36].
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2.3. Criticality of Sewer Pipes

The failure of sewer pipes can precipitate enormous damage to the city and threaten
the health and safety of the public because the sewer pipes are closely connected to
buildings and other infrastructure facilities. This criticality of failure should be considered
with the sewer pipe condition when prioritizing rehabilitation for sewer pipes [16,17]. At
this point, municipalities make decisions based on sustainability, which is concerned about
economic, social and environmental aspects of the decision [16].

Among those three aspects, the economic impact accounts for rehabilitation costs or re-
construction costs [22,43]. Since the real economic impact is composed of various cost items,
some studies have tried to estimate the costs using indirect approaches. Elsawah et al. [44]
took the physical attributes of sewer pipes (e.g., diameter, depth) and the measures of
nearby roads (e.g., road width, number of lanes) into account in order to evaluate the eco-
nomic impact. Vladeanu and Matthews [45] estimated the economic impact with similar
factors. They saw the common factors that can magnify the scale of damage and added
some deterioration factors such as age and seismic zone into the economic factors. On
the other hand, Anbari et al. [46] evaluated the economic impact with the monetary factor.
This study examined the cost per unit length based on the material and diameter and then
scored the pipes using the highest cost as the 100-point level.

The social impact accounts for the physical damage to adjacent facilities, and the threat
to health and safety caused by the failure of sewer pipes [22]. Since there is no specific
consensus about what can represent the scale of the social impact, means to estimate
the social impact vary by study. Among them, distance to critical facilities is one of the
most commonly used means. Baah et al. [11] used distance to hospitals, schools and any
other buildings since defective sewer pipes may result in adverse health impacts. Salman
and Salem [27], Rossi [47] and Vladeanu and Matthews [45] also used distance measures
in order to assess the social impact of sewer pipes. Another means to score the social
impact is to evaluate the land use or the importance of facilities above the sewer pipes. In
particular, since roads exist all over the city as with sewer pipes, the traffic volume or the
number of lanes above sewer pipes is often measured to determine the social impact of the
corresponding pipes [13,48,49]. As for land use, Vladeanu and Matthews [45] classified
the type of land use into recreational, residential or commercial in order to estimate the
potential damage or inconvenience to land users.

Lastly, the environmental impact has been assessed mostly by the distance to the
nearest river or other body of water. The effluent leaked in the case of failure may flow to
the river, meaning that distance is vital to predict the degree of contamination [11,12,45,49].

3. Methodology
3.1. Factor Identification

There have been various studies that investigated the correlation between several
physical and environmental factors and the deterioration of sewer pipes. Even though
there are a lot of factors identified to have an impact on deterioration, this study selected
five physical factors and five environmental factors after a thorough literature review
and considering data availability. While all physical factors and three of the five envi-
ronmental factors (number of lanes, precipitation, population) are numerical variables,
two environmental factors (road type, land use) are categorized into five groups based on
previous studies.

This study selected 12 factors to assess the criticality of failure of sewer pipes based
on previous research (Table 1). The economic impact factor refers to the reconstruction cost
when sewer pipes fail. Several studies suggested that the accessibility of the site is also an
important factor, but it is excluded due to the difficulty in collecting accessibility data for
entire sewer pipes. This study selected six social factors considering the importance and
the number of facilities. Previous studies often considered some facilities by “land use”,
meaning that only a single facility would have to be assessed. This study separates “land
use” into six factors in order to consider the overall impact of sewer pipe failure on these
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facilities. As for the environmental impacts, this study considers forests and farmland as
well as rivers (body of water). Forests and farmland are the indicators that show the impact
on soil contamination.

Table 1. Factors for the condition prediction and criticality assessment.

Model Category Factor Reference

Condition
Prediction

Physical

Age [21,28,50]
Diameter [2,10,18,24,25,31]
Length [18,25,26,28,32]
Depth [10,18,25]
Slope [18,25,26,29]

Environmental

Number of Lanes [18,27,31]
Road Type [20,24,46]

Precipitation [20,33,51]
Land Use [26,31]

Population [21,42]

Criticality
Assessment

Economic
Diameter [11,13,46,47,52]
Length [45,47,49,53]
Depth [11,13,27,47,49]

Social

Distance to Medical Facility [11,45,47]
Distance to Educational Facility [11,45,47]

Number of Lanes [13,27,45,49]
Distance to Railway [11,27,46]

Distance to Commercial Area [45,48]
Distance to Residential Area [45,46,48]

Environmental
Distance to River [46–48,52]
Distance to Forest [12]

Distance to Farmland [12]

3.2. Data Collection and Preparation
3.2.1. Sewer Pipe Data

The data were provided by the Seoul Metropolitan Government, and they contain
information about sewer pipes that had been constructed through 2014. In total, the number
of sewer pipes was 373,564, and the length was 10,577 km. The raw data were provided in
the form suited for a geographic information system (GIS) and were composed of spatial
information and attributes. The attributes contain information for the management and
maintenance of sewer pipes. The key attributes are the registration information for sewer
pipes and their inspection records. The registration information includes the physical data
which can characterize the sewer pipes, such as diameter, length and burial depth; the
inspection record shows the condition grade of sewer pipes which the municipality has
evaluated. The sewer pipes that contain no value for the key features such as diameter and
length were excluded, since they were unusable during the research. After removing those
data, the number of target sewer pipes was reduced to 282,391. Among the vast number of
sewer pipes in Seoul city, this study used 134,541 data with inspection records to develop
the condition prediction model. The remaining 147,850 data with no inspection record were
used in case application since the purpose of this research is to develop a prioritization
framework to be applied before sewer pipe inspection.

3.2.2. Geographic Data

Geographic data were used to determine the location of features (Table 2). This study
required the geographic data of several facilities such as medical/educational facilities,
roads, railways and commercial/residential areas to fulfill the following analysis.

Since the necessary information from geographic data is the distance between the
sewer pipes and each factor, this study used the “Near” function of ArcGIS Pro to calculate
the distance. “Near” is the function to calculate the nearest distance between two input
features. The “Near” function also transfers the attributes of one feature to another, meaning
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that certain data can be combined together with the sewer pipe data. As for roads, the
number of lanes of the nearest road is combined with the sewer pipe data because the
nearest distance between the roads and the sewer pipes is mostly zero (intersected).

Table 2. Summary of geographic data used in this study.

Data # of Data Year Type Source

Medical Facility 22,586 2019 Point Healthcare Bigdata Hub
Educational Facility 1316 2019 Point School Information System

Road
328,404 2014 Line Seoul Metropolitan Government
68,580 2018 Line National Spatial Data Infrastructure Portal

Railway 58 2018 Line National Spatial Data Infrastructure Portal
Land Use 32,250 2018 Polygon National Spatial Data Infrastructure Portal

River 154 2016 Polygon National Spatial Data Infrastructure Portal
Forest 1153 2019 Polygon Forest Geographic Information System

Drainage Sector 239 2014 Polygon Seoul Metropolitan Government

3.2.3. Statistical Data

Two statistical datasets were used in this study: the annual precipitation records and
the population by census tract.

The Korea Meteorological Administration has been documenting the precipitation
records and opening them to the public through the Meteorological Data Portal. This
study collected the annual precipitation records of 30 observation stations in Seoul and
66 observation stations adjacent to Seoul (99 observation stations in total). The data
collection period was from 2000 to 2018 (19 years). The sewer pipes in the same drainage
sector were assumed to collect rainwater in the same place. This means that the loads on the
sewer pipes were considered equal during rainfall. Therefore, this study used the Thiessen
polygon method to determine average areal precipitation. The Thiessen polygon method is
the method to calculate the precipitation of a certain area [54]. The polygons are drawn
around the observation stations, and it is assumed that the precipitation of the observation
station in the polygon represents the precipitation of the area in the polygon. Thus, the
precipitation of random areas can be calculated by a weighted sum of the precipitation
statistics where corresponding Thiessen polygons cover the area.

3.3. Condition Prediction

This study developed its model with sewer pipe data from pipes for which the
condition grade has been determined. The purpose of the condition prediction model is
to identify the sewer pipes that are likely to be rehabilitated (Grades A and B) based on
preliminary data, such as the physical information. To achieve the purpose of this model,
we used a random forest classifier, one of the machine learning methods, to predict the
condition of sewer pipes with no inspection record by training the model with the data
from sewer pipes that had been inspected.

The random forest algorithm is an ensemble learning method based on the decision
tree approach. The decision tree splits the data at each internal node based on the splitting
rules of the features so that each instance (sewer pipe) that reaches the leaf node (final
node) is turned into the corresponding value for regression and the corresponding class for
classification. The training process for the decision tree model is to optimize the feature and
the splitting rules. However, since the decision tree depends on a single tree-based model,
it is prone to overfitting with the dataset used for training. To overcome this disadvantage,
the random forest algorithm builds multiple decision trees trained by the randomly selected
data, and each tree produces the output value according to the corresponding rules. The
random forest determines the final output by aggregating the results of decision trees.

The number of data points used for the condition prediction model was 134,541. To
train the model, this study used 70% of the total data (94,179) for the training dataset,
and the remaining data (40,362) were used to test the model. Testing of the condition
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prediction model was implemented by verifying the performance obtained by inputting
the test dataset into the model determined through the above-described training process.
The performance of the model was verified using three indicators: accuracy, precision and
recall. The explanation of the performance indicators is shown in Tables 3 and 4.

Table 3. Confusion matrix for the condition prediction model.

Predicted Bad (Grade A + B) Predicted Good (Grade C)

Actual Bad (Grade A + B) True Positive (TP) False Negative (FN)
Actual Good (Grade C) False Positive (FP) True Negative (TN)

Table 4. Performance indicators for the condition prediction model.

Indicator Description Equation

Accuracy Ratio of data accurately predicted by the model
regardless of condition grade

TP+TN
TP+FP+TN+FN

Precision Ratio of actual Grade A + Bs among Grade A + Bs
predicted by the model

TP
TP+FP

Recall Ratio of Grade A + Bs predicted by the model among
total actual Grade A + Bs

TP
TP+FN

Finally, the condition prediction model of which performance meets a certain value can
be applied to the sewer pipe data with no inspection records, and the predicted condition
can be determined. Since the model output can vary from 0 to 1 when it comes to prediction,
the prediction indicates the probability of a bad condition.

3.4. Criticality Assessment
3.4.1. Factor Weight Measurement

The criticality assessment model is a multi-criteria decision-making process that
considers several factors comprehensively. Since the preference of decision makers varies
over the factors, different weights need to be distributed to the factors. The analytical
hierarchical process (AHP) is widely used to determine the relative weights among factors.
The AHP is a powerful tool to analyze problems especially in a hierarchical framework [45].
Thus, it can help to establish the criticality assessment model as the factor structure of the
model has two hierarchies (category level and factor level).

The AHP is a method that is dependent on an expert survey to evaluate the relative
importance between factors. Experts are given two factors on which to compare importance
and asked to answer which factor is more important and how important it is on a 1–9 scale.
Since the AHP is based on the subjective opinions of experts, it is necessary to check the
reliability of answers. The consistency ratio (CR) is commonly used as an indicator of
consistency. The consistency ratio must be smaller than a certain threshold, and the range
from 0.1 to 0.2 is widely adopted [55]. Therefore, if the consistency ratio of an answer is less
than the determined threshold, the answer is acceptable to calculate the relative weights.

This study surveyed 10 experts (5 researchers, 3 from an engineering company and
2 government officers) whose average experience is 13.4 years in the maintenance field of
sewer pipes to conduct the AHP. Each expert was asked to evaluate the relative importance
between the given options. Since the factor structure for the criticality assessment has two
hierarchies, the final weights of the factors were determined by the product of the category
weight and the factor weight. This study selectively used the five to eight responses for
which the consistency ratio was less than 10% in order to calculate the final weights and
adjust the weights so that their sum equals 1.



Sustainability 2021, 13, 7213 10 of 21

3.4.2. Factor Scoring

The factor scores, which indicate the relative scale of impact, are determined by
classification according to certain criteria. This approach is needed because the scale of
impact is greatly difficult to measure [44,46]. Most of the previous studies that deal with the
criticality of sewer pipes selected an n-point scoring system [11,44,45,48,49]. The scoring
system evaluates the sewer pipes according to the criteria in the physical characteristic and
the spatial characteristic (diameter, length, distance, etc.) dimensions (see Table 1).

This study selected three economic factors, six social factors and three environmental
factors to assess the criticality of sewer pipes (see Table 1). Since the economic factors are
the physical characteristics of sewer pipes, they were assessed according to the criteria
in each pipe unit. On the other hand, the social and environmental factors (except for
the roads) were mostly assessed according to the distance from the nearest sewer pipe.
As for the road measure, roads exist all over the city just like sewer pipes, meaning that
measuring the distance between the roads and the sewer pipes cannot properly divide the
sewer pipes. Instead, the number of lanes was selected as a criterion to assess the sewer
pipes because it can show the estimated traffic interruption on the roads in the case of pipe
failure. Overall, this study established the criticality assessment criteria through three steps
(Table 5): (1) presetting the criteria referred to in previous studies; (2) adjusting the criteria
considering the population distributed in each score; and (3) reviewing and adjusting the
criteria by experts.

Table 5. Criteria for the criticality assessment.

Category Factor
Score

5 4 3 2 1

Economic
Diameter >900 mm >650 mm >450 mm >350 mm ≤350 mm
Length >50 m >30 m >15 m >5 m ≤5 m
Depth <1 m <3 m <7 m <10 m ≥10 m

Social

Medical <20 m <50 m <100 m <150 m ≥150 m
Educational <50 m <100 m <150 m <200 m ≥200 m

Road >7 lanes >5 lanes >3 lanes >1 lane ≤1 lane
Railway <70 m <120 m <200 m <400 m ≥400 m

Commercial <20 m <50 m <100 m <200 m ≥200 m
Residential <20 m <50 m <100 m <200 m ≥200 m

Environmental
River <50 m <150 m <250 m <450 m ≥450 m
Forest <50 m <150 m <250 m <450 m ≥450 m

Farmland <50 m <150 m <250 m <450 m ≥450 m

3.5. Prioritization

The purpose of prioritization is to classify the sewer pipes considering the results of
the condition prediction model and the criticality assessment model together. This study
adopted the risk matrix method, which is widely used in decision making, enabling the
consideration of both probability and the resultant impact [21]. To form the risk matrix, it
was necessary to set the cut-off values for the condition and the criticality. This study used
the Jenks natural breaks optimization to determine the cut-off values. The Jenks natural
breaks optimization is a method to find the optimal cut-off value that divides the dataset
by minimizing the standard deviation within the same group and maximizing the standard
deviation between groups.

After determining cut-off values, the risk matrix can be formed, as seen in Figure 2.
The suggested risk matrix puts weight on the condition slightly more than on the criticality.
This asymmetric matrix reflects the current tendency to prioritize the condition of sewer
pipes. Therefore, the risk matrix can be a tool to prioritize sewer pipe rehabilitation
by adding the index that has not been taken into account before (criticality), as well as
considering the existing index on which the municipalities put weight (condition).
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4. Results
4.1. Condition Prediction Model
4.1.1. Model Development and Test

The dataset used to develop the condition prediction model is the data for the sewer
pipes that have been inspected. The total number of data points is 134,541. Of the total,
there are 15,984 sewer pipes that are rated Grade A, which accounts for 11.9%. Grades
B and C take up 32.2% and 55.9%, respectively. Additional information of data on the
condition prediction factor is summarized in Appendix A Table A1.

The reliability of the condition prediction model is validated through the model
test. As seen in Table 6, there are three types of performance indicators (i.e., accuracy,
precision and recall), and this study tested the trained model by confirming a certain
level of performance. Moreover, this study compared the model performance by the
three methods (i.e., decision tree—C4.5, artificial neural network and logistic regression)
which the previous studies have used. The result shows that the random forest method
outperforms the other methods in terms of accuracy (Table 6).

Table 6. Model performance comparison across classification methods.

Performance Method Mean Standard Deviation t-Value p-Value

Accuracy

Random Forest 0.748 0.193 - -
Decision Tree 0.716 0.293 109.390 0.000

ANN 0.612 0.834 166.992 0.000
Logistic Reg. 0.605 0.013 774.685 0.000

Precision

Random Forest 0.725 0.003 - -
Decision Tree 0.685 0.004 92.910 0.000

ANN 0.584 0.029 47.754 0.000
Logistic Reg. 0.578 0.000 520.173 0.000

Recall

Random Forest 0.691 0.003 - -
Decision Tree 0.660 0.007 43.992 0.000

ANN 0.464 0.129 17.588 0.000
Logistic Reg. 0.384 0.000 913.766 0.000

One of the strengths of the random forest method is that it can present the feature
importance on the classification of data in the decision trees. The feature importance of
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the trained model is shown in Figure 3. Remarkable features that affect the condition of
sewer pipes are slope, length, depth and age, which are included in the physical category.
The importance of physical status is well reported in previous research. Precipitation and
population also show high importance. Although they have seldom been dealt with in
the previous studies, the feature importance for these two measures is very high, while
other environmental features have a far lower feature importance. This result suggests
that decision makers should thoroughly consider more environmental features such as the
precipitation and the population when estimating the condition of sewer pipes.
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4.1.2. Model Application

The data for model application are from the sewer pipes that have no condition grade.
The total number of corresponding sewer pipes is 147,850. Additional information of data
used in the model application is summarized in Appendix A Table A2.

The application result is shown in Table 7. Though data for model development and
application are different, the only difference is that the data used in the application do not
have an inspection record. Since both pipes are designed and constructed using the same
manual and used under the same circumstance, the condition of pipes used in development
and application is assumed to change similarly. Since the performance of the developed
model was validated by the model test, it can be said that the model will perform at a
similar level when applied to data other than the training dataset. Since the output of the
model is within continuous numbers from 0 to 1, an output over 0.5 can be considered as
the “Bad” class. As a result, the number of sewer pipes predicted to be in a bad condition
is 77,484, which accounts for 52.4% of the total.

Table 7. Frequency distribution of the condition prediction result.

Condition Class Output Range Frequency Cumulative Frequency

Good
(Grade C)

0.0~0.1 2842 (1.9%) 2842 (1.9%)
0.1~0.2 7748 (5.2%) 10,590 (7.2%)
0.2~0.3 13,581 (9.2%) 24,171 (16.3%)
0.3~0.4 20,299 (13.7%) 44,470 (30.0%)
0.4~0.5 25,896 (17.5%) 70,366 (47.6%)

Bad
(Grades A and B)

0.5~0.6 27,448 (18.6%) 97,814 (66.2%)
0.6~0.7 23,728 (16.0%) 121,542 (82.2%)
0.7~0.8 15,978 (10.8%) 137,520 (93.0%)
0.8~0.9 7816 (5.3%) 145,336 (98.3%)
0.9~1.0 2514 (1.7%) 147,850 (100.0%)
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4.2. Criticality Assessment Model
4.2.1. Factor Weight and Score

The weight of criticality factors obtained from the AHP is shown in Table 8. Among the
12 factors in the three categories, road, railway, river, depth and residential were considered
as important factors by experts. The sum of weights of these five factors is above 0.7, and
the importance of the remaining factors is slight. Among economic factors, the diameter
and length of sewer pipes are not significantly important for criticality. Among social
factors, the number of lanes and the distance to railways are the most important. This result
is largely due to the fact that sewer pipes are usually buried under a road and/or railway.
The distance to medical and commercial facilities is not important. Among environmental
factors, the distances to forests and farmland are not significantly important. This result
reflects the characteristics of an urbanized city (Seoul) which has a small amount of green
area. Thus, the weight of these factors can vary according to regions and countries.

Table 8. Weight and score distribution of criticality factors.

Category Factor Weight
Score

5 4 3 2 1

Economic
Diameter 0.0398 8555

(5.8%)
16,203

(11.0%)
42,366

(28.6%)
59,004

(39.9%)
21,749

(14.7%)

Length 0.0249 14,770
(10.0%)

36,187
(24.5%)

41,893
(28.3%)

34,809
(23.5%)

20,218
(13.7%)

Depth 0.1121 93,933
(63.5%)

51,907
(35.1%)

1784
(1.2%)

100
(0.1%)

153
(0.1%)

Social

Medical 0.0445 10,314
(7.0%)

25,183
(17.0%)

34,722
(23.5%)

27,552
(18.6%)

50,106
(33.9%)

Educational 0.0222 4388
(3.0%)

9591
(6.5%)

13,577
(9.2%)

15,891
(10.7%)

104,430
(70.6%)

Lanes 0.2208 4204
(2.8%)

6624
(4.5%)

12,945
(8.8%)

52,968
(35.8%)

71,136
(48.1%)

Railway 0.1908 28,734
(19.4%)

12,798
(8.7%)

16,464
(11.1%)

32,285
(21.8%)

57,596
(38.9%)

Commercial 0.0483 25,907
(17.5%)

11,396
(7.7%)

17,658
(11.9%)

30,056
(20.3%)

62,860
(42.5%)

Residential 0.0955 104,000
(70.3%)

14,529
(9.8%)

12,713
(8.6%)

10,400
(7.0%)

6235
(4.2%)

Environmental
River 0.1181 9735

(6.6%)
16,216

(11.0%)
14,387
(9.7%)

26,752
(18.1%)

80,787
(54.6%)

Forest 0.0260 19,406
(13.1%)

14,466
(9.8%)

13,362
(9.0%)

25,544
(17.3%)

75,099
(50.8%)

Farmland 0.0571 3208
(2.2%)

2871
(1.9%)

2591
(1.8%)

6180
(4.2%)

133,027
(90.0%)

The scores for sewer pipe criticality factors according to our identified criteria are
shown in Table 8. As for the economic factors, the sewer pipe scores are distributed
relatively evenly in terms of the diameter and the length, whereas most of the sewer pipes
score 5 or 4 in terms of the depth (98.6%). Social factors are composed of the point features
(medical facility and educational facility), the line features (road and railway) and the
polygon features (commercial area and residential area). Since the point features occupy
a tiny space on the map, the proportion of low scores is higher than for other types of
features. In particular, the sewer pipes evaluated by the educational facility measure
are concentrated in score 1. The sewer pipes are not evaluated by the distance but by
the number of lanes, meaning over 80% of sewer pipes are distributed in scores 1 and
2. Polygon features occupy a large spatial area, meaning the sewer pipes evaluated for
the residential area are mostly in score 5. Lastly, the sewer pipes that are assessed for the
environmental factors are distributed in the lower scores since Seoul is an urbanized city,
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meaning the number of natural objects is small. Nevertheless, the environmental factors
should not be ignored as they are essential from the perspective of sustainability [16].

4.2.2. Criticality Assessment Results

The criticality score for sewer pipes is determined by the weighted sum of the weights
calculated using the AHP and the factor scores. As shown in Figure 4, most of the sewer
pipes are distributed between 2.0 and 3.0. Although the distribution is biased toward the
lower scores, it does not mean that there is only a small portion of sewer pipes that should
be inspected. The goal of criticality assessment is to identify the relative importance of
sewer pipes in order to investigate which sewer pipes should be inspected earlier. Therefore,
the criticality assessment model can provide important insights to support prioritizing the
sewer pipe inspection program.

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 21 
 

 
Figure 4. Histogram of the criticality assessment results. 

4.3. Prioritization Results 
The risk of failure is the combination of the probability and the impact of failure (Baah 

et al., 2015). This study scrutinized what can influence the sewer pipe condition and what 
to consider in terms of the criticality to the vicinity. Then, the Jenks natural breaks opti-
mization was applied to both criticality assessment and condition prediction to classify 
the sewer pipes into five groups through 10,000 iterations in order to find the best cut-off 
values. The cut-off values divided the condition scores quite evenly, but the range of 
group 5 for criticality is far wider than that of other groups. This difference occurs because 
the frequency of sewer pipes with a criticality score over 4 is scanty (0.1%). The risk matrix 
formed by the cut-off values is presented in Figure 5.  

 
Figure 5. Risk matrix determined by condition and criticality. 

  

Figure 4. Histogram of the criticality assessment results.

4.3. Prioritization Results

The risk of failure is the combination of the probability and the impact of failure
(Baah et al., 2015). This study scrutinized what can influence the sewer pipe condition and
what to consider in terms of the criticality to the vicinity. Then, the Jenks natural breaks
optimization was applied to both criticality assessment and condition prediction to classify
the sewer pipes into five groups through 10,000 iterations in order to find the best cut-off
values. The cut-off values divided the condition scores quite evenly, but the range of group
5 for criticality is far wider than that of other groups. This difference occurs because the
frequency of sewer pipes with a criticality score over 4 is scanty (0.1%). The risk matrix
formed by the cut-off values is presented in Figure 5.
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5. Discussion
5.1. Comparing Characteristics of High-Risk Sewer Pipes and Others

This study compared the sewer pipes in the “Very High” group with other sewer
pipes in terms of the condition prediction and criticality assessment factors using a t test,
and several differences were recognized.

First, in terms of conditional characteristics, the proportion of sewer pipes over 50
years old is larger in the “Very High” group by over 10%. This result is found because
aging sewer pipes are more likely to fail due to deterioration. Additionally, the results
show that there is more chance of risk for sewer pipes with a larger diameter. As for the
length, we found that long sewer pipes are more represented in the “Very High” group.
The impact of the burial depth has been controversial, as mentioned in previous research.
The result of this study supports the argument of Chughtai and Zayed [18] and Salman
and Salem [27], which insists that sewer pipes with shallow cover are subject to a high live
load. Additionally, the results indicate the influence of the slope on the risk of failure. The
roads near the sewer pipes in the “Very High” group are wider than in the other groups,
meaning traffic interruption is expected to be more severe in the case of pipe failure; in
addition, the live loads on the sewer pipes are larger in that group. On the other hand, the
impact of road type shows a different result from previous studies. Earlier studies [18,31]
insisted that the impact of a higher road class is larger than that of a lower road class,
whereas our results imply that the impact of a collector road is larger than that of a minor
arterial road. As for land use (which represents the sewage quality), our results show that
the lower the sewage quality, the more heavily it influences the pipe condition. As for
precipitation, our results show that the sewer pipes are overloaded in the wet years. On the
other hand, the results for population show an inversely proportional impact on the pipe
condition. The population is related to the pipe flow [21], meaning the pipe flow is slow
in lower-population areas. This effect might be the result of the settlement of sediments
due to low-speed flow. However, this interpretation cannot explain why a lot of high-risk
sewer pipes are in the population range of 40,000~50,000.

Second, in terms of criticality, the results show that the distance to medical, educational,
commercial and residential facilities, railways and rivers of the “Very High” group is closer
than the distance of the rest of the pipes to facilities. These results are expectable because
criticality means the impact to nearby areas when sewer pipe failure occurs. Thus, the
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sewer pipes in the “Very High” group are located nearby railways and rivers, given that
these factors are weighted in the top three. Moreover, the location of sewer pipes moves to
the suburbs as the risk of sewer pipes becomes lower, while the sewer pipes in the “Very
High” group are concentrated in the center of Seoul. Related to this result, the distance to
forests and farmland of the “Very High” group is farther than the distance of other groups.
This result differentiates from a previous study which emphasized the distance to forests
and farms [12].

5.2. Utility of Proposed Framework for Prioritizion of High-Risk Sewer Pipes

As shown in Figure 5, in the developed prioritization framework, the quantity of the
“Very High” group of sewer pipes is 16,069 (7425 + 4264 + 4380). This result differentiates
from the current prioritization process of Seoul which only considers the expected condition
of sewer pipes, and it may derive 20,632 sewer pipes that are judged as being in a very
bad condition. Additionally, previous manual processes could not systemically prioritize
needed maintenance for the sewer pipes among the 20,632 sewer pipes which were in a
very bad condition. The developed framework supports a reasonable decision process
and prioritizes the 8644 high-risk sewer pipes by considering the economic, social and
environmental aspects of the pipes (Figure 6).
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6. Conclusions

This study developed a prioritization framework for the sustainable management of
sewer pipes, which is composed of a condition prediction model and a criticality assessment
model to aid in determining which sewer pipes should be inspected earlier based on risk.
In the condition prediction model, five physical factors (age, diameter, length, depth and
slope) and five environmental factors (precipitation, traffic volume, road class, sewage
type and population) were identified as influencing the deterioration of sewer pipes.
Then, 134,541 data points for sewer pipes having their condition determined by inspection
were used to train the model using the random forest classifier method. After the model
performance met a certain level, the model was applied to 147,850 data points for sewer
pipes. As for the criticality assessment model, 12 factors were considered to evaluate the
sewer pipes in terms of economic, social and environmental impacts. Then, each sewer
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pipe was assessed based on the criteria for the criticality factors. Finally, the risk matrix
was formed using the results from both models, and the characteristics of the high-risk
group were investigated.

The result shows that sewer pipes with the highest risk are located near railways,
rivers and roads that have many lanes. In addition, the result indicates the influence of
physical factors on the risk for sewer pipes. Meanwhile, the effects of diameter, length,
depth and slope were different from the findings of previous researchers; furthermore, the
effect of age in the early stages showed a different shape from the bathtub curve suggested
by Singh and Adachi [50]. This difference might have occurred because a preventive
inspection cannot find the breaks occurring during construction.

One of the contributions of this study is the improvement in finding the sewer pipes
which are likely to fail. About 40% of the pipes chosen for inspection by the current manual
process turned out to be in a bad condition (Grades A and B), whereas the condition
prediction model can successfully find the bad sewer pipes with about 70% accuracy.
Therefore, the model proposed in this study is expected to make the municipalities spend
money more efficiently by allocating the rehabilitation budget to the more urgent sewer
pipes. Moreover, the result of this study indicates that decision makers should consider the
various environmental features when estimating the condition of sewer pipes. In particular,
the result shows that precipitation and population influence the risk of sewer pipe failure.
This study also took into account the possible indirect impacts as well as the direct impacts.
The consideration of criticality can satisfy the key principles of asset management presented
by the BSI [16]. Consequently, the prioritization framework proposed in this study supports
reasonable decision making of the municipalities by prioritizing the high-risk sewer pipes
considering the criticality of economic, social and environmental impacts of failure of
sewer pipes.

Despite the contributions of this study, there are also several limitations. First, this
study could not consider all factors that previous research had discovered to have a
significant influence on the deterioration of sewer pipes. In particular, the soil type and
the groundwater level are frequently dealt with in many studies, but this study ignored
those factors since collection of the relevant data was restricted to the public. In Korea,
municipalities and companies try to accumulate and store more detailed historical data
including additional properties. Thus, this limitation can be overcome in the near future.
Another limitation is that the type and condition of sewer pipes were not fully specified.
Previous studies categorized the failure type of sewer pipes into structural failure and
operational failure. However, this study assessed the sewer pipes by a single indicator (i.e.,
the condition grade) because the current database stores the inspection record only by the
condition grade. Since failure can occur for diverse reasons, it is necessary to investigate the
deterioration factors by the failure type. Therefore, in future research, when the database is
advanced to document the detailed condition of sewer pipes, it will be possible to analyze
the deterioration pattern by the failure type.
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Appendix A

Table A1. Data summary for the development of condition prediction model.

Age
(years)

0~10 10~20 20~30 30~40 40~50 >50
2676

(2.0%)
24,008

(17.8%)
28,356

(21.1%)
31,003

(23.0%)
11,900
(8.8%)

36,598
(27.2%)

Diameter
(mm)

0~400 400~500 500~600 600~700 700~800 >800
6411

(4.8%)
55,937

(41.6%)
51,001

(37.9%)
4135

(3.1%)
7291

(5.4%)
9766

(7.3%)

Length
(m)

0~10 10~20 20~30 30~40 40~50 >50
17,903

(13.3%)
22,661

(16.8%)
28,167

(20.9%)
26,817

(19.9%)
20,418

(15.2%)
18,575

(13.8%)

Depth
(m)

0~0.5 0.5~1 1~3 >3
18,710

(13.9%)
74,664

(55.5%)
40,474

(30.1%)
693

(0.5%)

Slope
(‰)

0 0~5 5~10 10~30 30~50 >50
1929

(1.4%)
30,954

(23.0%)
17,224

(12.8%)
36,120

(26.8%)
17,247

(12.8%)
31,067

(23.1%)

Lane
0~1 1~2 2~3 3~4 4~5 >5

53,849
(40.0%)

48,894
(36.3%)

3420
(2.5%)

11,734
(8.7%)

1744
(1.3%)

14,900
(11.1%)

Road Type
Major arterial Minor arterial Collector Alley No-way

5061
(3.8%)

82,496
(61.3%)

39,980
(29.7%)

6646
(4.9%)

358
(0.3%)

Precipitation
(mm)

0~1200 1200~1250 1250~1300 1300~1350 1350~1400 >1400
10,470
(7.8%)

28,242
(21.0%)

36,906
(27.4%)

42,907
(31.9%)

7580
(5.6%)

8436
(6.3%)

Land Use
Industrial Commercial Rural Residential Others

2568
(1.9%)

14,596
(10.8%)

1233
(0.9%)

56,383
(41.9%)

59,761
(44.4%)

Population
0~10,000 10,000~20,000 20,000~30,000 30,000~40,000 40,000~50,000 >50,000

5862
(4.4%)

26,353
(19.6%)

56,036
(41.6%)

37,373
(27.8%)

6993
(5.2%)

1924
(1.4%)

Table A2. Data summary for the application of condition prediction model.

Age
(years)

0~10 10~20 20~30 30~40 40~50 >50
23,110

(15.6%)
13,866
(9.4%)

19,672
(13.3%)

21,034
(14.2%)

9791
(6.6%)

60,404
(40.8%)

Diameter
(mm)

0~400 400~500 500~600 600~700 700~800 >800
22,746

(15.4%)
59,578

(40.3%)
40,792

(27.6%)
3734

(2.5%)
8825

(6.0%)
12,202
(8.3%)

Length
(m)

0~10 10~20 20~30 30~40 40~50 >50
39,856

(27.0%)
29,470

(19.9%)
27,594

(18.7%)
21,463

(14.5%)
14,724

(10.0%)
14,770

(10.0%)

Depth
(m)

0~0.5 0.5~1 1~3 >3
20,906

(14.1%)
73,027

(49.4%)
51,907

(35.1%)
2037

(1.4%)

Slope
(‰)

0 0~5 5~10 10~30 30~50 >50
2959

(2.0%)
29,037

(19.6%)
18,233

(12.3%)
38,302

(25.9%)
19,458

(13.2%)
39,888

(27.0%)

Lane
0~1 1~2 2~3 3~4 4~5 >5

71,136
(48.1%)

49,420
(33.4%)

3548
(2.4%)

11,034
(7.5%)

1911
(1.3%)

10,828
(7.3%)

Road Type
No-way Alley Collector Minor arterial Major arterial

387
(0.3%)

5730
(3.9%)

48,779
(33.0%)

83,144
(56.2%)

9837
(6.7%)
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Table A2. Cont.

Precipitation
(mm)

0~1200 1200~1250 1250~1300 1300~1350 1350~1400 >1400
11,350
(7.7%)

28,319
(19.2%)

43,008
(29.1%)

40,047
(27.1%)

10,284
(7.0%)

14,869
(10.1%)

Land Use
Others Residential Rural Commercial Industrial
78,627

(53.2%)
52,969

(35.8%)
764

(0.5%)
12,987
(8.8%)

2530
(1.7%)

Population
0~10,000 10,000~20,000 20,000~30,000 30,000~40,000 40,000~50,000 >50,000

8785
(5.9%)

28,209
(19.1%)

60,974
(41.2%)

39,605
(26.8%)

9203
(6.2%)

1101
(0.7%)
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