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Abstract: Due to the increasing traffic volume in metropolitan areas, short-term travel time prediction
(TTP) can be an important and useful tool for both travelers and traffic management. Accurate and
reliable short-term travel time prediction can greatly help vehicle routing and congestion mitigation.
One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction
algorithm using the available data. In this study, the travel time data was provided and collected
from the Regional Integrated Transportation Information System (RITIS). Then, the travel times
were predicted for short horizons (ranging from 15 to 60 min) on the selected freeway corridors by
applying four different machine learning algorithms, which are Decision Trees (DT), Random Forest
(RF), Extreme Gradient Boosting (XGBoost), and Long Short-Term Memory neural network (LSTM).
Many spatial and temporal characteristics that may affect travel time were used when developing
the models. The performance of prediction accuracy and reliability are compared. Numerical results
suggest that RF can achieve a better prediction performance result than any of the other methods not
only in accuracy but also with stability.

Keywords: travel time prediction; machine learning; probe vehicle data; decision tree; random forest;
XGBoost; LSTM

1. Introduction

TTP has important information that travelers rely on increasingly, and meanwhile,
it is also essential for transportation agencies and traffic management authorities. Short-
term TTP is a key component of the Advanced Travelers Information System (ATIS) in
which in-vehicle route guidance systems (RGS) and real-time TTP enable the generation of
the shortest path for travelers, which connects the destinations and current locations [1].
Accurate TTP on the future state of traffic enables travelers and transportation agencies to
plan their trips and mitigate congestion along with specific road segments (such as rerouting
traffic or optimising the signaling time of traffic lights), leading to the overall reduction of
total travel time and cost. These measures can also help reduce greenhouse gas emissions,
as the CO2 emission rates in congested conditions can be up to 40% higher than those
seen in free-flow conditions [2]. Travel time also can be used as a performance measure
to evaluate the utility of investments such as the widening of expressways, subways, and
roads. TTP has been an interesting and challenging research area for decades to which many
researchers have applied various traditional statistical and machine learning algorithms to
improve prediction accuracy and stability. The paper develops different machine learning
prediction models and compares their performance based on a case study from the City of
Charlotte, North Carolina.

In the field of logistics, TTP for minutes or hours is important for dispatching, e.g.,
when assigning customers to drivers for the deliveries of food or goods. The objective of
this study was to develop a series of dynamic machine learning models that can efficiently
predict travel time. An unbiased and low-variance prediction of travel time is the ultimate
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goal. Different machine learning algorithms have been developed, which include DT,
RF, XGBoost, and LSTM. Such TTP models were tested and compared using the probe
vehicle-based traffic data for selected road segments (i.e., a freeway corridor in Charlotte,
North Carolina) from the RITIS. Mean Absolute Percent Error (MAPE) was selected and
used as evaluation and comparison criteria. The advantages and disadvantages of the
proposed models are also identified and provided. Finally, the effectiveness and efficiency
of the proposed models are discussed.

In the field of TTP, the prediction scheme can be classified into short, medium, and
long-term horizons based on the prediction duration. Van Lint (2004) defined short term
TTP as horizons ranging from several minutes to 60 min [3], while the long-term TTP
horizon can take more than a day. Long-term travel times are typically impacted more by
the factors such as weather and congestion conditions [4]. Shen (2008) found that setting
a proper TTP horizon is a vital factor in evaluating the performance of TTP models [5].
Furthermore, the road characteristics of signalized streets, arterials or freeways, is another
classification method. Due to additional factors such as signal timing plans and controls
at multiple intersections, the TTP on signalized urban roads is inherently more complex
than on freeways [6]. The studies have been conducted in the field to develop and im-
prove the accuracy and reliability of TTP, which can generally be classified into traffic
theory-based methods and data-based methods. With the rapid development of machine
learning methods and the increasing availability of the collected traffic data, data-based
methods have become increasingly popular in the last two decades, which can be further
divided into two major categories: parametric models and non-parametric models [3].
Parametric methods are model-based methods in which the model structure is predeter-
mined under the specific statistical assumption, and the parameters can be estimated with
the sample dataset. Owing to the simplicity of statistical interpretation, the most typical
parametric model is linear regression, where the dependent variable is a linear function
of the explanatory (independent) input variables. In the TTP, the independent variables
are generally traffic factors gathered in several past time intervals. Time series models are
another typical type of widely applied parametric model in TTP, where the explanatory
variables are a series of data points indexed in the time order. Owing to its statistical
principles, the prediction results of the time series model are always highly based on the
previously observed values. Autoregressive integrated moving average (ARIMA) model is
the most widely used for TTP. The ARIMA model combines two models, which include
the autoregressive (AR) and the moving average (MA) models.

Different from parametric models, both the structure and the parameters of the model
are not predetermined in the non-parametric models. However, it does not mean that there
are no parameters that can be estimated. Instead, the number typology of such parameters
is indeterminate or even uncountable. From the taxonomy of the data-driven approach
to TTP, the level of model complexity can vary from high to low, from linear regression
and time series to artificial intelligence (neural networks, ensemble learning) and pattern
searching (nearest neighborhood). The taxonomy of TTP methods is shown in detail in
Figure 1.

Benefiting from the rapid development of non-parametric machine learning methods,
real-time TTP has become a reality. In the literature of TTP, artificial neural network (ANN)
is the most widely used method due to its ability to capture complex relationships in large
data sets [7]. ANN is a typical non-parametric model which can be developed without the
need to specify the model structure. Therefore, the multicollinearity of the explanatory
variables can be overcome to some extent. In the past two decades, researchers in different
fields have applied different types of neural networks in the field of traffic prediction using
the ANN method (Table 1). Park and Rilett used the regular multilayer feedforward neural
networks to predict the freeway travel times in Houston, Texas in 1999 [8]. Yildirimoglu
and Geroliminis applied spectral basis neural networks to predict the freeway travel time
in Los Angeles in California in 2013 [9]. The variables selection is generally a crucial
step in machine learning model estimation depending on the data availability and the
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model training process. In the variable selection, different variations of the backward
algorithm consider different types of neural networks. Ensemble tree-based methods are
another popular choice for TTP. RF is a tree-based ensemble method, which has become
popular in the prediction field. From the name of RF, the forest is made up of separate
DTs. Simple DT has ‘poor’ performance, while RFs have a large number of trees that
usually produce high prediction accuracy by the swarm intelligence. The gradient boosting
machine also combines DTs and starts the combing process at the beginning instead of
doing so at the end. Unlike some machine learning methods that work as black-boxes, tree-
based ensemble methods can provide more interpretable results and fit complex nonlinear
relationships [10].
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Table 1. Summary of TTP using machine learning approaches.

Year Author Country/City Data Source Data Type Roadway
Category

Method
Category

Prediction
Method

2000 Wunderlich
et al. N/A

Simulated data
from

INTEGRATION
Travel time N/A Navie model Exponential

filtering

2002 Dion et al. Virginia, US
Simulated data

from
INTEGRATION

Travel time N/A
Traffic

theory-base
model

Delay models

2005 Wu et al. Taiwan Loop detector Travel speed Highway Non-
parametric SVR

2007 Schmitt & Jula California, US Loop detector Travel time Urban road Navie model Switch model

2010 Papageorgiou
et al. N/A simulated data

from MATANET Travel time N/A
Traffic

theory-base
model

Macroscopic
Simulation

2020 Kwak &
Geroliminis California, US PeMS Travel time Freeway Parametric Dynamic linear

model

2015 Zhang &
Haghani Maryland, US INRIX Travel time Interstate

highway
Non-

parametric
Gradient
boosting

2016 Li and Bai Ningbo, China N/A

Truck
trajectory,

travel time,
travel speed

N/A Non-
parametric

Gradient
boosting



Sustainability 2021, 13, 7454 4 of 19

Table 1. Cont.

Year Author Country/City Data Source Data Type Roadway
Category

Method
Category

Prediction
Method

2010 Hamner et al. N/A GPS Travel speed N/A Non-
parametric RF

2017 Fan et al. Taiwan Electric toll Travel time Highway Non-
parametric RF

2018 Gupta et al. Porto, Portugal GPS Taxi travel
speed Urban road Non-

parametric

RF and
gradient
boosting

2017 Yu et al. Shenyang,
China AVL system Bus travel time Bus route Non-

parametric RF and KNN

2002 Van Lint et al. N/A Simulated data
from FOSIM

Travel time,
travel speed Freeway Non-

parametric

State-Space
Neural

Network

2012 Wisitpongphan Bangkok,
Thailand GPS Travel time Highway Non-

parametric
BP Neural
Network

2016 Duan et al. England Cameras, GPS and
loop detectors Travel time Highway Non-

parametric
LSTM Neural

Network

2017 Liu et al. California, US PeMS Travel time Highway Non-
parametric

LSTM Neural
Network

2018 Wang et al. Beijing, China Floating Car Data
Taxi ravel time,

vehicle
trajectory data

Urban road Non-
parametric

LSTM Neural
Network

2018 Wei et al. China Vehicle passage
records Travel time Urban road Non-

parametric
LSTM Neural

Network

2018 Wang et al.
Beijing and
Chengdu,

China
GPS Vehicle

trajectory data Urban road Non-
parametric

LSTM Neural
Network

2020 Wang et al. Beijing, China GISGPS Travel timeTaxi
travel speed Urban road Non-

parametric LSTM

2020 Fu et al.

Beijing,
Suzhou,

Shenyang,
China

Ride-hailing
platform Travel time Urban road Non-

parametric

Graph
attention
network

2011 Myung et al. Korea ATC system Travel time N/A Non-
parametric KNN

2019 Moonam et al. Madison,
Wisconsin, US Bluetooth detector Travel speed Freeway Non-

parametric KNN

2019 Kumar et al. Chennai, India GPS Travel time Urban road Non-
parametric KNN

2019 Cristobal et al. Gran Canaria,
Spain

Public transport
network Travel time Urban road Non-

parametric

K-Medoid
Clustering
Technique

2021 Chiabaut &
Faitout Lyon, France Loop detector Travel time Highway Non-

parametric
PCA and

Clustering

2008 Zou et al. Maryland, US Roadside detector Travel time Highway Hybird non-
parametric

Combined
Clustering

Neural
Networks

2009 Li et al. Atlanta, US simulated data
from VISSIM

Travel time,
travel speed N/A Hybird non-

parametric

Combined
Boosting and

Neural
Network
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Table 1. Cont.

Year Author Country/City Data Source Data Type Roadway
Category

Method
Category

Prediction
Method

2013 Yildirimoglu &
Geroliminis’s California, US Loop detector Travel time Freeway Hybird non-

parametric

Combined
Gaussian

Mixture, PCA,
and Clustering

2015 Joao et al. Porto, Portugal STCP system Travel time Urban road Hybird non-
parametric

Combined RF,
Projection

Pursuit
Regression and

SVM

Support vector machine (SVM) theory was created by Vapnik of AT&T Bell Laborato-
ries [11]. SVM is superior from a theoretical point of view and always performs well in
practice [12]. The SVM model is good for TTP based on historical travel time data, and
therefore, there are several applications of SVM for TTP [13,14]. Kernel function is the
key point in the SVM algorithm, which can map the input data into a higher-dimensional
space. The mapping process stops until the flattest linear function is found (i.e., when
the error is smaller than a predefined threshold). This linear function was used to map
the initial space and obtain the final model, which was used for TTP. However, a crucial
problem-overfitting arises from the complicated structure of SVM and ANN algorithms
(i.e., the large number of parameters that need to be estimated), which commonly exists in
the non-parameter machine learning algorithm.

Another popular non-parametric approach to TTP is the local regression approach.
Local linear regression can be used to optimize and balance the use of historical and real
time data [15], which can yield accurate prediction results. In the local regression algorithm,
a set of historical data with similar characteristics to the current data record are selected by
the algorithm.

Semi-parametric models are a combination of specific parametric and non-parametric
methods. The main idea of the semi-parametric method is to loosen some of the assump-
tions created in the parametric model to get a more flexible structure [16]. In the application
of TTP, semi-parametric models are always in the form of varying coefficient regression
models in which the model coefficient varies depending on the departure time and predic-
tion horizon [17]. Therefore, travel time can be estimated by a linear combination of the
naive historical and instantaneous predictors.

With the increasing and wide applications of machine learning algorithms in the field
of TTP, mainstream machine learning methods have been deployed in different countries
using various types of data sources. Many methodologies have been developed and
applied by researchers, which include, but are not limited to, the following: SVM, neural
network (e.g., state-and-space neural network, long short-term memory neural network),
nearest neighbor algorithm (e.g., k-nearest neighbor), and ensemble learning (e.g., RF and
gradient boosting), etc. Nonlinear modelling machine learning methods have also been
widely applied and proven successful in many other fields, such as building models for
taxi carpooling with simulation [18], predicting the portfolio of stock price affected by the
news with multivariate Bayesian structural time series model [19], and evolving fuzzy
models for prosthetic hand myoelectric-based control [20]. Table 1 summarizes the studies
reviewed that are classified based on the prediction method employed as shown in the last
column of the respective studies.

The main innovative idea (and also the main contribution) of this paper is to apply
and compare four different machine learning algorithms (i.e., DT, RF, XGBoost, and LSTM)
for the TTP. To the authors’ best knowledge, this is the first effort made to systematically
develop and compare such four algorithms in the TTP area.
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2. Materials and Methods
2.1. Data
2.1.1. Travel Time Data

In this study, the selected freeway segment travel time data were collected from the
RITIS. RITIS is an advanced traffic analysis system that includes probe data analytics,
segment analysis, and signal analytics. The raw travel data gathered from a series of
selected road segments along the I-485 freeway in Charlotte, North Carolina, were used in
the case study. As one of the most heavily travelled interstate freeways in the Charlotte
metropolitan area, I-485 encircles the city and the last segment was completed in June 2015.
The city of Charlotte has experienced a significant increase in daily traffic on many of its
freeway segments in the past 25 years as the population of the Charlotte area increased
from 688,000 to 1.4 million; more than 500,000 more residents are expected over the next
20 years. Charlotte has the largest population in the state and is also one of the fastest-
growing metro areas in the U.S. The rapid population growth has caused traffic congestion
on major roads. I-485 freeway segments in the southern Charlotte area experience massive
recurrent congestion during weekdays due to heavy commuter and interstate traffic, which
can seriously affect the travel and further economic development in this area. The I-485
Express Lanes project that began in the summer of 2019 will be completed in 2022 (the
estimated cost is 346 million dollars) with one express lane added in each direction along
I-485 between exit 67 (I-77) and exit 51 (U.S. 74). Travel time reliability and traffic flow in
these freeway segments are therefore expected to improve. Figure 2 shows the satellite
map of the selected sections.
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In this study, the selected section of the I-485 southern loop in the RITIS system
includes clockwise and counter-clockwise directions and consists of 37 miles of roadways
and 32 Traffic Message Channel (TMC) code segments. A given path is combined by a
sequence of connected sub-paths, and predicting the travel time for a given path is an
important subject in navigation, route planning, and traffic management [21]. The records
for all the selected road segments have uninterrupted coverage in the RITIS system with
24 h per day and 365 days a year. The collected sample dataset is from 1 January 2019–
31 December 2019,with 15 min being the collection interval. Table 2 is an example of the
raw time data utilized in this study. It is important to note that in addition to the travel
time- related temporal features, spatial features such as segment ID and the segment length
are also included. Road geometric characteristics, such as segment (intersection) length
and location information, are all potentially influential factors for modeling TTP [22]. In
short, both spatial and temporal characteristics of travel time can significantly improve the
TTP accuracy by reducing the time-lag problems between the experienced and predicted
travel times on travel routes [23].
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Table 2. Sample raw travel time data.

TMC Code Time-Stamp Speed (mile/h) Travel Time (Second)

125N04680 1 October 2019 0:00 62.93 53.38
125N04681 1October 2019 0:00 62.17 11.82
125N04682 1 October 2019 0:00 61.43 37.56
125N04683 1 October 2019 0:00 61.39 11.25
125N04684 1 October 2019 0:00 62.97 14.59
125N04685 1 October 2019 0:00 63.44 22.73
125N04686 1 October 2019 0:00 62.78 16.42
125N04687 1 October 2019 0:00 66.03 29.66
125N04688 1 October 2019 0:00 64.5 54.26

Detailed information about the table is provided as follows: TMC code, RITIS system assigns each road segment a
unique identifier code as the road segment ID; Time-Stamp, indicates the exact time of the record; Speed (mile/h),
presents the current estimated mean speed (miles per hour); Travel Time (Second), indicates the travel time
required to drive through the road segments.

2.1.2. Weather Data

Precipitation brings many uncertainties to the TTP in both urban roads and free-
ways [24]. It was found in previous studies that travel time reliability was significantly
influenced by weather conditions, particularly severe weather [25]. Travel time and speed
are the two important transportation parameters, and the weather can greatly affect these
two factors, resulting in the deterioration of a traffic system’s performance [26]. In doing so,
the raw historical weather data can be gathered from locations that are close to the Charlotte
Douglas International Airport, which includes information on different categories such as
temperature, humidity, dew point, pressure, wind direction, wind speed, visibility, gust
speed, precipitation, and conditions. The weather data were recorded on a per-hour basis,
and as such, the discrepancy in the time intervals was treated by developing and using a
mapping methodology to combine the travel time data with the weather data. An example
of the raw weather data used in this study is shown in Table 3 below.

Table 3. Sample raw weather data.

Date Time (EDT) Visibility Conditions

Saturday, 5 October 2019 8:00 a.m. 2.0 mi Rain
Saturday, 5 October 2019 9:00 a.m. 2.0 mi Rain
Saturday, 5 October 2019 10:00 a.m. 2.0 mi Light Rain
Saturday, 5 October 2019 11:00 a.m. 2.0 mi Light Rain
Saturday, 5 October 2019 12:00 a.m. 3.0 mi Light Rain
Saturday, 5 October 2019 13:00 a.m. 2.0 mi Light Rain
Saturday, 5 October 2019 14:00 p.m. 3.0 mi Light Rain
Saturday, 5 October 2019 15:00 p.m. 7.0 mi Light Rain

2.1.3. Data Processing

The sample dataset contains 981,083 data records, and the missing rate is less than
0.5% (i.e., 4246 records in total). Furthermore, the missing records (with one or more
of the recorded features missing) were simply replaced with the mean of its closest sur-
rounding records. After investigating the dataset, anonymous records (for which the
travel time is zero seconds or speed greater than 100 mile/h) were identified and re-
moved from the dataset. On the other hand, some records showed speed as 0 or travel
time being considerable, and one cannot simply remove these kinds of records since they
could have been collected under extreme conditions (e.g., under high congestion or server
weather conditions). The weather conditions from the raw dataset were originally classified
into 30 detailed weather conditions. However, for computation efficiency, the weather
conditions were further categorized into only three groups, including normal, rain, and
snow/fog/ice in this study. In order to keep a reasonable size for statistical modeling
purposes, “snow”, “fog”, “ice”, and their relative weather conditions were combined due
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to their rates of occurrence and similar impacts on traffic. Table 4 defines the detailed
classification method used in this study.

Table 4. Classification of the weather conditions.

Normal Rain Snow/Fog/Ice

Clear Light Rain Haze
Partly Cloudy Rain Fog
Mostly Cloudy Heavy Rain Smoke

Scattered Clouds Light Drizzle Patches of Fog
Overcast Heavy Thunderstorm Mist

Unknown Light Thunderstorm Shallow Fog
Thunderstorm Light Freezing R

Drizzle Light Ice Pellet
Squalls Light Freezing D

Light Freezing F
Ice Pellets

Light Snow
Snow

Heavy Snow

To merge the link travel times dataset with the historical weather dataset, since
different intervals of two datasets were used, such issues should be resolved first. It is
important to note that the RITIS datasets were aggregated into 15 min intervals, while the
weather dataset was aggregated into 1 h intervals. Therefore, the weather conditions were
distributed evenly with the RITIS dataset based on the timestamp.

2.2. TTP Methods
2.2.1. Ensemble Learning

Ensemble-based learning is a supervised learning algorithm obtained by combining
diverse models. In this paper, we focus on tree-based ensemble learning, which consists
of multiple base models (i.e., DT model), each of which provides an alternative solution
to the problem. Diversity among the models tends to make the prediction results more
accurate [27]. A single DT always suffers from high variance, which may cause instability
in the prediction results. It is instructive to look at the psychological backdrop to this
otherwise statistical inference [28]. In our daily lives we use such an approach routinely by
asking the opinions of several experts before making a decision (e.g., asking the opinions
of several doctors before a major surgery, reading multiple user reviews before purchasing
a car, or a paper that needs to be reviewed by several experts before being accepted
for publication).

2.2.2. Random Forest

RF algorithm is built upon the idea of ensemble learning, which is a large collection of
uncorrelated decision trees, each of which is capable of generating a result when estimated
by a set of predictor values. The randomness in RF is to generate multiple datasets from
the sample set, and the method is named bootstrap aggregating (bagging). Bagging is an
ensemble algorithm designed to increase the randomness and improve the accuracy of
machine learning algorithms. In the bagging process, the algorithm builds multiple models
from the same original sample dataset to reduce the variance (shown in Figure 3). RF is an
application of bagging in addition to building trees based on different bagging samples
from the original training data. RF algorithm constrains the features that can be used to
build the trees which forces trees to be different. To date, RF models have been widely
applied to various research fields [29].
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2.2.3. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) was first proposed by Chen and Guestrin in
2016 [30]. It was applied in solving machine learning challenges in different application
domains. XGBoost is an algorithm that has an ensemble of DTs and is robust to outliers,
and therefore XGBoost algorithm is thought to have a good performance in time series
related predictions [31]. Boosting with another ensemble tree-based method, which was
first proposed by Kearns in 1988 [32] Compared with the bagging method which has a
parallel process (i.e., each DT runs independently and then aggregates their outputs at
the end), the boosting method behaves more like a gradual process that improves the
prediction through developing multiple models in sequence by emphasizing these training
cases that are difficult to estimate [30]. In detail, the objective function of XGBoost can be
shown as follows:

Obj(Θ) = L(Θ) + Ω(Θ) (1)

where,

L(Θ): The training loss, which measures the extent of the model fit on training data, and
Ω(Θ): The regularization term, which indicates the complexity of the model.

The loss of the training dataset can be calculated as:

L =
n

∑
i=1

(yi − ŷi)2 (2)

where,
ŷi = The predicted value of travel time of record i; (3)

yi = The real value of travel time of record i. (4)

When a new tree is added to the model, the objective function can be transformed into:
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Obj(t) =
n

∑
i=1

(yi − ŷi)2+
t

∑
i=1

Ω( fi)=
n

∑
i=1

(yi − ŷi)2+ ft(xi)+Ω( fi) + constant (5)

The constant can be removed by using the second order Taylor expansion to extend
the loss function [29].

Obj(t) =
n

∑
i=1

(yi − ŷi)2 + gi ft(xi)+
1
2

hi f 2
t (xi)+Ω( fi) (6)

where,

gi is the first order partial derivative of the function;
hi is the second order partial derivative of the function.

Each time a DT is generated, the model is updated and improved based on the
previous model and loss function. The gradient here means that the way to minimize the
loss when adding new models is in a gradient descent algorithm. Furthermore, different
samples have a different probability of appearing in subsequent models, and the ones
with the highest error rate appear most, which means that the incorrectly estimated or
misclassified samples have a greater chance of being selected [33].

2.2.4. Long Short-Term Memory

LSTM is an algorithm that was initially introduced by Hochreiter and Schmidhuber
in 2007 [34]. Different from the standard feedforward Recurrent Neural Network (RNN),
LSTM has feedback connections. A common LSTM unit comprises a cell, an input gate,
an output gate, and a forget gate (shown in Figure 4). The cell in LSTM can remember
values over arbitrary time intervals, while the input, output, and forget gate control the
information flow into and out of the cell.
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LSTM are good for making predictions based on time series data. LSTM can also deal
with the vanishing gradient problem, which is hard for modeling by RNN. LSTM cell is
different from the recurrent unit, which is a specially redesigned cell memory unit. The
cell vectors can encapsulate information assigned to the forget part from previously stored
memory and add part of the new information. Moreover, as a data-driven approach, LSTM
is significantly influenced by historical data since the method is highly dependent upon
the scale and integrity of the historical data.



Sustainability 2021, 13, 7454 11 of 19

3. Modeling Development and Results
3.1. Feature Selection and Pre-Processing Steps

In this study, the southern part of the I-485 freeway is divided into 32 sections by
using the recorded sensor segment. The training dataset is collected during the time
period of 1 January 2019–31 December 2019 with 15 min being the collection interval. On
each segment (from sensor to sensor), traffic data contains travel times, including Day of
Week (DOW), Time of Day (TOD), segment length, and space mean speed information on
the subject segment. The dataset used in this study was collected from RITIS real-world
traffic data and had a less than 0.5% missing rate (i.e., 4246 out of 981,083). Note that
the missing values were replaced with the mean of its closest surrounding values in this
study. Based on previous studies [7,35,36], the spatial and temporal variables of adjacent
road segments (such as TOD, DOW, month and road position) have a significant impact
on the TTP. Therefore, in this study, the travel times that were several steps ahead of the
travel time to be predicted were also created and accounted for in the model estimation.
The selected variables include temporal features, such as travel time at the prediction
segment of 15, 30, and 45 min before, which are defined as Tt−1, Tt−2 and Tt−3, respectively;
the travel time at prediction segment exactly 1 week before, which are defined as Tt−w;
Time of Day (TOD), and Day of Week (DOW) were also included as important temporal
features. The spatial features include road segment ID and segment length. In the data
preparation, the temporal-spatial features were also generated, including the travel time of
the nearest downstream and upstream road segment 15 min before, defined as Ti+1

t−1 and
Ti−1

t−1 , respectively. The detailed information and definition of the selected variables can be
seen in Table 5.

Table 5. Feature selection in the model estimation.

Variable Definition

ID Road segment ID
L Length of the road segment

Speed Space Mean Speed
TOD Time of day is indexed from 1 to 96, which represent the time from 0:00–24:00 with every 15-min timestep
DOW Day of week is indexed from 1 to 7, which represent Monday through Sunday
Month The Month is indexed 1 to 12, which represents January to December

Weather Weather is indexed from 1 to 3, which represents normal, rain and snow/ice/fog
Tt−1 The travel time at prediction segment 15 min before
Tt−2 The travel time at prediction segment 30 min before
Tt−3 The travel time at prediction segment 45 min before
Tt−w The travel time at prediction segment 1 week before

∆Tt−1 The travel time change value at Tt−1
∆Tt−2 The travel time change value at Tt−2
∆Tt−3 The travel time change value at Tt−3
∆Tt−w The travel time change value at Tt−w
Ti−1

t−1 The travel time of the nearest upstream road segment 15 min before
Ti−2

t−1 The travel time of the second nearest upstream road segment 15 min before
∆Ti−1

t−1 The travel time change value at the nearest upstream road segment 15 min before
∆Ti−2

t−1 The travel time change value at the second nearest upstream road segment 15 min before
Ti+1

t−1 The travel time of the nearest downstream road segment 15 min before
Ti+2

t−1 The travel time of the second nearest downstream road segment 15 min before
∆Ti+1

t−1 The travel time change value at the nearest downstream road segment 15 min before
∆Ti+2

t−1 The travel time change value at the second nearest downstream road segment 15 min before

3.2. Model Development (RF)

It is important to tune the parameters used in the RF model to achieve the best
performance. Based on previous studies, the maximum number of features, the number of
trees, and the minimum leaf size are the primary features that can be tuned to optimize the
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predictive power of the RF model. The maximum number of features means the number of
features that are allowed to try in each individual tree. In Python, there are several methods
to assign maximum features. “Auto/None” is a command that simply takes all the sensible
features in each tree and does not put any restrictions on the individual trees. The second
method is “SQRT”, which takes the square root of the total number of features in each
individual run. The third method is called “log2”, which takes “log2” of the total number
of features as the maximum number of trees in each individual tree. After multiple tests,
the “log2” method was applied. This method was first introduced by Breiman [37], and the
number of features considered at each internal node of RF is m, which can be expressed as
follows:

m = INT(log2M + 1) (7)

where M is the total number of features.
The number of trees is the second important feature that needs to be tuned, which can

be understood as the number of voters when the RF takes the result of the poll. In statistics
theory, the larger this parameter is, the better the model will perform by compromising
computing efficiency. In the application, some researchers found that the prediction error
usually increases with an increase in the number of trees after it reaches the optimal point
in the tree-based model [38].

The third parameter that needs to be tuned is the minimum leaf size. The leaf is the
end node of a decision tree, whereas leaf size is the number of observations in that leaf. A
smaller leaf makes the model easier to capture noise in the train data.

To optimize the performance of the RF model, one can use the five-fold cross-validation
on the training data and implement the tool Random Search in the tuning process to achieve
a lower prediction error from the different combinations of parameters. It has been found
that when a parameter combination with the number of trees being 50 and the minimum
leaf size being 30 is chosen, the MAPE reaches its lowest value at 5.79%. Figure 5 shows
the performance with different combinations of parameters. It is also important to note
that the performance measure used in this study was the mean absolute percentage error
(MAPE). The MAPE statistic usually expresses the prediction accuracy as a percentage that
is calculated as follows:

MAPE =
1
m

m

∑
i=1

∣∣∣yi − ŷi

∣∣∣ (8)

where,

m = the total number of the data points;
ŷi. = The predicted travel time value in the test dataset of record i;
yi = The actual travel time value in the test dataset of record i.
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3.3. Model Estimation and Results Comparison

It has been approved that cross-validation can improve the TTP model performance [39].
To test the predictive accuracy of the models, the five-fold cross-validation was used. The
validation and testing scheme was designed as follows: 70% of the historical data (on
selected road segments from 1 January 2019–31 December 2019) was used for training
the models, and the remaining 30% of the data was used for testing the models. It is
important to set the performance measurement before comparing different TTP models. In
this study, the Mean Absolute Percent Error (MAPE) was selected as the evaluation criteria
for comparing four machine learning algorithms in this study.

It was well noted that each model estimation process included two major steps:
training and prediction. When the models were developed, they were tested using the
sample dataset. To test the performance of the proposed models, the DT model was also
established using the same data as a baseline method. To measure the effectiveness of
different travel time prediction algorithms, the MAPEs were computed for three different
observation segments (A, B, C, as shown in Figure 6) with different prediction horizons
ranging from 15 min to 60 min. The training and test errors of different models are shown
in Table 6.
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Table 6. The comparison of different prediction methods.

MAPE (%) of Different Observation Point with Different Prediction Time Range

Models 15 min 30 min 45 min 60 min

A B C A B C A B C A B C

DT 7.45 7.9 9.08 12.56 11.24 12.26 18.45 19.04 19.45 29.05 28.45 31.45
LSTM 6.49 6.35 6.67 9.69 9.97 10.67 15.29 16.19 17.37 24.59 25.66 26.76

XGBoost 6.57 6.14 6.39 10.58 9.98 10.89 15.35 15.98 17.9 25.9 26.06 28.09
RF 5.79 6.05 6.21 10.02 9.43 8.56 12.64 12.45 14.38 16.23 17.22 18.13

According to the comparative results presented in Table 6, the performance of the
proposed RF is better than all other methods, especially when the horizon of prediction
time is long; this can be clearly observed when the MAPEs of the RF model are significantly
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smaller than the other methods when the horizon is long enough (longer than 45 min).
Figure 7 also indicates, for different prediction horizons, that the prediction accuracy of the
RF model is better than the XGBoost and the LSTM as well as the baseline DT model. As
the prediction horizon increases, the performances of the four models all deteriorate. By
comparison, the RF model is least sensitive to the prediction horizons and can maintain
relatively good prediction performance. It reveals that the RF mode is a promising method
for TTP. Meanwhile, the main advantage of RF is that it is more computationally efficient. It
is worth noting that the speed of XGBoost is much faster than that of other tested methods
since it can process large amounts of data in a parallel way efficiently. The XGBoost model
can also handle missing values in the dataset. However, the gradient boosting model is
more difficult to fit than the RF. The stopping criteria should also be chosen carefully to
avoid overfitting the training data.
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4. Discussion

Previous studies [10,21] indicated that the input variables of the model usually have
different effects on the dependent variable. Exploring the impact of a single input variable
on the dependent variable can help reveal hidden information about the data. The greater
the importance value of a variable, the stronger its influence on the model. In the feature
selection process, we used the RF model to rank the relative importance from the original
dataset. The features that had an importance of more than 0.1% were selected in the model
training, and 23 features were selected in this study from the original 35 features (with
the least important feature being the length of the road segment at 0.17%). The model
result showed that the variable Tt−1 (travel time 15 min before) contributed the most
(34.85%) to the predicted travel time result. This result was expected and consistent with a
previous study [10] which demonstrated that the immediate and previous traffic condition
will directly influence traffic condition in the near future. TOD was the second highest
ranked variable with a relative importance value of 30.12%; this result was also expected.
Adding up the most important eight variables’ relative importance values (Tt−1, TOD,
speed, Tt−w, DOW, weather, road ID, month) in Table 7 is as high as 94.77%, which means
that these eight selected variables include most of the information needed for the travel
time prediction. Table 7 shows the relative importance of each variable in the RF model for
different prediction horizons. For different prediction horizons, the four most important
variables are the same, and they are: travel time at prediction segment 15 min before, TOD,
speed, and travel time 1 week before. As expected, the travel time of the current period has
the greatest influence on the travel time of the next period.
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Table 7. Relative importance in RF model for different prediction horizons.

Variable Definition
15 min

Prediction
Horizon

30 min
Prediction
Horizon

45 min
Prediction
Horizon

ID Road segment ID 8 7 9
L Length of the road segment 23 23 16

Speed Space Mean Speed 3 3 3

TOD Time of day is indexed from 1 to 96, which represents the time from
0:00-24:00 with every 15-minute timestep 2 2 2

DOW Day of week is indexed from 1 to 7, which represents Monday
through Sunday 6 5 7

Month The month is indexed 1 to 12, which represent January to December 10 8 12

Weather Weather is indexed from 1 to 3, which represents normal, rain and
snow/ice/fog 5 6 8

Tt−1 The travel time at prediction segment 15 min before 1 1 1
Tt−2 The travel time at prediction segment 30 min before 7 11 14
Tt−3 The travel time at prediction segment 45 min before 19 18 23
Tt−w The travel time at prediction segment 1 week before 4 4 4

∆Tt−1 The travel time change value at Tt−1 16 19 17
∆Tt−2. The travel time change value at Tt−2 20 21 22
∆Tt−3. The travel time change value at Tt−3 22 22 20
∆Tt−w The travel time change value at Tt−w 21 20 18
Ti−1

t−1 The travel time of the nearest upstream road segment 15 min before 14 15 19
Ti−2

t−1 The travel time of the second nearest upstream road segment 15 min before 11 12 10

∆Ti−1
t−1

The travel time change value at the nearest upstream road segment
15 min before 18 16 13

∆Ti−2
t−1

The travel time change value at the second nearest upstream road segment
15 min before 17 16 21

Ti+1
t−1 The travel time of the nearest downstream road segment 15 min before 13 14 15

Ti+2
t−1

The travel time of the second nearest downstream road segment
15 min before 9 10 6

∆Ti+1
t−1

The travel time change value at the nearest downstream road segment
15 min before 12 9 5

∆Ti+2
t−1

The travel time change value at the second nearest downstream road
segment 15 min before 15 13 11

Since the most important relative feature is the same for different prediction horizons,
the partial dependence function graphs between predicted travel time and actual travel
time in the current period are shown in Figure 8. It can be found that current travel time
has a highly linear relationship with the predicted travel time; however, the curve behaves
differently for different prediction horizons. Furthermore, when the prediction horizon
increases (from 15 to 45 min), the change rate of the curve gradually decreases, which
demonstrates that travel time in the current period has less impact on the TTP. It indicates
that the model’s predicted performance decreases as the prediction horizon increases.

In machine learning, overfitting typically occurs when the model corresponds perfectly
to the sample set of data, and therefore, the model may fail to fit additional data or predict
future observations reliably. RF is an ensemble of DTs. The single DT is sensitive to data
variations, which can overfit to noise in the data. While in the RF model, as the number of
trees increases, the tendency of overfitting decreases. Among the four applied algorithms,
due to the bagging and random feature selection process, the RF was deemed as not
prone to overfitting and very noise-resistant. However, it can still be improved, and in
order to avoid overfitting in RF, the hyper-parameters of the algorithm should be tuned
very carefully.
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Figure 8. Partial dependence function graph for different prediction horizon. Green, 15 min prediction horizon; orange,
45 min prediction horizon.

5. Conclusions and Recommendations

Short-term TTP can be an important planning tool for both individual and public
transportation. In general, the benefits of TTP come from three aspects [6]: Saving travel
time and improving reliability for the travelers; improving the reliability of delivery and
the service quality and cutting costs for logistics [40]. TTP is the key to traffic system
management. Machine learning algorithms base on large data are generally more capable of
searching and aggregating previously undetectable patterns and nonlinearity, and therefore
possess the power to predict more accurate results. In both cases, it is expected that the
application of accurate TTP can greatly help improve the level of service and enhance
travel planning by reducing errors between the actual and predicted travel time. In this
study, four non-parametric state-of-the-art machine learning methods, i.e., DT, XGBoost,
RF, and LSTM (three from ensemble tree-based learning, and one from neural network),
were developed and compared. After the data processing and feature selection process,
all four methods were estimated, and the best combination of model parameters inherent
in each model was also identified and used. In the model training and validation process,
the sample dataset from selected road segments in I-485 Charlotte are used. Experimental
results indicated that the RF is the most promising approach among all the methods that
were developed and tested. The results also showed that all ensemble learning methods
(i.e., RF and XGBoost) achieved high estimation accuracy and significantly outperformed
the other methods. Furthermore, the ensemble learning methods run efficiently on large
data sets due to the reduced model complexity of tree-based methods. Moreover, from
a statistical point of view, these methods can overcome overfitting to some extent. It is
well known that overfitting means that the estimated model fits the training data too well,
which is typically caused by the model function being too complicated to consider each
data point and even outliers.

However, this study still has some limitations. First, the TTP models were developed
under normal traffic conditions and do not consider unexpected conditions (e.g., special
events such as accidents and work zone activities). In addition, the data collected from
the selected freeway segments were limited in diversity. There is the hope that with
the development and popularization of real-time collection and uploading of traffic data
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acquisition technology (such as GPS trajectories, smartphones), sufficient data will provide
the possibility for developing a more accurate TTP model. Furthermore, to identify whether
the TTP is region-specific, further research is needed to replicate this study in other road
categories using other types of data sources. Further results need to be achieved to compare
all methods to further demonstrate whether the ensemble tree-based learning methods have
better predictive accuracy in short-term TTP. Moreover, variables such as the characteristics
of drivers and the impact of sun glare and other environmental hazards that could increase
congestion will need to be incorporated into the model. Some experimental results have
shown that the combination methods have a better prediction result than using one method
alone [41–43]. Even though the combination models have proven to be superior in terms of
prediction accuracy and stability, they should be carefully considered in future research.
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