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Abstract: Water pollution is an increasing global issue that societies are facing and is threating
human health, ecosystem functions and agriculture production. The distinguished features of
artificial intelligence (AI) based modeling can deliver a deep insight pertaining to rising water quality
concerns. The current study investigates the predictive performance of gene expression programming
(GEP), artificial neural network (ANN) and linear regression model (LRM) for modeling monthly
total dissolved solids (TDS) and specific conductivity (EC) in the upper Indus River at two outlet
stations. In total, 30 years of historical water quality data, comprising 360 TDS and EC monthly
records, were used for models training and testing. Based on a significant correlation, the TDS and
EC modeling were correlated with seven input parameters. Results were evaluated using various
performance measure indicators, error assessment and external criteria. The simulated outcome of
the models indicated a strong association with actual data where the correlation coefficient above
0.9 was observed for both TDS and EC. Both the GEP and ANN models remained the reliable
techniques in predicting TDS and EC. The formulated GEP mathematical equations depict its novelty
as compared to ANN and LRM. The results of sensitivity analysis indicated the increasing trend of
input variables affecting TDS as HCO3

− (22.33%) > Cl− (21.66%) > Mg2+ (16.98%) > Na+ (14.55%) >
Ca2+ (12.92%) > SO4

2− (11.55%) > pH (0%), while, in the case of EC, it followed the trend as HCO3
−

(42.36%) > SO4
2−(25.63%) > Ca2+ (13.59%) > Cl− (12.8%) > Na+ (5.01%) > pH (0.61%) > Mg2+ (0%).

The parametric analysis revealed that models have incorporated the effect of all the input parameters
in the modeling process. The external assessment criteria confirmed the generalized outcome and
robustness of the proposed approaches. Conclusively, the outcomes of this study demonstrated that
the formulation of AI based models are cost effective and helpful for river water quality assessment,
management and policy making.

Keywords: river water quality; sustainable environment; soft computing; regression analysis; total
dissolved solids; specific conductivity; parametric study; variable importance; external validation

1. Introduction

Surface water is the most sensitive and vulnerable resource since its demand increases
with the rise in population. The surface water bodies are abundantly available which fulfill
multiple needs such as industrial processes, drinking, irrigation, agricultural production
and hydroelectricity generation. The streams, lakes and rivers are the most susceptible to
pollution, receiving more waste load from other sources attributed to their dynamic nature
and easy accessibility. Major processes responsible for water quality degradation include
urban waste water, non-treatment sewage discharge, industrial processes, hazardous
substances, diffuse pollution from agricultural lands, climatic processes and anthropogenic
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activities [1–3]. Polluted water is a major issue threatening human health, agriculture and
ecosystems [4].

Estimating the processes pertaining to water quality deterioration is becoming a key
hurdle in managing pollution of the marine environment [5,6]. The selected variables
for water quality assessment are total dissolved solids (TDS) and specific conductivity
(EC). Both TDS and EC depend on organic matter and inorganic salts dissolved in water.
A variation in TDS or EC level is a sign of source pollution, hence, elevated values of
these parameters indicate contamination in water [7,8]. The field monitoring and manual
laboratory tests/calculations methods for water quality assessment are labor-intensive and
time-consuming [9]. In order to condense the experimental workload for the calculation of
water quality parameters, modeling techniques can be the best alternatives. Employing
computer aided models for modeling the significant properties of water are helpful in
saving time, cost and also making suitable predictions [10,11]. Modeling and estimation
in different fields were carried out with typical and conventional computing methods
including numerical, and deterministic models. Although, these models have limited
capability and are complex in structure (require in depth details). Therefore, leaves a gap
to use alternate and advanced modeling approaches [12,13].

The artificial intelligence (AI) techniques encompassing neural network (ANN), ran-
dom forest (RF), multi-expression programming (MEP), adaptive neuro-fuzzy inference-
based system (ANFIS) and gene expression programming (GEP) remained the reliable
methods for valuable predictions and solving complex problems in various engineering
domains [9,10,14–24]. The ANN was defined as enormous parallel spread processors
containing simple units [25]. The hidden network between the neurons are adjusted in a
way to develop and store the information required for modeling the complex systems [19].
Some drawbacks of ANN include unexplained behavior and difficulty in determining the
proper network structure. The ANN does not give information regarding the adopted
procedure, thus reducing the trust in the network structure [26,27]. The Genetic Program-
ing (GP) was presented as a simplification of genetic algorithm [28]. In gene expression
programming (GEP), which is the enhanced form of GP, the formation of genetic diversity is
very simplified because the process works at chromosomes level [29]. The linear regression
models (LRM) are the oldest and frequently used models across many fields. These are
statistical tools that creates a relation between several independent and a single dependent
variable [30].

Various researchers used different models for the estimation of water quality pa-
rameters. Palani et al. (2008) [16] used ANN to forecast dissolved oxygen (DO), salinity,
temperature and chlorophyll-a in Singapore coastal water. The authors reported excellent
prediction capability of the ANN model with correlation coefficient ranging from 0.8 to 0.9.
Ahmed et al. (2019) [31] used ANFIS, radial bias function and multi-layer perception neural
network models along with wavelet data de-noising technique in predicting pH, suspended
solids and ammoniacal nitrogen concentration. The authors reported improved perfor-
mance of the predictive models with data de-noising technique. Marti et al. (2013) [19]
used ANN, GEP and regression for DO prediction in sand media filters utilizing 769 data
points from experimental results. EC, pH, dissolved oxygen and head loss remained the
most effective parameters. The results exposed better estimation of GEP model than other
techniques. Granata et al. (2017) [32] predicted total suspended solids (TSS), biochemical
oxygen demand (BOD), chemical oxygen demand (COD) and TDS of wastewater in a
drainage basin with the help of support vector regression (SVR) and regression tree (RT)
models. The authors reported better performance of SVR than RT in predicting the targeted
output. The ANN was used by Sarkar et al. (2015) [14] for DO prediction. The authors
reported accurate results of ANN with correlation coefficient close to 0.9. Haghiabi et al.
(2018) [33] employed SVM, ANN and group method of data handling (GMDH) models
in predicting various water quality parameters. The authors demonstrated suitable per-
formance of both ANN and SVM for water quality prediction. Zhang et al. (2019) [34]
used hybrid neural network model to predict water treatment plant production capacity.
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The results of the study demonstrated enhanced performance of the model by using a
larger dataset.

The AI and machine learning modeling techniques were successfully employed in
the aforementioned studies. A literature survey demonstrated that most of the modeling
studies rely only on limited duration data and/or limited number of data points. Therefore,
a systematic and detailed analysis is needed to consider the behavior of AI and regression-
based techniques using a large dataset. Most of the modeling methodologies reported in
literature have low and uneven prediction capacity due to the use of inadequate dataset.
Moreover, limited research is available that focuses on the use of models that are efficient
to provide empirical expressions. Such modeling approaches will ultimately reduce the
experimental workload in predicting important water quality variables.

A study conducted by Shah et al. (2021) [8], where ANFIS modeling was applied
in predicting the monthly TDS and EC in upper Indus river basin (UIB) measured at
Bisham Qilla gauging station. The ANFIS model was coupled with data preprocessing and
input optimization routine to remove the outliers and to select the most influential input
combination. The authors reported an excellent result of the ANFIS model in TDS and EC
prediction. In comparison to the aforementioned study, the present study is mainly devoted
to applying AI and regression methods for modeling TDS and EC in the expanded study
region. The dataset, simultaneously measured at both Doyian and Bisham Qilla outlets,
were utilized for models training and testing. Thereafter, a comparative assessment is
conducted in selecting the best model. The employed techniques included artificial neural
network (ANN), gene expression programming (GEP) and linear regression model (LRM)
utilizing monthly historical data. Models were developed for TDS and EC and performance
was assessed by computing statistical indicators. Variable importance and a parametric
study were conducted to figure out the influence of modeling inputs on the targeted output.
The results of the present study might provide a valuable insight to authorities to devise a
strategy for the effective management of river water quality.

2. Material and Methods
2.1. Genetic Base Algorithm

The enhanced variant of genetic programming (GP) was developed by Ferreira, C. [35],
which is known as gene expression programming (GEP). A parse tree structure is coded in
GEP which overcome the limitations of the GP [36]. Due to multigenic behavior, GEP uses
unpretentious criteria for genetic variety formation which enable them to develop nonlinear
and complex programs. GEP process is composed of various sets such as parameter set,
fitness measure set, function set, criteria set and terminal set. The two main components of
GEP are the chromosomes and expression trees (ETs). The ETs are used to express different
nonlinear individuals and the genetic information encoded in the chromosomes. ETs are an
excellent way to represent an expression in a computer because ET can be easily evaluated
as compared to genetic information and equations [37]. A typical example of ET is shown in
Figure 1. Furthermore, during the reproduction stage, the genetic operators are commonly
used to modify the chromosomes [38,39]. GEP can represent any parse tree because of the
capability of producing chromosomes. For such purpose, a new language called Karwa
language is used to decode the information in the chromosomes [40,41]. An empirical
relationship between the chromosomes and sets can be develop using the expression called
Karva notation. The K expression from Karwa notation can be converted into mathematical
equations that have the proficiency to forecast the output as a function of input variables
and are applicable with high accuracy [21]. For GEP model development, the GeneXpro
software tool was used and the GEP modeling parameters are listed in Table 1.
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Table 1. Best fitted parameters for GEP algorithm run.

Parameter Setting

Number of Chromosomes 30
Number of Genes 4

Head size 10
Gene size 26

Linking function Addition
Function set + ,−, × , ÷ , ˆ2 , 3√

Mutation rate 0.0138
Inversion rate 0.00546

Constants per gene 10
Maximum complexity 10

Data type Floating type
Lower bound −10
Upper bound 10

2.2. Artificial Neural Network (ANN)

The artificial neural network (ANN) was introduced by McCulloch et al. (1943) [42].
The use of ANN in modeling studies begins with the development of back propagation
training algorithm in 1986 [43]. The artificial neuron is the basic element for simulation of
biological nervous system microstructures. ANN has the ability to portray the nonlinear
and complex functionalities in term of some variables to train the structure [16]. Figure 2
shows the architecture of typical ANN with different form of layers. Based on agreeable
training, the ANN replicate the output based on unseen input data. Recently, the appli-
cations of ANN have been extended to many fields including water quality modeling,
temperature prediction, ground water and hydrologic processes modeling [7,15,44]. In
this study, the ANN model i.e., feed forward neural network type, was developed in the
MATLAB environment. The final optimum parameters set for ANN modeling employed
in the current study, are listed in Table 2.
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Table 2. Parameters of ANN for optimal network configuration.

Parameter
Fitted Value

TDS EC

Training dataset 252 (70%) 252 (70%)
Testing dataset 108 (30%) 108 (30%)

General

Network type Feed forward neural network
Data division Random

Number of hidden neurons 10
Training algorithm Levenberg-Marquardt

Transfer function for hidden layer TANSIG
Transfer function for output layer PURELIN
Number of nonlinear parameters 18

Number of epochs 35
Learning rate 0.01

2.3. Linear Regression Model (LRM)

Linear regression modeling (LRM) applies a linear approach to model the relationship
between a scalar and one or more explanatory variables. In linear regression modeling, a
linear predictor function is used, whose unknown parameters are estimated from the given
data. In this method, one variable is considered as explanatory variable, while the other
one is considered to be a dependent variable. It is a frequently used method with practical
applications in various fields of engineering. The generated regression-based equations
can further be used specifically for water related problems [45]. Below, Equations (1) and
(2) representing the mathematical form of linear regression analysis [46,47].

Y = a + β1X1 + β2X2 +· · · · · · + βiXi (1)

Y = a + β1Xi + β2Xj + β3Xi
2 + β4Xj

2 + · · · · · · + βkXiXj (2)

In both the Equations, a is the intercept, β is the slope or coefficient and k is the
number of observations. The linear regression fit an estimated model to a dataset of Y and
X values and the fitted model may be used to estimate Y with the addition of known X
values [46]. The LRM employed in this study was developed using statistical package for
social sciences (SPSS).



Sustainability 2021, 13, 7515 6 of 20

3. Study Area, Datasets and Modeling
3.1. Description of the Study Area

The Indus River is 2880 km long and the Upper Indus river basin (UIB) is one of the
glacierized, mountainous and snow-fed catchment [48]. The UIB, a part of the Indus basin
system, situated upstream of Tarbela dam with 1150 km total length, 165,400 km2 drainage
area and ice reserves of 2174 km3. The elevation in UIB varies from 455 m to 8611 m and
the climate fluctuates considerably inside the basin due to variation in altitude [49–51]. The
average yearly precipitation varies from 100 to 200 mm [52,53]. The detailed description of
the study area is given in Figure 3.
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3.2. Modeling and Water Quality Dataset

The water quality modeling using AI methods were carried out using four main
steps: (1) Data preparation; (2) Model development; (3) Model assessment and validation;
and (4) Robustness analysis. The water quality dataset used in this study was obtained
from WAPDA, Pakistan. The final data contained 360 monthly data points collected from
1975 to 2005 measured at Doyian and Bisham Qilla outlets. The dataset included nine
parameters, namely, calcium (Ca), magnesium (Mg), sodium (Na), chloride (Cl), sulphate
(SO4), pH, bicarbonates (HCO3), TDS and EC. The statistical parameters of the water
quality data are shown in Table 3. The typical values of TDS in the study area ranges from
60 ppm to 260 ppm, while, the EC values lies between 92 µS/cm to 450 µS/cm. The WHO
guidelines suggested the permissible range of TDS in drinking water is 300–600 mg/L,
while the allowable limit for agriculture water is 450–2000 mg/L [54,55]. The concentration
of both the TDS and EC lies within the permissible limit; however, it is the need of time
to measure important water quality indicators accurately with minimum efforts. The
correlation matrix between the input parameters and modeling output (TDS and EC) is
tabulated in Tables 4 and 5, respectively. According to available literature, adding too
much input parameters that have a weak correlation with the model output adversely
affects the performance of the model and increases the complexity and computational
time [50]. Keeping in view the water quality dataset and the correlation among inputs and
the targeted TDS and EC levels, seven parameters (Ca, Mg, Na, Cl, SO4, pH, and HCO3)
were selected as significant inputs for GEP, ANN and LRM model development. As a usual
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practice, the dataset was randomly separated into 70% (252 records) and 30% (108 records)
for models training and testing, respectively.

Table 3. Statistical indicators of the modeling dataset.

Variable Unit Range SD Mean Minimum Maximum Skewness Kurtosis

INPUTS
Calcium (Ca) meq/L 1.80 0.31 1.49 0.65 2.45 0.94 3.01

Magnesium (Mg) meq/L 2.60 0.33 0.66 0.04 2.64 0.44 0.51
Sodium (Na) meq/L 8.95 0.67 0.51 0.05 9.0 2.10 3.92
Chloride (Cl) meq/L 4.15 0.20 0.27 0.05 4.2 1.43 3.15

Sulphate (SO4) meq/L 3.11 0.34 0.51 0.1 3.2 0.83 0.55
Bicarbonate

(HCO3) meq/L 7.10 0.61 1.82 0.3 7.4 0.76 0.89

PH - 1.22 0.65 7.83 7.08 8.3 −0.47 0.23
OUTPUTS

TDS ppm 200 38.64 138.17 60 260 0.86 1.19
EC µS/cm 358 67.49 244.65 92 450 0.71 0.91

Total number of data points (n) = 360.

Table 4. Correlation matrix of TDS (Bold values show the significant correlation with other parameters).

Parameters Ca Mg Na HCO3 Cl SO4 PH TDS

Ca 1
Mg 0.0194 1
Na −0.0037 0.4712 1

HCO3 0.0363 0.5324 0.7414 1
Cl 0.0239 0.5035 0.7041 0.5296 1

SO4 0.0212 0.5415 0.4853 0.2749 0.3698 1
PH 0.0025 0.0737 0.0415 0.0545 0.0561 −0.0445 1

TDS 0.7452 0.7001 0.8629 0.8176 0.7411 0.6297 0.6210 1

Table 5. Correlation matrix of EC (Bold values show the significant correlation with other parameters).

Parameters Ca Mg Na HCO3 Cl SO4 PH EC

Ca 1
Mg 0.0194 1
Na −0.0037 0.4712 1

HCO3 0.0363 0.5324 0.7414 1
Cl 0.0239 0.5035 0.7041 0.5296 1

SO4 0.0212 0.5415 0.4853 0.2749 0.3698 1
PH 0.0025 0.0737 0.0415 0.0545 0.0561 −0.0445 1
EC 0.7539 0.8632 0.7672 0.8545 0.8951 0.7954 0.6202 1

3.3. Models Performance Evaluation

The efficiency of the developed GEP, ANN and LRM models was determined using
selected indicators such as Root Mean Squared Error (RMSE), Nash Sutcliff efficiency (NSE),
correlation coefficient (R2), and Mean Absolute Error (MAE) [56]. The NSE ranges between
negative infinity to 1 with value over 0.65 represents a reasonable estimation [57,58]. The
value of R2 varies between 0 and 1 [57]. The RMSE and MAE are error type parame-
ters mostly followed in modeling studies. Lesser value of RMSE and MAE are ideal.
The mathematical formulae for the aforementioned indicators are illustrated below as
Equations (3)–(6), respectively.

RMSE =

√
∑n

i=1 (Pi −Mi)
2

N
(3)
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NSE = 1− ∑n
i=1(Mi − Pi)

2

∑n
i=1
(

Mi −Mi
)2 (4)

R2 =
∑n

i=1
(

Mi −Mi
)
(Pi − Pi)√

∑n
i=1 (Mi −Mi)

2
∑n

i=1 (Pi − Pi)
2

(5)

MAE =
1
n

n

∑
i=1
|Pi −Mi| (6)

where n represents the data points; Mi and Pi are actual and model simulated values, re-
spectively, and Mi. and Pi are mean actual and model mean simulated values, respectively.

4. Results and Discussion
4.1. Formulation of TDS and EC Using GEP

For the GEP model for TDS and EC formulation, the Equations (7) and (8) are devel-
oped to forecast the TDS and EC level on monthly basis. These Equations were formulated
using seven parameters as significant inputs for GEP model and highlighted its novelty
in the accurate prediction of the desired output. Moreover, the modeling results for TDS
and EC estimation, as predicted by GEP, are graphically presented in Figures 4 and 5,
respectively, for both training and testing.

TDS (ppm) = A + B + C− D (7)

where
A = (( 20390

Ca )
1
3 − 22HCO3)× (SO4 − HCO3)

1
3

B = 1

HCO3
1
3×ln(8.14Cl−1.11)2

C = (4.15 + Na)× 25− Na× HCO3

D = 28
Ca

(
Mg× Cl × 1.17 + SO4

1.03

)
× (51− 7.33Cl)

EC (µS/cm) = A + B + C (8)

where
A = (9.6Cl + 5.1SO4 − ln HCO3)× (4.9− HCO3)

2

B =
{(

SO4 × PH × 2.6− 32.7
CA
)
− 5.8

}
× HCO3

C = (Na + HCO3 × 10.4− SO4 × Cl)× 12.12
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Figure 4. Scattered plots of actual and simulated results for (a) TDS and (b) EC, using gene expression programming (GEP).
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Figure 5. Comparison of actual and simulated results for (a) TDS and (b) EC, using gene expression programming (GEP).

It is evident from Figures 4 and 5 that the proposed GEP model had successfully took
the effect of all the modeling inputs. The developed GEP model for both TDS and EC was
selected after running a set of algorithms. The performance measure indicators of all the
models are listed in Table 6. Considering the TDS estimated by GEP, the NSE, R2, MAE
and RMSE were found to be 0.96, 0.96, 6.58, 7.10 for model training data and 0.99, 0.99, 1.38,
1.57 for the testing data, respectively. Similarly, GEP results for EC during model training,
the NSE, R2, MAE and RMSE were observed to be 0.96, 0.97, 12.2 and 14.4. For EC model
testing, the goodness of fit was found to be 0.99, 0.99, 1.51 and 1.74, respectively. According
to available literature, the R2 value above 0.8 is reasonable [59], while, low MAE, RMSE
and higher R2 and NSE demonstrate adequate estimation of the model as compared with
the actual data [36]. In our study, the R2 is above 0.9 for both TDS and EC data, therefore,
emphasized the reliable and accurate results of the developed GEP technique.

Table 6. Summary of statistical results for GEP, ANN, and LRM models.

Output Model
Training Testing

NSE R2 MAE RMSE NSE R2 MAE RMSE

TDS
GEP 0.96 0.96 6.58 7.10 0.99 0.99 1.38 1.57
ANN 0.95 0.94 4.80 6.37 0.85 0.88 5.50 13.1
LRM 0.97 0.93 5.22 6.69 0.90 0.91 3.83 10.8

EC
GEP 0.96 0.97 12.2 14.4 0.99 0.99 1.51 1.74
ANN 0.93 0.95 6.67 10.81 0.90 0.90 13.1 13.5
LRM 0.95 0.92 11.93 16.37 0.94 0.92 11.0 26.70
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4.2. ANN Modeling Output

Figures 6 and 7 shows the ANN estimated results against the measured data for both
TDS and EC data. A trial-and-error method with optimization routine was employed to
select the best ANN architecture. During the ANN model training period on TDS data,
the values of NSE, R2, MAE and RMSE were observed to be 0.95, 0.94, 4.80 and 6.37,
respectively. For TDS testing dataset, the values of statistical indicators were found to be
0.85, 0.88, 5.50 and 13.1, respectively.
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Figure 6. Scattered plots of actual and simulated results for (a) TDS and (b) EC, using artificial neural network (ANN).

Similarly, the ANN model performance for training data in EC prediction was assessed
by mean of statistical measures. The statistical variables (NSE, R2, MAE and RMSE) were
found to be 0.93, 0.95, 6.67 and 10.81, respectively for training data and 0.90, 0.90, 13.1 and
13.5 for EC testing data. The ANN modeling outcome (in term of R2) indicated that the
performance of the ANN on training dataset is accurate than on the testing data. The values
of NSE and R2 decreased and RMSE increased for the testing data. This may be considered
as one of the drawbacks of the ANN model and can be attributed to the black box nature
and inexplicable behavior of ANN, in comparison with other modeling techniques.

4.3. Linear Regression Modeling for TDS and EC

The results for linear regression model (LRM) are presented in Figures 8 and 9 for
both TDS and EC with a satisfactorily estimated output. For LRM, the NSE and R2 values
were found to be 0.97 and 0.93 for training data and 0.90 and 0.91 for testing dataset,
respectively, in modeling the TDS. Similarly, the EC modeling output estimated by LRM,
the NSE and R2 were equal to 0.95 and 0.92 for model training data and 0.94 and 0.92 for
model testing data, respectively. The LRM results shows the declining accuracy (in term of
statistical indicators) during the model testing phase which is one of the main drawback of
regression-based modeling techniques [50].

4.4. Models Comparative Analysis and Error Assessment

The output of all the developed models is compared to draw a comparative analysis
pertaining to the prediction capability of AI and regression techniques. Considering the
performance of the GEP technique, it outclasses other models (ANN and LRM) during
training as well as testing phase and remained the accurate one. The lowest RMSE values
was also attained by GEP which highlighted its overall supremacy. Keeping in view the
performance of the ANN model, it showed good prediction capability during training but
its performance reduced on testing dataset. The declined performance may be considered
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a limitation of the ANN model and can be attributed to the inexplicable behavior and the
difficulty in the network structure of ANN [26,27]. As far as the performance of LRM is
concerned, behavior (reduced performance during model training) similar to ANN was
observed. The results of the observed and LRM simulated data tend to deviate largely as
compared to GEP and ANN, which exposed the overall enhanced prediction capacity of
AI based modeling techniques. The comparative performance indicators of the models are
listed in Table 6.

The average absolute error between the model simulated and actual data are graphi-
cally illustrated in Figures 10–12 for GEP, ANN and LRM models, respectively. For GEP,
the mean absolute error was 2.3 ppm and 3.01 µS/cm in predicting TDS and EC levels,
respectively. The maximum and minimum error in GEP predicted results for TDS (3.3 ppm
and 0.23 ppm) and EC (2.9 µS/cm and 0.4 µS/cm) was observed. The error graphs between
the simulated and actual data are illustrated in Figure 11a,b for ANN. The average respec-
tive absolute error was observed to be 5.3 ppm and 6.9 µS/cm for TDS and EC modeling
simulated by ANN. Lastly, Figure 12a,b demonstrated the average error values predicted
by LRM. The mean absolute error for TDS and EC data was found to be 8.9 ppm and
10.5 µS/cm, respectively, predicted by LRM. The result shows the accurate performance,
reduced error and high correlation of GEP model as compared with other developed tech-
niques (ANN and LRM). Conclusively, the performance of the models follows the order of
GEP > ANN > LRM in predicting both the TDS and EC.
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Figure 7. Comparison of actual and simulated results for (a) TDS and (b) EC, using artificial neural network (ANN).
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Figure 8. Scattered plots of actual and simulated results for (a) TDS and (b) EC, using linear regression model (LRM).
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Figure 9. Comparison of actual and simulated results for (a) TDS and (b) EC, using linear regression model (LRM).
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Figure 12. Absolute error among actual and LRM simulated data (a) TDS (b) EC.
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4.5. Models External Validation

The effectiveness of a model significantly depends on input data [11]. In order to
check the correctness of a dataset for establishing a linkage among variables, Frank and
Todeschini [60] suggested that five should be the ratio between data points and input
variables. In our study, the aforementioned ratio is 36.0 (252/7) and 18.0 (108/6) for train
and test data, respectively, which satisfies the requirement of dataset selection. Golbraikh
and Tropsha [61] recommended that slope of line passing through the origin must be
close to unity. Roy (2008) [62] presented an indicator (Rm) and suggested that value of Rm
should be above 0.5. Alavi et al. (2011) [63] proposed that Ro

2 and Ro’2 among actual and
projected values must be nearly 1. In our study, the performance of the adopted techniques
(GEP, ANN and LRM) was assessed by the aforementioned criteria and the results are
summarized in Table 7.

Table 7. Statistical indicators for external validation of GEP, ANN and LRM models.

S. No. Equation Criteria Technique Value Suggested by

1 R =
∑n

i=1(Mi−Mi)(Pi−Pi)√
∑n

i=1 (Mi−Mi)
2

∑n
i=1 (Pi−Pi)

2 R > 0.8
GEP 0.96

[60]ANN 0.98
LRM 0.97

2 k = ∑n
i=1(Mi−Pi)

Mi
2 0.85 < k < 1.15

GEP 1.004
[61]ANN 0.997

L 0.992

3 k′ = ∑n
i=1(Mi−Pi)

Pi
2 0.85 < k′ < 1.15

GEP 0.995
[61]ANN 1.002

LRM 1.007

4

Rm = R2 × (1−
√
|R2 − R02|

R0
2 =

∑n
i=1(Pi−Mi

0)
2

∑n
i=1 (Pi−Pi

0)
2 , Mi

0 = k× Pi

´R02 =
∑n

i=1(Mi−Pi
0)

2

∑n
i=1 (Mi−Mi

0)
2 , Pi

0 = k′ ×Mi

Rm > 0.5
GEP 0.799

[62]

ANN 0.820
LRM 0.811

R0
2 ∼= 1

GEP 0.999
ANN 0.999
LRM 099

´R02 ∼= 1
GEP 0.999
ANN 0.999
LRM 999

4.6. Sensitivity and Parametric Study

In AI modeling, it is important to carry out some analysis and checks to confirm the
accuracy of the models. A reliable performance of a model on training and testing dataset
does not guarantee the generalized accuracy and robustness. To find out the effective
parameters and ensure that the model has incorporated the effect of all the inputs, the
sensitivity and parametric analysis has been proposed in literature [39,50]. For a known
dataset and input parameters, a model could provide a desirable outcome but it is not
certain to provide the same accuracy for unknown data. Though, it is obligatory to carry out
the sensitivity and parametric study to determine the involvement of inputs for predicting
output. In the present research, the techniques proposed by Gandomi et al. (2013) [64] was
used. The researchers developed the Equations (9) and (10) for finding out the effect and
sensitivity of input variables on the modeling output.

Ni = fmax(xi)− fmin(xi) (9)

Si =
Ni

∑n
j=i Nj

× 100 (10)

The fmax(xi) and − fmin(xi) are the maximum and minimum of the estimated output
over the ith output.
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Various sensitive parameters were identified effecting the targeted output and the
results are illustrated in Figure 13 for both TDS and EC output. The graphs indicated
that bicarbonates (HCO3) is the most significant parameter with 22.3% and 42.3% relative
contribution to TDS and EC concentration, respectively. Similarly, the second influencing
parameter is Cl for TDS and SO4 for EC with 21.6% and 25.6% respective contribution. The
results further demonstrated that the targeted output (TDS and EC) is likely to be least
effected by pH. Moreover, Mg is contributing 16.98% to TDS and almost 0% to EC (least
significant for EC).
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Parametric analysis was performed by keeping all the variables constant at their
mean values and changing a single parameter at a time. Figures 14 and 15 graphically
demonstrate the respective prediction capacity of the proposed techniques for TDS and
EC modeling with a variation in the input parameters. The output of the parametric study
exposed that the concentration of TDS and EC follows an increasing tendency with a
variation in each input except for PH (where its concentration is constant). According to
available literature, both the outputs (TDS and EC) are associated with the salts/ions, and
consequently, a fluctuation in the concentration of ions affect the TDS and EC level [55]. The
same trend was observed in our study, because most of the input parameters are inorganic
and organic salts. Hence the increasing trend of TDS and EC with a variation in model
input parameters may be attributed to the salty concentration in surface water. Only one
parameter (Mg) remained the least significant one, which did not have a momentous effect
on EC level as compared to other modeling inputs.
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4.7. Environmental Aspects of Water Quality Modeling

The AI-based models are very useful tools in predicting the concentration, distribution
and risk of chemical pollutants in a given surface water body. The modeling outcome from
these models are crucial for environmental impact assessment and might provide a sup-
portive technique to environmental management agencies for decision making pertaining
to rising water pollution [8]. Moreover, models are helpful in providing objective means
of processing the complex information related to water quality condition. In this study,
the predictive capacity of the well-known GEP, ANN and LRM models was assessed in
predicting the TDS and EC concentration in a highly glacierized and mountainous catch-
ment, the Upper Indus River Basin (UIB). UIB is a major source of contributing water to
downstream areas where the water is used for drinking as well as agricultural production.
The direct and in-situ measurement of water quality parameters is almost impossible in
such a complicated watershed. Therefore, the use of modeling technique is indispensable
to provide a deep insight regarding the water pollution. Furthermore, the GEP model pro-
vides mathematical expressions which will be very helpful for government organizations
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and environmental pollution control agencies in accessing the condition of water by using
minimum number of input parameters.
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5. Conclusions

The present study was mainly dedicated in applying AI and regression methods for EC
and TDS prediction in the expanded part of the glacierized and mountainous catchment i.e.,
upper Indus river basin. The dataset, acquired from both Doyian and Bisham Qilla outlets,
was utilized for the models’ development. Secondly, the accuracies of the artificial neural
network (ANN), gene expression programming (GEP) and linear regression model (LRM)
were compared and a robustness analysis was performed to determine the most reliable
model. Regardless of several factors that have influence on water quality, the models
were effectively developed utilizing monthly TDS and EC data measured historically.
The modeling outcome for the resolved overfitting issue and generalized results was
confirmed by external criteria. The sensitivity and parametric analyses were carried out
to ensure a robust relation between inputs and desired output. An excellent correlation
exhibited among actual and model simulated results for both training and testing data. The
performance of the GEP turned out to be the most accurate followed by ANN technique.
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Both GEP and ANN have the capability to model water quality parameters for a given set
of inputs. The GEP mathematical expressions for TDS and EC level could be easily used in
predicting monthly TDS and EC. The GEP evaluates suitable association mandatory for
representation of the physical processes. The accuracy of the ANN model decreased on
testing data and may be attributed to the difficult network structure of ANN. Conclusively,
the outcome of the present study will be helpful in assessing the performance of AI models
using big dataset for water quality prediction. Moreover, the modeling techniques applied
in this study could assist the water quality managers and engineers in developing an
effective strategy for successful management of surface water bodies.
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