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Abstract: Wind energy as a clean and inexhaustible source of renewable energy can be a key element
of sustainable development that decreases dependence of countries on fossil fuels. Therefore, imple-
menting accurate and comprehensive feasibility studies in countries with a high level of consumption
of traditional energy resources is vital; an approach encouraged and supported by green funds and
climate change action. It is also crucial to helping spur economic and sustainable growth of these
countries. In this regard, this study aims at accurate evaluation of onshore wind energy potential in
seven coastal cities in the south of Iran. Six Probability Distribution Functions (PDFs) were examined
over representative stations. It was deduced that the Weibull function, which is the most used PDF
in similar studies, was only applicable to one station. Here, Gamma distribution offered the best
fit for three stations and for the other ones, Generalized Extreme Value (GEV) performed better.
Considering the ranking of six examined PDFs and the simplicity of Gamma, it was identified as
the effective function in the southern coasts of Iran bearing in mind the geographic distribution of
stations. Moreover, six wind energy converter power curve functions contributed to investigating
the capacity factor. It is found that, using only one function could cause under- or over-estimation.
Then, stations were classified based on the National Renewable Energy Laboratory system. Last but
not least, examining a range of wind energy converters enabled scholars to extend this study into
practice and prioritize the development of stations considering budget limits.

Keywords: wind power; renewable energy; coastal regions; statistical distributions; wind turbine
capacity factor

1. Introduction

Renewable energies are harnessed in various types such as wind power, solar power,
biopower, geothermal power, and ocean power. All these types, except geothermal and
ocean energy, originate from the infinite energy of the sun, which emits the power about
1.74× 1017 w [1]. Considering 1–2 percent of this energy is transformed into wind en-
ergy, it is an interminable, environmentally friendly, clean, and reliable source, which is
50–100 times higher than energy conversion from all the plants in the earth combined [2]. It
is estimated that the global wind energy potential is about 10 million MW, which could ful-
fill 35% of the total demand for world energy [3]. The cumulative global installed capacity
of wind energy was 539,581 MW in 2017, and it is forecasted that the global wind capacity
will reach 800,000 MW by 2021 [4]. In another study, it was estimated that the wind share
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of electricity generation will rise from 3.5% in 2015 to 36% in 2050 [5] The initial goal of
this study is to provide a comprehensive technical assessment of wind energy resources.
This helps engineers, scholars, and policymakers to decide on optimal investment with
maximum profits. Scholars and practitioners in the future could use the results of the
current study as inputs for further economic analyses. Wind resource assessment is being
conducted in seven coastal stations; including Abadan, Mahshahr, Bordekhoon, Delvar,
Kish, Jask, Chabahar and the results are compared against similar studies.

This study is structured as follows. In Section 1.1 an overview of wind energy in Iran
is provided. Section 1.2 presents a literature review of wind energy potential assessment in
Iran. Section 2 depicts the area of study and characteristics of the sites. Section 3, explains
the methodology used in the study, statistical distributions, determining wind power and
energy density and capacity and availability factors of different wind turbines. Section 4
describes case studies and results of the study using different statistical distributions across
all stations and wind power and energy density.

1.1. Wind Energy in Iran

Although Middle East countries are rich in conventional energy sources such as oil
and natural gas, industrialization and environmental impacts have encouraged their policy-
makers to invest in renewable energies [6]. Iran has a population of 79.2 million and an
area of 1,648,195 km2 (about half of this area is habitable), and largely depends on fossil
fuels such as crude oil in its energy sector [7]. Now, there is a considerable consumption
of traditional energy resources in Iran because of the large amount of low-cost fossil
fuels [8]. This exacerbated the misuse of energy in industrial, transportation, and home
sectors resulting in various environmental problems [9]. The situation compelled energy
policymakers to move toward renewable energies in the country. The average growth rate
of energy consumption and generation in Iran is 4% and 2% , respectively and therefore, it
is expected that Iran increasingly will need to provide a great share of its energy demand
from renewable energy sources in years ahead, to meet future rising energy demand [10].
As set out in the 6th national development plan of the country, the Iranian government
has the target of extracting 5000 MW from renewable energy resources by 2020 [11]. Due
to this high demand, extensive studies on different types of renewable energy should be
considered [12].

However, Iran has great potential for solar energy production because of its dry and
warm climate. Without industrial infrastructures to produce solar panels and difficulty in
import materials and resources because of political conditions, starting large-scale solar
power would be expensive and time-consuming. With these challenges, governments have
drawn their attention to a more practical and accessible solution: Wind power. In 1994,
the first wind turbine was installed in Iran at Manjil. After that, various efforts were made
to increase the wind electricity generation in Manjil such as the construction of 25 MW and
60 MW power stations. In 2018, the total installed capacity of Iran’s wind energy reached
280 MW. According to the Ministry of Energy reports, Iran planned to reach a 4500 MW
goal in wind energy capacity in 2023 [13]. Although wind energy shares 43% of Iran’s
electricity production based on renewable energies (greatest among all other types) [14],
as shown in Figure 1, there is a lack of installed wind capacity in Iran’s energy resources
especially in southern coastal regions regarding their area and population.
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Figure 1. Energy resources in Iran (Reproduced based on [15] and updated by authors based on [16]).

1.2. Review of the Literature

Wind power is mainly dependent on wind speed. Therefore, a reliable and accurate
model for wind-speed data is a solid pavement for investigating wind energy potential.
Numerous models have been used in the scientific literature (Section 3.1) and among them,
Weibull is the most widely used distribution. However, all regions and their wind patterns
cannot be modeled accurately by Weibull. There are numerous alternative distributions
namely Gamma, Lognormal, Rayleigh, Nakagami, Gumbel, Burr, Generalized Extreme
Value (GEV), Inverse Gaussian (IG), etc. [17,18]. Hence, in this study, different distributions
(Weibull, Gamma, Rayleigh, GEV, IG, and Lognormal) are employed in order to find the
most suitable model for wind-speed data based on the goodness of fit criteria.

There are many studies for Wind Resource Assessment (WRA) in Iran. In the past
decade (from 2010 to 2019), 28 types of studies related to wind energy assessment in Iran
gained more attention and citation. Table 1 presents the distribution function, method of
estimation of parameters and the location in each study. Weibull was the most commonly
used statistical distribution for describing wind speed data in such studies. In most of
them (about 80%), the authors did not consider any further statistical investigations for
selecting a suitable wind speed distribution and just used Weibull based on frequent
usage while enjoying its simplicity. Moreover, there are a few studies of the coastal
regions of Iran and most of them are for inland stations. Thus, a comparative study on
the effectiveness of different wind speed distributions in the coastal stations is of great
importance. In some of these studies performed statistical investigations to select the
distribution or the method of estimation of parameters. For example, Mohammadi and
Mostafaeipour used Weibull distribution for their study in Zarrineh city and calculated its
parameters using two methods; standard deviation method and power density method [19].
They reported that the power density method is a better estimation method than the
standard deviation method in monthly, seasonal, and yearly wind patterns.

In another study, Nedaei et al. compared the performance of four distribution func-
tions (Weibull, Lognormal, Rayleigh, and Logistic) in Mahshahr station [20]. They found
that the Weibull distribution is the best function to model wind data in Mahshahr, at two
heights of 40 m and 10 m. They also used three different methods (graphical method,
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maximum likelihood, method of moments) for calculating Weibull parameters. The results
show that the Graphical method at 10 m and method of moments at 40 m height are the
best methods for calculating Weibull parameters in this city.

Furthermore, Alavi et al. investigated four different distribution functions (gamma,
lognormal, Rayleigh, and Weibull) for five cities in Kerman province (Bam, Bardsir,
Arzuiyeh, Rafsanjan, and Shahrbabak) [21]. They also used two methods for calculat-
ing Weibull parameters; maximum likelihood and method of moments. The experimental
results show that the lognormal function produces better estimations for the actual data,
while the Weibull model gives a better fit for the truncated wind speed data. They also
concluded that calculating Weibull parameters using MLE perform perfectly well in com-
parison with MM estimations. Alavi et al. used eight PDFs (exponential, Weibull, gamma,
lognormal, log-logistic, inverse-Gaussian, generalized extreme value, Nakagami) in their
study and also computed the parameters using MLE for wind speed distribution in cities of
Chabahar, Khaf, Lutak, Rafsanjan, and Zabol [22]. They found that Nakagami performs bet-
ter than other distributions; however, because of the closed performance of the Nakagami
and Weibull distributions, they finally proposed Weibull due to its flexibility and widely
used. In [23], the graphical method, Maximum likelihood, and Method of moments were
employed to estimate Weibull coefficients in a coastal area in the south of Iran in the Gulf
of Oman. The authors asserted that the maximum likelihood method is the best algorithm
to estimate Weibull parameters. Although the resulted output for the designated site is not
considerable, more studies should be conducted for onshore wind power assessment in
Iranian waters, the Persian Gulf and the Caspian Sea.

An alternative approach was proposed by Faghani et al. [24] used Weibull because
of its popularity for WRA in 35 wind stations in nine provinces. Nevertheless, in order to
calculate the Weibull parameters three different methods were used; including standard
deviation method, empirical method of Lysen, power density method. Based on their
investigations, authors concluded that the power density method is the most accurate
method for extrapolating wind characteristics.

In a more comprehensive study, Nedaei et al. [25] fitted 46 different PDFs and sug-
gested that the Wakeby distribution performs better than other distribution functions.
They did not mention the method of estimating parameters. The distribution analysis
is provided for only the ten most efficient PDFs, but details about the methodology for
selecting these functions among others are not presented in the context of the paper.

Table 1. Comprehensive literature review for wind energy assessment.

Year Ref. Distribution (s) Method of Estimation Case Study Location Coastal City?

2010 [26] Weibull Method of Moments Tehran city No

2011 [27] Weibull Empirical method North and South
Khorasan provinces No

2011 [28] Weibull Empirical method Semnan province No

2011 [29] Weibull Method of Moments Sharbabak city No

2012 [30] Weibull Not mentioned Abadan city Yes

2013 [31] Weibull Empirical method Kish and Jask regions Yes

2013 [32] Weibull standard deviation method Kerman province No

2013 [33] Weibull standard deviation method Aligoodarz city No

2014 [20] Weibull, Lognormal,
Rayleigh, Logistic

graphical method,
Maximum likelihood,
Method of moments

Mahshahr city Yes
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Table 1. Cont.

Year Ref. Distribution (s) Method of Estimation Case Study Location Coastal City?

2014 [34] Weibull standard deviation method Mil-E Nader region No

2014 [35] Weibull Empirical method Chabahar, Kish and
Salafchegan Yes

2014 [36] Weibull Empirical method Zahedan city No

2015 [37] Weibull Method of Moments Firouzkooh city No

2015 [38] Weibull Method of Moments Tabriz and Ardabil cities No

2016 [22] gamma, lognormal,
Rayleigh, Weibull

Maximum likelihood, Method
of moments

Bam, Bardsir, Arzuiyeh,
Rafsanjan, Shahrbabak No

2016 [39] Weibull Not mentioned Kahnuj city No

2016 [40] Weibull standard deviation method Asaluyeh, Bordkhoon,
Delvar, Haft-Chah Yes

2016 [23] Weibull
graphical method, Maximum

likelihood, Method of
moments

Gulf of Oman Yes

2017 [41] Weibull maximum likelihood Chabahar, Dehak and
Dalgan Yes (Chabahar)

2017 [42] Weibull Not mentioned Fars province No

2017 [3] Weibull standard deviation method Zabol, Zahak, Zahedan and
Mirjaveh cities No

2018 [24] Weibull
Standard deviation method,
Empirical method of Lysen,

Power density method
Nine central provinces No

2018 [43] Weibull standard deviation method
provinces of East

Azerbaijan, West Azerbaijan
and Ardabil

No

2018 [25] 46 different functions Not mentioned Shurje region, Qazvin
Province No

2019 [44] Weibull Empirical method Lotak and Shandol No

2020 [45] Weibull Maximum-likelihood Persian Gulf No

2. Area of Interest

For the purpose of the current study, seven coastal stations are selected and investi-
gated (Figure 2). The reason for selecting these stations is that in the first place, the Re-
newable Energy and Energy Efficiency Organization of Iran (SATBA) has provided public
access to validated wind speed and direction data for several stations in Iran [46]. Some
of these stations are nearshore and some are not. Since the case study has been on the
southern coasts of Iran, which comprises four provinces: Sistan and Baluchestan, Hor-
mozgan, Bushehr, and Khuzestan, in each of these provinces, the nearshore stations with
available validated information are selected to cover the whole southern shoreline of Iran
from east to west. Hence, these stations have been selected. Table 2 shows some descriptive
statistics of wind speed data in each of the seven stations including Latitude (Lat.), Longi-
tude (Long.), data period, time interval, total recorded data, mean wind speed, standard
deviation (Sd), maximum wind speed (Max.), locations and the data specifications for each
station. According to Table 2, Chabahar (S7 station) has the highest mean wind speed with
a value of 4.97 m/s, and therefore it has a great potential for harnessing wind energy.
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Table 2. Location and properties of studied wind data [46].

Station Designate Lat. (N) Long. (E) Data Period Time Interval Recorded Data
Data Statistics

Mean SD Max.

Abadan S1 30.447 48.306 2007–2009 10-min 90,656 4.35 2.51 19.76
Mahshahr S2 30.579 49.086 2007–2009 10-min 91,923 4.44 2.41 21.46

Delvar S3 28.835 51.046 2006–2008 10-min 72,186 3.40 2.14 15.92
Bordekhoon S4 27.985 51.492 2006–2008 10-min 82,492 4.87 2.73 19.93

Kish S5 26.553 53.910 2006–2008 10-min 81,217 4.59 2.81 22.38
Jask S6 25.685 58.109 2006–2007 10-min 59,518 3.44 2.04 20.82

Chabahar S7 25.328 60.663 2008–2009 10-min 73,296 4.97 2.14 15.41

Figure 2. Location of seven stations across the southern coasts of Iran, under study (credit: [13], raw
map from “Map data ©2019 Google”).

One of the most effective factors in wind energy studies is wind direction distribution.
Wind direction determines the optimal position of wind turbines and the whole array of
wind farms. A wind rose is the best indicator for wind direction distribution. This graphical
representative plays a vital role in choosing turbines and their alignments in the wind farm.
Figure 3 shows wind roses of seven selected stations. As seen in these figures, dominant
wind directions for stations S1 to S7 are NW, NW, N, NNE, W, W and SSE, respectively.
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S1: Abadan S2: Mahshahr S3: Delvar

S4: Bordekhoon S5: Kish S6: Jask S7: Chabahar

Figure 3. Wind rose diagrams for stations (Wind roses plotted using SATBA data in highcharts.com [46]).

3. Analysis

A plausible resource assessment must be able to identify appropriate locations with
strong, moderate, and weak winds. In the past, the assessment was performed through
“wind deformed conifer trees”. Here, trees and vegetation were the natural indicators for
both wind speed and direction. By observing the local place for a long time, a rough idea
about the wind richness of the place could be achieved [47]. Various techniques are used to
show the effect of wind on trees in terms of numbers such as the Griggs-Putnam index [48].
A comprehensive review of these techniques was performed by Murthy et al. [49].

Although natural indicators are inexpensive, ubiquitous, simple, and conceivable to
identify eligible locations, more detailed measurements must be performed to achieve
better insight into station characteristics. With the advent of new technologies to measure
wind properties, new horizons were broadened for the energy industry. To establish a
meaningful analysis, a statistical analysis must be conducted. This procedure demands a
time series record of wind speeds. Originally, measurement devices were used for airports
across the world. Moreover, there are other technologies for on-station measurements.
Therefore, the wind characteristics data pave the way for more precious and detailed
researches in the energy industry.

Wind energy is the kinetic energy of air in motion. Total wind energy through an
assumed surface area could be calculated through Equation (1):

E =
1
2

mv2 =
1
2
(Avtρ)v2 =

1
2

Atρv3 (1)

ρ is the air density, v is wind speed and Avt combination is equal to the volume of air
passing through the surface at the given time. Air density could be analyzed through
statistical distributions to gain more concrete results [50]. In this study, air density is
assumed to be constant. Therefore, the term Avtρ is equal to the mass of air flowing
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through assumed surface area (e.g., Rotor swept area of wind turbine). Power is energy
per time unit; therefore, the output power of wind is [51]:

P =
E
t
=

1
2

Aρv3 (2)

Figure 4 shows the flowchart of this study. The initial step for any wind power
feasibility study is the technical assessment. The vital part of the technical assessment
is to study and analyze the statistical characteristics of wind speeds because the energy
output of the field considerably depends on wind speeds and their patterns. Various
studies asserted that the main part of the assessment is finding the PDF through wind
speeds data as the main input into wind turbine design, station planning and operational
plan [52]. After finding a suitable distribution, wind energy potential can be determined.
The next step is to calculate the wind turbine capacity factor for all available options. If the
capacity factor is less than 0.25, the selected turbine model is rejected. Else, it is selected as
a potential option and annual energy output is calculated for it [53].

Figure 4. Outline of the method used in this study.

3.1. Wind Speed Distribution Models

In statistics, a unimodal distribution function refers to a continuous probability dis-
tribution that contains a single clear peak or the most frequent value. A diverse range of
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unimodal distribution functions was used in previous studies for modeling the PDF of
wind speed including Weibull function, Gamma function, Rayleigh function, logistic func-
tion, Log-normal function, etc. Equations of these PDFs are listed in Table 3. Sometimes,
wind speed data do not have a single clear peak. In these cases, multimodal probability
distributions may provide a better fit for the data. Among these functions, the Weibull
function is most used because of its simplicity and flexible parameters [28,40,54]. Al-
though the Weibull is capable of analyzing very low wind speeds close to 0 m/s, it cannot
represent the wind structure nature thoroughly [55]. One of the main limitations of the
Weibull function is that it cannot accurately capture the effect of calm winds. A solution for
this issue is to use some mixture functions like two-component mixture Weibull function
(Weibull-Weibull) or truncated normal Weibull mixture (Normal-Weibull). This approach
has been comprehensively studied by Tian et al. [56].

Table 3. Investigated PDFs and their parameters.

Name Probability Distribution Functions Parameters

Weibull [57] f (v) = k
c .
( v

c
)k−1.e−(

V
c )

k
k: shape c: scale

Rayleigh [37] f (v) = 2v
c2 .e−(

V
c )

2
c: scale

Lognormal [27] f (v) = 1
c.v.
√

2π
exp

[
− 1

2

(
ln(v)−k

c

)2
]

k: shape c: scale

Gamma [58] f (v) = vk−1

Γ(k).ck exp
(
− v

c
)

k: shape c: scale

Inverse Gaussian [22] f (v) =
(

k
2πv3

) 1
2 . exp

[
− k(v−c)2

2vc2

]
k: shape c: scale

Generalized Extreme Value [2] f (v) = 1
σ

(
1 + k v−µ

σ

)−1− 1
k exp

[
−
(

1 + k v−µ
σ

)−1
k
] k : shape σ : scale µ :

location

In more complex and accurate studies, air density could be related to the height from
the ground or sea surface and model the relation between them for calculating Equation (2).
Therefore, there must be two variations for estimating power output, wind speed, and air
density. A Bivariate Probability Model (BPM) was proposed by Carta et al. to model wind
speed and air density interactions in Spain [59].

As stated before, Weibull distribution is the most used PDF for the sake of statistical
analysis of wind speed data. The first and prior stage to use Weibull distribution for
investigating wind speed patterns, is to compute its distribution parameters. There are
several methods in scientific contexts about this subject. Some of them are:

• Graphical method or Least squares algorithm [60]
• Maximum likelihood method (MLE) [61]
• Modified maximum likelihood method (MMLE) [61,62]
• Moments Method (MM) [61]
• Standard deviation method [63]
• Empirical method of Jestus [64]
• Empirical method of Lysen [65]
• Equivalent energy method [62]
• Energy pattern factor method (power density method) [66]
• WAsP method [49]

Three of the above-mentioned methods were most used in various studies: maximum
likelihood [67–70], the empirical method [26,53,71,72], and the graphical method [73,74].
Moreover, the method of moments [64,75,76], energy pattern factor, equivalent energy
method, and WAsP [61] are the other methods used for the calculation of Weibull coeffi-
cients. Different studies have compared the effectiveness of these methods. As mentioned
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in Shoaib et al.’s study, using the energy pattern factor method, maximum likelihood,
and modified maximum likelihood results stated that maximum likelihood method is the
most reliable method [77]. In one of the most comprehensive studies among different
algorithms for determining Weibull coefficients, Rocha et al. attempted to evaluate and
compare graphical, empirical, moment, Energy pattern factor, maximum likelihood, modi-
fied maximum likelihood, and equivalent energy methods in Brazil. It was observed that
the equivalent energy method is the best method to calculate coefficients and graphical
and energy pattern factor methods are the least effective ones to find coefficient values [63].
Solyali et al., used WAsP (Wind Atlas Analysis and Application), maximum likelihood,
and graphical method algorithms [78]. Results indicate that the WAsP algorithm gains the
highest correlation with the actual data. Allouhi et al. chose maximum likelihood, graph-
ical, and WAsP methods to compute coefficients in Morocco [62]. Maximum likelihood
presents the best fit with the actual data. Masseran, comprehensively compared Weibull,
Rayleigh, Lognormal, Burr, Exponential, Inverse Gaussian, and Inverse Gamma in two
stations in Malaysia [79]. Surprisingly, the Gamma function performed the best accuracy
for the two stations, based on a combination of four goodness of fit indicators. It is worth
mentioning here that there are uncertainties and variabilities related to renewable energy
sources, e.g., wind. Therefore, it is important to address this challenge in feasibility studies.
Using stochastic optimization approaches may be very helpful to address this challenge.
For further information, references are recommended [80–83].

3.1.1. Wind Speed Extrapolation

The data record used in this study represents the wind specifications at the height of
10m above ground. To find wind speed at the height of the turbine hub, power law has
been used to convert wind speed. The wind speed fluctuations near the ground surface
are referred to as wind shear. In the atmospheric surface boundary layer in which height
does not exceed 150 m above the ground surface, the power-law rule is a reliable tool to
extrapolate wind speeds at different heights [84]. It can be expressed by Equation (3):

VH
VR

=

(
H
R

)α

(3)

where VH is the wind speed at height H, and VR is the reference wind speed at the reference
height R which is 10m in the wind speed data, α coefficient is the Hellmann exponent, also
named the wind shear coefficient (WSC). The WSC varies regarding ground level height,
time of day, atmospheric stability, humidity, and roughness of terrain. The general values
of WSCs are summarized in Table 4 [85]. In this study, the WSC coefficient is assumed to
be equal to 0.2 due to a lack of reliable data for the stations.

Table 4. Wind Shear Coefficient (WSC) [85].

Terrain Type WSC

Lake, ocean and smooth hard ground 0.10
Foot high grass on ground level 0.15
Tall crops, hedges, and shrubs 0.20

Wooded country 0.25
Small town with some trees and shrubs 0.30

City area with tall buildings 0.40

3.1.2. Goodness of Fit Tests

Now it is time to assess the goodness of fitted PDFs for modeling the wind speed
probability distribution. There are various Goodness-of-Fit (GoF) tests to assess the quality
of fitted distributions. The coefficient of determination (R2) is used to measure the linear
relationship between the observed and predicted probabilities. Additionally, root-mean-
square error (RMSE) is used to show the level of concentration of data around the fitted
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distribution. Moreover, because of using the MLE method for parameter estimation Akaike
information criterion (AIC) and Bayesian information criterion (BIC) is used to assess
the accuracy of the fitted distribution. Table 5 presents the formulae and definitions of
parameters for each of these four statistical indicators. Lower values for RMSE, AIC,
and BIC indicate higher goodness of fit, while on the contrary, a larger value for R2 shows
better effectiveness of the fitted distribution.

Table 5. Goodness-of-Fit (GoF) tests in this study.

Indicator Formula Parameters

R2 R2 = 1− ∑n
i=1(yi−yic)

2

∑n
i=1(yi−y)2

yi : Observed data
yic : fitted data

n : Number of data samples.

RMSE
RMSE =[

1
n ∑n

i=1(yi − yic)
2
] 1

2

yi : Observed data
yic : fitted data

n : number of data samples

AIC AIC = −2 log(L) + 2k L: likelihood
k : number of parameters

BIC BIC = −2 log(L) + klogn
L: likelihood

k : number of parameters
n: number of data samples

3.2. Wind Power and Energy Density

After calculating Weibull distribution function parameters, the next crucial step will
determine wind power density through using Weibull distribution parameters. Wind
power density is one of the most meaningful indicators to depict how powerful the winds
are in a region within the defined time period. By contemplating the wind power density,
quantification of the potential wind energy electricity is possible. Wind power is directly
related to the area of the turbine (i.e., swept area) and the cube of wind velocity at the
station. Wind power can be calculated as Equation (4):

Pw =
1
2

ρA
∫ ∞

0
v3 f (v)dv (4)

Note that in the above equation, the area of turbine and air density is considered as
constant values. The more tangible indicator for wind energy is the power per unit area. It
can be written as Equation (5):

Pd =
∫ ∞

0

1
2

ρv3 f (v)dv (5)

The wind power density using Weibull distribution for wind speed patterns will be
stated as [53,62]:

Pd =
1
2

ρc3Γ
(

1 +
3
k

)
(6)

While using the Rayleigh probability distribution function as a distribution of wind
speeds, the wind power density function will be written as [86]:

Pd =
3
π

ρc3
(π

4

) 3
2 (7)

For another distributions, there are not any analytic answers for the integral in
Equation (4). Therefore, the wind power density is calculated using numerical integration.

There is a reliable classification for every station based on National Renewable Energy
Laboratory (NREL) to determine the relative wind power potential. This classification



Sustainability 2021, 13, 7702 12 of 24

is based on observed and recorded wind speeds at the height of 50 m. The wind power
classification is given in Table 6 [87].

Table 6. NREL wind power classifications.

Wind Power Class Power Density (W/m2) Description

1 0–200 Unsuitable for any wind applications

2 200–300 Suitable for Stand-alone

3 300–400 Good

4 400–500 Good

5 500–600 Excellent

6 600–800 Outstanding

7 800–2000 Superb

Wind energy density is the amount of energy produced for any arbitrary period of
time. It can be written as Equation (8):

Pd =
Ed
t

(8)

3.3. Capacity Factor

The capacity factor (Cf) of a wind turbine is an indicator that defines the output
viability of a wind turbine at a selected station. It determines the ratio of average power
yield to the rated power of the turbine. Cf is one the most reliable measures for choosing
wind turbine because it inherently shows the performance of the wind turbine. Cf can be
expressed as [53]:

C f =
Pavg

Pr
=

Net annual energy production (MWh)

Installed power (MW) . Annual hours
(9)

Pr Represents the power output of wind turbine when the turbine runs as its rated
power all the time in one year. Needless to say, the capacity factor is always less than 1.
The Pavg can be expressed as [62]:

Pavg =
∫ Vcut−out

Vcut−in

P(v). f (v)dv (10)

where f (v) is the probability distribution of wind speed and P(v) is the power curve of
wind turbines. The cut-in wind speed is the minimum wind speed at which the turbine
blades overcome the friction and begin to rotate. The cut-out wind speed is the speed at
which turbine blades stopped rotating to prevent probable damages from high winds. It is
notable that not all turbines have a well-defined cut-out speed. The schematic concept of
power curve for a wind turbine is presented in Figure 5.

Figure 5. Schematic power curve of a wind turbine, reproduced with better quality from [88].
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For pitch controlled turbines, the generated power from wind turbines can be esti-
mated from the power curve as [53]:

Pavg =


Pr ∗ c(v) (vcut-in ≤ vi ≤ vr)
Pr (vr ≤ vi ≤ vcut-off )
0 (vi ≤ vcut-in or vi ≥ vcut-off )

(11)

The function c(v) denotes the wind turbine’s output power in the interval between
cut-in and cut-off speeds. In recent years, several studies have been conducted by scholars
aiming to approximate this function [53,89,90]. The six most widely used functions for this
purpose are listed as follows from Equations (12)–(17):

c1(v) =
v− vi
vr − vi

(12)

c2(v) =
(v− vi)

2

(vr − vi)
2 (13)

c3(v) =
(v− vi)

3

(vr − vi)
3 (14)

c4(v) =
v2 − v2

i
v2

r − v2
i

(15)

c5(v) =
v3 − v3

i
v3

r − v3
i

(16)

c6(v) =
v3

v3
r

(17)

The simultaneous power output of wind turbines in a wind farm is not the same
because of the spatial distribution of turbines and the unpredictable and stochastic nature
of wind speed distribution. Therefore, a more complicated approach is required to obtain
the power output. Based on Wang et al., the average of the above six functions is used for
estimating the capacity factor [52].

C f =
Pavg

Pr
=

[∫ vr

vcut−in

c(v) f (v)dv +
∫ vcut−o f f

vr
f (v)dv

]
(18)

Therefore, the wind turbine will work within the speed period between cut-in and
cut-off speeds.

3.4. Availability Factor

According to Section 2, wind turbine will work within the wind speed interval between
the cut-in and cut-off speeds. Thus, the availability factor of a wind turbine can be expressed
as Equation (19):

AF =
∫ vcut−o f f

vcut−in

f (v)dv (19)

where f (v) is the wind speed probability distribution function.

4. Results and Discussion
4.1. Analysis of Distribution Functions

Six different probability distributions, which are most widely used in the scientific
literature, are fitted to the wind speed data of each station. The Rayleigh PDF as a one-
parameter function, Gamma, Log-normal, Weibull and Inverse Gaussian as two-parameter
functions and finally, GEV as a three-parameter function are used for this purpose. MLE is
used to estimate PDF parameters, since it is more efficient than other estimation methods,
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and generates a lower mean squared error [22]. The estimated parameters for each region
are reported in Table 7. Note that the parameters are calculated from wind data at 10 m
above the ground.

Table 7. Estimated parameters of probability distribution functions of the stations at height of 10 m.

Distribution
Station Weibull Gamma Lognormal GEV Rayleigh IG

S1 k = 1.837, c = 4.910 k = 3.019, c = 1.440 LL = 1.295,
LS = 0.625

k = 0.0702, sigma = 1.825,
mu = 3.157

c = 3.548 k = 8.798, c = 4.347

S2 k = 1.942, c = 5.012 k = 3.390, c = 1.309 LL = 1.33541,
LS = 0.607406

k = 0.032, sigma = 1.791,
mu = 3.345

c = 3.569 k = 4.919, c = 4.438

S3 k = 1.677, c = 3.821 k = 2.540, c = 1.338 LL = 1.014,
LS = 0.694

k = 0.1432, sigma = 1.454,
mu = 2.334

c = 2.841 k = 4.495, c = 3.399

S4 k = 1.899, c = 5.508 k = 3.392, c = 1.436 LL = 1.428,
LS = 0.659

k = 0.077, sigma = 1.928,
mu = 3.597

c = 3.946 k = 11.435, c = 4.869

S5 k = 1.720, c = 5.164 k = 2.620, c = 1.752 LL = 1.321,
LS = 0.690

k = 0.093, sigma = 1.997,
mu = 3.232

c = 3.805 k = 5.579, c = 4.589

S6 k = 1.755, c = 3.862 k = 2.625, c = 1.310 LL = 1.032,
LS = 0.723

k = 0.042, sigma = 1.522,
mu = 2.492

c = 2.826 k = 1.955, c = 3.438

S7 k = 2.474, c = 5.605 k = 4.780, c = 1.040 LL = 1.495,
LS = 0.503

k = -0.124, sigma = 1.908,
mu = 4.075

c = 3.827 k = 14.317, c = 4.971

The wind speed distribution diagrams (PDF plots) for seven selected stations are
shown in Figure 6. The horizontal axis of these diagrams shows the range of wind speed
and the vertical axis is the probability density. It varies from zero to the highest possible
value for each curve. As seen in figures, all distributions are skewed to the right (i.e.,
positive Skewness), and therefore, the mean of wind speeds is bigger than the mode and
median of data.

Four different GoF indicators are calculated for these functions and the results are
reported in Table 8. Note that lower RMSE, AIC, and BIC show better fitness. On the other
hand, higher R2 shows a better correlation between observed data and fitted distribution.
Note that different GoF indicators can yield different results. For example, in the S3 station,
Gamma performs better in terms of R2, whereas Lognormal performs better in terms of
RMSE. This paper assigns R2 a greater weight for the assessment and selects it as the first
reference index. Results show that Gamma is the best distribution for S1, S3, S5, and GEV
has the best fit for S2, S4, and S6. Weibull is only suitable for S7. Results show that R2 values
for Weibull distribution are 1 to 7 % lower than that of the best distribution in stations S1
to S6.

As seen above, one cannot use Weibull distribution for all stations without further
investigations. Nevertheless, for engineering applications, it is valuable to propose an
effective function that has the best performance to be used for a specific geographical
location. The results show that Gamma and GEV are the most effective function for the
southern coasts of Iran since they have the best statistical performance. However, Gamma
has two parameters, whereas GEV has three parameters. Therefore, Gamma is selected
as the effective function for the southern coasts because of its more simplicity. It should
be mentioned that by increasing the length of the data and the number of distributions
and even the fitting method, one can clearly expect different fitted distributions. This
originates from the nature of statistical research. Considerably more work will need to
generalize the obtained distributions and to propose them as the optimal distributions for
the selected sites.
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S1: Abadan S2: Mahshahr

S3: Delvar S4: Bordekhoon

S5: Kish S6: Jask

S7: Chabahar

Figure 6. Wind speed distributions for seven selected stations at the height of 10 m.

Table 8. Comparison between six distribution functions in terms of four GoF indicators.

Station Distribution
Function

R2 RMSE AIC BIC

Value Rank Value Rank Value Rank Value Rank

S1

Weibull 0.953 4 0.045 4 404,569 3 404,551 3

Gamma 0.989 1 0.026 1 401,817 1 401,798 1

Lognormal 0.976 2 0.397 3 406,898 5 406,879 4

GEV 0.972 3 0.345 2 402,987 2 402,959 2

Rayleigh 0.943 5 0.049 5 405,758 4 405,766 5

IG 0.921 6 0.058 6 412,268 6 412,276 6



Sustainability 2021, 13, 7702 16 of 24

Table 8. Cont.

Station Distribution
Function

R2 RMSE AIC BIC

Value Rank Value Rank Value Rank Value Rank

S2

Weibull 0.924 3 0.061 4 406,040 3 406,059 3

Gamma 0.959 2 0.045 2 403,145 2 403,164 2

Lognormal 0.917 4 0.064 5 414,720 5 414,739 5

GEV 0.988 1 0.029 1 400,500 1 400,528 1

Rayleigh 0.924 3 0.059 3 406,188 4 406,196 4

IG 0.516 5 0.15 6 406,188 4 406,196 4

S3

Weibull 0.913 4 0.068 3 295,197 3 295,215 3

Gamma 0.969 1 0.049 2 293,315 1 293,334 1

Lognormal 0.955 2 0.041 1 298,399 4 298,418 4

GEV 0.929 3 0.076 4 294,194 2 294,222 2

Rayleigh 0.857 6 0.09 6 299,472 5 299,479 5

IG 0.877 5 0.084 5 315,908 6 315,916 6

S4

Weibull 0.924 4 0.055 4 381,906 5 381,888 5

Gamma 0.976 2 0.031 2 377,063 2 377,082 2

Lognormal 0.963 3 0.039 3 380,270 4 380,289 4

GEV 0.992 1 0.023 1 376,076 1 376,104 1

Rayleigh 0.924 4 0.055 4 377,578 3 377,586 3

IG 0.918 5 0.057 5 377,578 3 377,586 3

S5

Weibull 0.967 4 0.035 3 378,525 3 378,544 3

Gamma 0.993 1 0.016 1 377,071 1 377,089 1

Lognormal 0.974 2 0.032 2 384,730 5 384,748 5

GEV 0.973 3 0.04 4 378,108 2 378,136 2

Rayleigh 0.925 5 0.052 5 382,014 4 382,022 4

IG 0.806 6 0.083 6 412,722 6 412,729 6

S6

Weibull 0.975 3 0.038 3 241,574 2 241,592 2

Gamma 0.985 2 0.028 1 241,851 3 241,869 3

Lognormal 0.937 5 0.06 5 253,252 5 253,270 5

GEV 0.986 1 0.035 2 240,873 1 240,900 1

Rayleigh 0.958 4 0.048 4 243,486 4 243,493 4

IG 0.246 6 0.205 6 313,354 6 313,361 6

S7

Weibull 0.994 1 0.015 1 315,837 3 315,856 2

Gamma 0.984 4 0.024 4 317,647 2 317,666 3

Lognormal 0.923 6 0.053 6 326,363 5 32,632 5

GEV 0.969 5 0.033 5 315,762 1 315,789 1

Rayleigh 0.99 3 0.021 3 320,866 4 320,874 4

IG 0.991 2 0.02 2 341,748 6 341,756 6

4.2. Analysis of Wind Power and Energy Density

The wind power density for each station is determined using the best-fitted probability
distribution at 10, 30, and 50 m above the ground. Once the wind power density is
calculated, wind energy density can be found. In this study, wind energy density is
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computed for one year. The results are gathered in Table 9. For the sake of comparison,
wind powers for each height across the stations are shown in Figure 7.

Table 9. Estimated wind power density and wind energy density and classification of the stations for the wind power based
on NREL.

Station PDF WPD (W/m2) WED ( kWh
m2 /year ) Class

10 m 30 m 50 m 10 m 30 m 50 m

S1 Gamma 111 215 292 972 1883 2562 2
S2 GEV 112 216 295 981 1892 2584 2
S3 Gamma 111 214 293 972 1875 2567 2
S4 GEV 161 311 423 1410 2724 3705 4
S5 Gamma 144 279 379 1261 2444 3319 3
S6 GEV 61 117 160 534 1025 1402 1
S7 Weibull 119 231 314 1042 2024 2751 3

Figure 7. Wind power density for 7 stations at heights of 10, 30, and 50 m.

4.3. Wind Turbine Selection

Fifteen wind turbines with hub heights ranging 20–100 m and rated powers ranging
0.055–4.2 MW are exploited for assessing wind performance. This range of wind turbine
power classes could be useful in the next steps of economic and feasibility analysis for
establishing wind farms. Wind turbines characteristics are listed in Table 10.

To evaluate the energy output of each turbine, wind speed distribution parameters
have been calculated at the hub-height. Consequently, wind turbine capacity factor and
availability factor are determined using Equations (18) and (19), respectively.
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Table 10. Characteristics of wind turbines used in the study [91]

Turbine Model Name Rated Power
Output (MW)

Hub
Height

(m)

Cut-in
Wind
Speed
(m/s)

Rated
Wind
Speed
(m/s)

Cut-Out
Wind Speed

(m/s)

Swept
Area
(m2)

Vestas V15 T1 0.055 20 4 12.5 25 176

AIRCON 10 S T2 0.0098 30 3.5 11 25 39.6

Enercon E-12 T3 0.03 30 3 11 35 113

Enercon E-44 T4 0.9 45 3 16.5 34 1521

Enercon E-30 T5 0.3 50 2.5 13.5 25 707

Goldwind S43/600 T6 0.6 50 3 14 25 1452

Vestas V52 T7 0.85 55 4 14 25 2124

Goldwind S50/750 T8 0.75 60 3.5 14.5 25 1964

Nordex N54 T9 1 60 3.5 14 25 2290

Suzlon S.33-350 T10 0.35 70 3.5 14 25 876.1

United Power UP2000-97 T11 2 80 3 10.1 25 7390

Goldwind GW 62/1200 T12 1.2 85 3 12.5 25 3000

Envision EN106-1.8 T13 1.8 90 3 9.5 20 8825

General Electric GE
1.6-100 T14 1.6 100 3.5 11 25 7854

Senvion 4.2M118 T15 4.2 100 3 12.5 22 10,936

For cost-effective investment in the wind energy sector, it is asserted that the capacity
factor of wind turbines should be between 0.25–0.45 to be economically efficient and
feasible [92]. According to Ayodele et al., any wind turbine with a capacity factor lower
than 0.25 will not be suitable to be integrated into the grid [53]. Estimated capacity factors
for all wind turbines are listed in Table 11.

Table 11. Annual energy output (MWh) for selected turbines on the stations.

Station Turbine T2 T3 T11 T12 T13 T14 T15

S1
Capacity factor - - 0.360 0.258 0.401 0.330 0.278

Annual energy output (MWh) - - 6312 2710 6315 4630 10223

S2
Capacity factor - - 0.367 0.258 0.412 0.335 0.279

Annual energy output (MWh) - - 6432 2716 6489 4691 10273

S4
Capacity factor - 0.260 0.416 0.302 0.455 0.382 0.320

Annual energy output (MWh) - 68 7282 3172 7168 5358 11783

S5
Capacity factor - - 0.388 0.298 0.421 0.359 0.304

Annual energy output (MWh) - - 6796 3136 6631 5027 11170

S7
Capacity factor 0.264 0.279 0.481 0.336 0.540 0.444 0.368

Annual energy output (MWh) 23 73 8423 3530 8517 6218 13,538

Capacity factors higher than 0.25 could be plausible for a wind turbine [53]. Based
on this, in Abadan, T11 to T15 are suitable for wind energy production. The table reveals
that in Mahshahr again T11 to T15 are reliable for energy production. After that, in Delvar
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station, there is not any capacity factor higher than 0.25 but, T13 has the highest capacity
factor. In Bordekhoon, one of the most suitable stations, T3 and T11 to T15 are suitable
choices. Kish, the most important island of the Persian Gulf for tourism, again T11 to T15
are good for wind energy production. Jask has not any acceptable capacity factors due
to poor wind power density. Eventually, in Chabahar station, T2, T3, and T11 to T15 are
acceptable wind turbines with significant capacity factors.

The availability factor for each wind turbine in each station has been calculated
and shown in Table 12. As shown in Table 12, Bordekhoon and Chabahar stations have
the greatest availability factors among stations. This fact could be realized from their
greater wind power density and their higher average wind speed. After them, Kish,
Mahshahr, and Abadan have the greatest availability factors. Jask and Delvar are the least
in availability factors due to their poor wind power density. Among wind turbines, T5
has the greatest average of availability factor because it has the least cut-in speed and this
turbine cover the wider range of applicable wind speeds.

Table 12. Estimated Availability factor of wind turbines for each turbine across the seven stations.

S1 S2 S3 S4 S5 S6 S7

T1 0.570 0.604 0.366 0.653 0.585 0.410 0.735
T2 0.695 0.741 0.487 0.778 0.698 0.542 0.834
T3 0.733 0.816 0.577 0.847 0.766 0.630 0.884
T4 0.802 0.848 0.622 0.875 0.797 0.672 0.904
T5 0.809 0.907 0.724 0.924 0.860 0.765 0.941
T6 0.731 0.855 0.630 0.879 0.803 0.683 0.908
T7 0.687 0.733 0.478 0.771 0.691 0.535 0.830
T8 0.761 0.809 0.564 0.838 0.758 0.621 0.879
T9 0.761 0.081 0.564 0.838 0.758 0.638 0.879

T10 0.774 0.822 0.581 0.849 0.770 0.727 0.888
T11 0.842 0.884 0.678 0.903 0.833 0.726 0.926
T12 0.731 0.884 0.678 0.903 0.839 0.730 0.926
T13 0.844 0.884 0.682 0.897 0.829 0.736 0.930
T14 0.803 0.848 0.619 0.872 0.795 0.675 0.905
T15 0.731 0.893 0.696 0.906 0.840 0.746 0.934

4.4. Comparison with Previous Studies

In Abadan (S1), there is one similar study for wind energy potential [30]. The data
used in this study is the same as in the current research. Weibull distribution was deployed
for characterizing wind speed patterns. Nevertheless, the Weibull distribution ranked
fourth among distributions used in this study. The best PDF for S1 is Gamma distribution.
A precise comparison for the goodness of fit is not possible because it was not reported in
that paper.

For Mahshahr city (S2), Nedaei et al. studied data with 19 months duration for the
region and used Weibull, Rayleigh, and Lognormal distributions [20]. Reported R2 in that
paper are 0.923, 0.910, and 0.901, respectively, which are consistent with R2 of the current
study with the values 0.926, 0.924, and 0.917. Furthermore, in the current study, GEV has
the best performance in terms of R2 value and has R2 = 0.988.

In Delvar city (S3), Dabbaghiyan et al. studied wind speed data for 2011 [40]. They
deployed Weibull distribution for wind speed, but R2 is not published. While, in this study,
Gamma function is selected for this location with R2 = 0.969.

Two studies were conducted on Kish Island (S5). Nedaei studied wind data between
2006 and 2007 and also selected Weibull distribution [31]. R2 for Weibull distribution was
0.986, while Gamma distribution has the highest R2 equal to 0.993 in the current study.
Although R2 is slightly increased, different data sources should be considered. Another
study in the region is performed by Mohammadi et al. [35] based on long-term data from
2002 to 2009. Again, Weibull distribution opted. R2 was not calculated. Wind power
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density at the height of 10m reported 111 W/m2 , while this research calculated 144 W/m2

using Gamma density function with R2 equal to 0.993.
In the Jask station (S6), Nedaei studied wind power density using data from 2006

to 2007 and Weibull distribution [31]. R2 reported 0.9782 while in current research GEV
function was the most suitable for the region with R2 = 0.986. Weibull distribution ranked
third among six PDFs with R2 = 0.975, which is in line with the previous study.

Chabahar (S7) is the most studied location with three studies. Minaeian et al. studied
wind speed data for 2007 and used Weibull distribution but R2 was not reported [41].
Mohammadi et al. studied data from 2002 to 2009 and used Weibull distribution [35].
Again, R2 was not announced. Wind power density at the height of 10 m is calculated
111 W/m2 while in the current study, using Gamma function, wind power density is
determined as 119 W/m2 which is slightly higher. This distinction might cause due to
different wind speed data and distribution used. Moreover, Alavi et al. studied the
station with data from 2008 to 2009. They conducted analysis using Weibull, Gamma,
Lognormal, and GEV functions with R2 = 0.999, 0.999, 0.998, and 0.999 respectively which
are significantly high. Additionally, Nakagami distribution function yielded the best
fitness with R2 = 0.9999. Accordingly, in the current study, R2 for those distributions are
0.994, 0.984, 0.923, and 0.969, respectively. Apart from Nakagami distribution, Weibull
shows the best fitness in both studies and R2 of the two analyses are approximately equal.
The negligible difference might occur because of different data. It should be noted that
this region is very important in the development programs of Iran and therefore has great
potential for the construction of coastal and offshore structures [93,94].

As mentioned above, current research enhanced goodness of fit for wind speed data
according to R2 in comparison with previous studies. Moreover, in other sections of the
analysis, a more precise approach is conducted to compute capacity factors. Additionally,
to increase the practicality of the article, a broad range of wind turbines are considered to
analysis to obtain a more concrete insight toward wind energy capacity in the south coastal
zone of Iran.

5. Conclusions

This paper presented a comprehensive and step-by-step methodology for the wind
energy assessment along with a case study in seven different stations covering the southern
coastal borders of Iran. Moreover, an extensive literature review is conducted to gain
insight into the concept of wind energy assessment and efforts made in this field, their
methodologies, and locations. The majority of previous studies in Iran used the Weibull
function in order to estimate wind speed patterns in the selected area. Here, six different
probability distribution functions ranging from one to three parameters were exploited in
order to find the best fitness to the wind speed data. Furthermore, they exploited only a
single function for determining the capacity factor of wind turbines. This study has shown
that although the Weibull PDF is the most well-known function as wind speed distribution,
in the area of interest, Gamma, GEV, and lognormal functions have better correlations
with observed data. The second major finding was that based on the distribution ranks,
the Gamma function is considered as the most suitable distribution at the initial step of
wind power assessment in the southern coasts of Iran. Additionally, the annual wind
power density and energy output are determined for three heights above the ground
surface. Based on power densities, Bordekhoon, Kish, and Chabahar are more suitable
for harnessing wind energy. Jask has the least power density and Abadan, Mahshahr,
and Delvar are suitable for stand-alone wind power facilities. Moreover, the capacity factor
of wind turbines is calculated through six different functions and the average of these
six functions is used as a final capacity factor value to have more reliable results. This
provides an accurate evaluation of wind energy capacity. To analyze practical aspects of the
current study, fifteen wind turbines with hub heights ranging 20–100 m and rated powers
ranging 0.055–4.2 MW are exploited for assessing wind performance. The achieved results
show that as capacity factor increases with the hub height of wind turbine, T11 to T15
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are the best wind turbines due to their capacity factors. The present study is the primary
comprehensive practical assessment of wind energy along with assessing different actual
turbine models.

Further research can be undertaken to explore economic aspects of implementing
wind energy farms in the southern coasts of Iran by employing the levelized cost of energy
(LCOE). This approach is used in similar research by the authors [10] for the tidal current
energy in this area.
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