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Abstract: In recent years, methods were proposed so as to efficiently perform time-variant reliability
analysis. However, importance sampling (IS) for time-variant reliability analysis is barely studied in
the literature. In this paper, an IS framework is proposed. A multi-dimensional integral is first derived
to define the time-variant cumulative probability of failure, which has the similar expression to the
classical definition of time-invariant failure probability. An IS framework is then developed according
to the fact that time-invariant random variables are commonly involved in time-variant reliability
analysis. The basic idea of the proposed framework is to simultaneously apply time-invariant IS
and crude Monte Carlo simulation on time-invariant random variables and stochastic processes,
respectively. Thus, the probability of acquiring failure trajectories of time-variant performance
function is increased. Two auxiliary probability density functions are proposed to implement the IS
framework. However, auxiliary PDFs available for the framework are not limited to the proposed
two. Three examples are studied in order to validate the effectiveness of the proposed IS framework.

Keywords: time-variant reliability analysis; importance sampling; cumulative failure probability

1. Introduction

Most mechanical structures and systems are vulnerable against uncertainties, such
as loads and material properties. Reliability analysis provides an appropriate framework
to evaluate the probability that a structure or system successfully performs its intended
functions over a time interval of interest without failures, considering various forms of
uncertainties [1]. Over the past decades, time-invariant reliability analysis methods have
been well developed, e.g., analytical methods [2] and simulation-based methods [3,4].
Since dynamic or time-variant uncertainties are often involved, mechanical structures and
systems are commonly related to performance degradation, and time-invariant methods
cannot be directly used to perform time-variant reliability analysis. Time-variant reliability
analysis has gained much attention as a method to deal with the issue. Methods for time-
variant reliability analysis in the literature can be roughly summarized into two categories:
first-crossing-based methods and extreme-value-based methods.

After the well-known Rice formula was proposed, first-crossing-based methods gained
much attention [5–8]. This kind of method concentrates on calculating the probability that
the out-crossing event occurs for the first time in a predefined time interval. The out-
crossing event shows that the performance value of a structure exceeds a predefined
threshold. With the assumption that out-crossing events are mutually independent when
they occur, first-crossing-based methods approximate the cumulative probability of fail-
ure using an integration of the out-crossing rate which represents the mean number of
out-crossing events per unit of time. Accordingly, calculating the out-crossing rate is vital
to first-crossing-based methods. For instance, Renaud et al. [6] presented a PHI2 method
which calculated the out-crossing rate by solving a two-component parallel system relia-
bility problem. Sudret [9] proposed an improved version of PHI2 by providing analytical
expressions of out-crossing rate. However, the independence assumption may lead to
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large errors in engineering when out-crossing events are strongly dependent. To address
the deficiency, Hu and Du [10] relaxed the assumption using the concept of joint crossing
rate, and Yu et al. [11] proposed an approximation of the first-crossing probability density
function (PDF) method to avoid direct calculations of the out-crossing rate. The perfor-
mance of a mechanical structure is commonly a stochastic process because of time-variant
uncertainties and uncertainty propagation. Zhang et al. [12] first transformed the time-
variant performance into an equivalent Gaussian process and then used crude Monte Carlo
simulation (MCS) to calculate the cumulative probability of failure. In addition, composite
limit state [13,14], failure process decomposition [15], total probability theorem [16] and
stochastic process discretization [17,18] have also been proposed to evaluate the cumulative
probability of failure.

It is acknowledged that a mechanical structure fails if the extreme value of its time-
variant performance over the time interval of interest exceeds a predefined threshold.
Therefore, the extreme value is the primary focus of extreme-value-based methods. Hu
and Du [19] proposed a sampling method to estimate the distribution of the extreme
value of a stochastic process. Ping et al. [20] proposed an extreme-value event evolution
method to obtain the time-variant failure probability corresponding to arbitrary time
interval and arbitrary failure threshold. Yu et al. [21] combined the extreme-value moment
method and improved the maximum entropy method to address time-variant problems
involving multiple failure modes and temporal parameters. In recent years, surrogate
models have been adopted to improve the computational efficiency of extreme-value-based
methods [22–24]. For instance, Hu et al. [25] proposed a single-loop Kriging (SILK) to
reduce computational effort of the double-loop procedure [26,27]. In SILK, the Kriging
model is adaptively refined based on the learning function U [28] that was originally
developed for time-invariant reliability analysis. Considering that the acquisition of failure
information may be difficult, Zafar and Wang [29] used transfer learning and the Kriging
model to overcome this issue. Lara et al. [23] used polynomial chaos expansion to construct
an approximate expression of a time-consuming model and then applied crude MCS on
the surrogate model to obtain the cumulative probability of failure. Compared with other
methods, surrogate-model-based methods remarkably reduce the number of evaluations
of time-consuming models.

The random simulation-based method is also a representative extreme-value-based
method. Crude MCS directly generates random trajectories of time-variant performance
function. The computational cost presents a major challenge for the application of crude
MCS even though it is easy to implement. Therefore, it is often combined with other
methods to evaluate time-variant probability of failure, such as surrogate-model-based
methods and a part of first-crossing-based methods. A great amount of the literature
in regards to crude MCS as the benchmark compares efficiency and accuracy of other
methods [6,24,25,30]. Subset simulations (SS), such as Markov Chain Monte Carlo (MCMC),
SS with splitting method [31,32] and SS with splitting and partitioning in time [33], are
efficient methods for precisely evaluating time-variant probability of failure. However,
they are developed to deal with dynamical systems subject to stochastic excitation, and
not applicable to problems involving general stochastic process (e.g., Gaussian processes).
To address time-variant reliability analysis involving stochastic processes, Du et al. [34]
applied parallel SS which was first used to evaluate the failure probabilities of multiple
time-invariant limit states, and proposed a method to determine the so-called principal
variable.

Importance sampling (IS) techniques for time-variant reliability analysis are barely
studied in the literature, whereas IS for time-invariant reliability analysis have been well
developed [35,36]. This paper intends to fill the gap and propose an importance sampling
framework for time-variant reliability analysis. The input variables of a time-variant perfor-
mance function of a mechanical structure commonly contain both time-invariant random
variables and stochastic processes. Performance values of the structure at different time in-
stants are correlated, because they share the same time-invariant variables and realizations
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of stochastic processes at different instants are correlated with each other. Considering that
applying IS on stochastic processes is difficult, the IS framework proposed in this paper
applies time-invariant IS on the time-invariant random variables and samples random
trajectories of stochastic processes according to crude MCS in order to generate more failure
trajectories of time-variant performance function and enhance the computational efficiency
of time-variant reliability analysis.

The remainder of this paper is organized as follows. Section 2.1 provides the problem
statement of time-variant reliability analysis and Section 2.2 briefly introduces the crude
MCS. The proposed IS framework is developed in Section 3.1, which is followed by two
auxiliary PDFs in Section 3.2. The proposed framework is validated in Section 4. Section 5
is the conclusion.

2. Time-Variant Reliability Analysis and Crude MCS
2.1. Time-Variant Reliability Analysis

In engineering, the reliability of a mechanical structure or system generally degrades
over its service time t. The performance function G(X, Z(t), t), also called limit state
function, is commonly used to determine whether a structure or system can fulfill its

intended functions under intended conditions. X = [X(1), . . . , X(M1)]
T

is the vector
of random variables, collecting the time-invariant variables, e.g., geometric properties.

Z(t) = [X(1)(t), . . . , X(M2)(t)]
T

represents the vector of stochastic processes, e.g., loadings
and degradations in material properties. Failure occurs when the performance value
is beyond a prescribed threshold. For simplicity, this paper defines the failure state as
G(X,Z(t),t) ≤ 0. Therefore, the cumulative probability of failure associated with G(X, Z(t),
t) can be expressed as:

Pf,c(t0, te) = Pr{G(X, Z(t), t) ≤ 0, ∃t ∈ [t0, te]} (1)

where [t0, te] is the time interval of interest. Pr{·} is the probability operator and “∃” means
“there exists”. It is worth noting that Pf,c(t0,te) is relatively different from the instantaneous
probability of failure Pf,i(t) at time t ∈ [t0, te] which has the following expression:

Pf,i(t) = Pr{G(X, Z(t), t) ≤ 0} (2)

As illustrated in Section 1, estimating the probability defined by Equation (1) has
received wide attention in the literature, and two categories of methods, i.e., first-crossing-
based methods and extreme-value-based methods, have been proposed.

The former category focuses on calculating the out-crossing rate,

λ(t) = lim
∆t→0

Pr{G(X, Z(t), t) > 0∩ G(X, Z(t + ∆t), t + ∆t) ≤ 0}
∆t

(3)

Sequentially, the cumulative probability of failure can be approximated by:

Pf,c(t0, te) ≈ 1− (1− Pf,i(t0)) exp−
∫ te

t0

λ(t)dt (4)

where Pf,i(t0) is the instantaneous probability of failure at the initial time instant t0. Out-
crossing rate methods are developed under the assumption that out-crossing events are
mutually independent. They may provide inaccurate results, especially when out-crossing
events are strongly dependent.

Extreme-value-based methods are based on the fact that a failure event occurs when
the minimum of G(X,Z(t),t) over [t0, te] is negative. The minimum of G(X,Z(t),t) relies
on the realization of X and the trajectory of Z(t), so expansion techniques are essential to
generate random trajectories of Z(t). Currently, the expansion optimal linear estimation
method (EOLE) and Karhunen–Loève (KL) expansion are widely employed in the literature.
In spite of their difference, both methods represent a stochastic process with a set of
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uncorrelated random variables. This section does not discuss which method is more
suitable for discretizing a stochastic process and just assumes that the stochastic process
Z(m)(t) is modeled by the random vector ξ(m) =

[
ξ
(m)
1 , ξ

(m)
2 , . . . , ξ

(m)
pm

]
(m = 1, . . . , M2).

The notation W is introduced to collect all the uncorrelated variables ξ
(m)
1 (I = 1, . . . , pm;

m = 1, . . . , M2). Consequentially, the trajectory of Z(t) fully relies on the realization of
random vector W. From the perspective of extreme-value-based methods, the cumulative
probability of failure can be expressed as a formulation of a multi-dimensional integral:

Pf,c(t0, te) ≈
∫

I(x, w) fX(x) fW(w)dxdw (5)

where fX(x) and fW(w) are the joint PDFs of X and W, respectively. I(x,w) is the cumulative
failure indicator defined as follows:

I(x, w) =

1 if min
t0≤t≤tε

{G(x, z(t), t)} ≤ 0

0 otherwise
(6)

where z(t) (t0 ≤ t ≤ te) is the trajectory of Z(t) determined by w.

2.2. Crude Monte Carlo Simulation

Crude MCS is obviously the most robust method to estimate the cumulative prob-
ability of failure defined by Equation (3). It estimates Pf,c(t0, te) using the expression
below:

P̂MC
f,c (t0, te)≈

1
NMC

NMC

∑
n=1

I(xMC,n, wMC,n) (7)

where xMC,n and wMC,n (n = 1, . . . , NMC), i.i.d. realizations of X and W, are generated
according to fX(x) and fW(w), respectively.

The coefficient of variation of P̂MC
f,c (t0, te) is:

δMC
Pf =

√
varMC

Pf

P̂MC
f,c (t0, te)

(8)

where,

varMC
Pf =

P̂MC
f,c (t0, te)

(
1− P̂MC

f,c (t0, te)
)

NMC
(9)

3. Importance Sampling for Time-Variant Reliability Analysis

For any x and w, there is a trajectory of G(X,Z(t),t) associated with them, and hundreds
or even thousands of evaluations of the time-variant performance function are needed
to determine the value of I(x,w). Moreover, crude MCS requires enormous trajectories of
G(X,Z(t),t) to achieve a desired estimate of the cumulative failure probability. For example,
to achieve a coefficient of variation close to 3%, about 10p+3 random trajectories are required
to access a probability of 10−p. Therefore, regardless of whether crude MCS is used alone
or is combined with a surrogate model, its computational cost is significantly high when
Pf,c(t0, te) is small. This section aims to propose a framework in order to reduce the size of
random population.

3.1. The Importance Sampling Framework

IS methods to improve the efficiency of time-invariant reliability analysis have been
extensively studied and adopted in the literature [37,38], e.g., those based on the most
probable point (MPP) of failure and kernel-density-based IS methods. Their basic idea is
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to increase the probability that failure samples are generated by introducing an auxiliary
density.

IS methods for time-variant reliability analysis are barely studied in the literature
because stochastic processes are commonly involved in time-variant problems and IS
is difficult to conduct on stochastic processes. According to Section 2.2, crude MCS for
time-variant reliability analysis can be performed as follows: (1) generate random samples
xMC,n (n = 1, . . . , NMC) according to the joint PDF fX(x); (2) generate wMC,n (n = 1, . . . ,
NMC) according to fW(w); (3) determine values of I(xMC,n, wMC,n) (n = 1, . . . , NMC) based
on the combination (xMC,n, wMC,n); (4) compute P̂MC

f,c (t0, te). In other words, the random
realizations of X and W are separately generated in the procedure of crude MCS. Therefore,
this paper conducts IS on the random vector X by introducing the basic idea of IS methods
for time-invariant reliability analysis into time-variant reliability analysis. Equation (3) can
be rewritten as follows:

Pf,c(t0, te) ≈
∫

I(x, w) fX(x) fW(w)dxdw
=
∫ (

I(x, w) fX(x)
hX(x)

)
hX(x) fW(w)dxdw

(10)

where hX(x) is the auxiliary PDF this paper introduces. Sequentially, Pf,c(t0, te) can be
estimated as:

P̂IS
f,c(t0, te) ≈

1
NIS

NIS

∑
n=1

(
I(xIS,n, wIS,n)

fX(xIS,n)

hX(xIS,n)

)
(11)

where xIS,n and wIS,n (n = 1, . . . , NIS) are generated according to hX(x) and fW(w), respec-
tively. The coefficient of variation of P̂IS

f,c(t0, te) is:

δIS
Pf =

√
varIS

Pf

P̂IS
f,c(t0, te)

(12)

where

varIS
Pf =

1
NIS

 1
NIS

NIS

∑
n=1

(
IK(xIS,n, wIS,n) ·

fX(xIS,n)

hX(xIS,n)

)2

−
(

P̂Is
f,c(t0, te)

)2
 (13)

3.2. Auxiliary PDF

The auxiliary PDF hX(x) plays an important role in the IS framework proposed for
time-variant reliability analysis. This section proposes two strategies to construct hX(x).
However, it is worth noting that methods of constructing hX(x) are not limited to the
proposed two.

3.2.1. Single MPP-Based Auxiliary PDF

This section assumes that both X and Z(te) are subject to the standard Gaussian
distribution. One can use isoprobabilistic transformation to make X and Z(te) satisfy the
assumption. te is the end instant of the time interval of interest. It is chosen here because
the instantaneous probability of failure at te is commonly closer to Pf,c(t0, te) than any other
instantaneous probability of failure. Shifting the sampling center from the origin to the
MPP is widely employed in IS methods for time-invariant reliability analysis. Hence, this
section shifts the sampling center of X and defines hX(x) as:

hX(x) = fX
(
x− µ∗X,te

)
(14)
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where µ∗X,te
is determined by the optimization problem Equation (13) with t = te.{ [

µ∗X,t,µ
∗
Z(t)

]
= arg min[X,Z(t)]

(
‖ x ‖2 + ‖ z(t) ‖2)

s.t. G(x, z(t), t) ≤ 0
(15)

It is obvious that
[
µ∗X,t,µ

∗
Z(t)

]
is the MPP associated with the instantaneous perfor-

mance function G(X,Z(te),te) and µ∗X,te
is the component of the MPP corresponding to X.

This section sets the standard deviation of hX(x) equal to 1, but one can also choose a
different value to tighten or spread out the samples xIS,n (n = 1, . . . , NIS).

3.2.2. Multiple MPP-Based Auxiliary PDF

It is easily noted from Equation (4) that the structure whose performance function
is G(X,Z(t),t) may fail at any time instant ti ∈ [t0, te]. The auxiliary PDF proposed above
apparently pays more attention to the end time instant te than any other time instant.
For any ti ∈ [t0, te], the MPP

[
µ∗X,t,µ

∗
Z(t)

]
associated with the instantaneous performance

function G(X,Z(ti),ti) can be obtained according to Equation (13). µ∗X,ti
apparently varies

with ti. The auxiliary PDF in Section 3.2.1 is acceptable when the variation of µ∗X,ti
from t0

to te is tiny. However, a part of the domain of importance may have very small value of h(·)
determined by Equation (12) when the variation is significant. To overcome the deficiency,
this section develops an auxiliary PDF based on multiple MPPs.

We first discrete the interval [t0, te] into Ns + 1 uniform time instants tn (n = 0, . . . , Ns).
The auxiliary PDF based on multiple MPPs is then expressed as:

hX(x) =
1

Ns + 1

Ns

∑
n=0

fX
(
x− µ∗X,tn

)
(16)

where µ∗X,tn
(n = 0, . . . , Ns) are obtained by solving Equation (13) with t = tn.

4. Validation of the Proposed Method

This section thoroughly investigates the performance of the IS proposed in Section 3.
Three examples of varying complexities with respect to the dimension and the extent of
nonlinearity are employed to conduct the investigation.

4.1. A Numerical Example

This example is modified from a numerical example involving two time-invariant
variables and a stochastic process. The original version comes from References [34,39]. The
performance function employed herein is:

G(X, Y(t), t) = (0.25X1 + 3.5)2(0.25X2 + 3.5)
−5(0.25X1 + 3.5)(1 + Y(t))t + (0.25X2 + 4.5)t2 − 20

(17)

where X1 and X2 are mutually independent and subject to the standard normal distribution.
Y(t) is a Gaussian process with zero mean and unit variance. The autocorrelation coefficient
function is:

r(t1, t2) = exp
(
(t1 − t2)

2
)

(18)

The time interval of interest in the example is [0, 0.5]. EOLE is retained in this paper
to discretize the stochastic process. The time interval [0, 0.5] is uniformly discretized into
100 instants. Crude MCS with 109 simulation is regarded as the benchmark. The two
auxiliary PDFs in Section 3.2 are respectively used to conduct the proposed IS (Ns = 4,
Equation (14)). Some of the results are summarized in Table 1. In the table, single-MPP IS
and multiple-MPP IS represent the proposed IS implemented with the single MPP-based
auxiliary PDF (Equation (12)) and multiple MPP-based auxiliary PDF (Equation (14)),
respectively.
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Table 1. Results of example 1.

Method
^
Pf,c(δPf)

t = 0 [0, 0.1] [0, 0.2] [0, 0.3] [0, 0.4] [0, 0.5]

Benchmark NMC = 109 1.77 × 10−5 1.1 × 10−4 1.21 ×
10−3

8.46 ×
10−3

3.09 ×
10−2

7.02 ×
10−2

MCS

NMC = 5 ×
104

2 × 10−5

(100%)
10−4

(44.7%)
1.5 × 10−3

(11.5%)

8.24 ×
10−3

(4.91%)

3.16 ×
10−2

(2.47%)

7.15 ×
10−2

(1.61%)

NMC = 105 10−5

(100%)
8 × 10−5

(35.4%)

1.28 ×
10−3

(8.83%)

8.31 ×
10−3

(3.45%)

3.14 ×
10−2

(1.76%)

7.04 ×
10−2

(1.15%)

Single-MPP IS
NMC = 104 1.62 × 10−5

(58%)
1.37 × 10−4

(23.6%)

9.08 ×
10−4

(13.3%)

7.17 ×
10−3

(6.99%)

2.97 ×
10−2

(4.27%)

6.69 ×
10−2

(3.26%)
NMC = 5 ×

104
1.53 × 10−5

(25.7%)
1.14 × 10−4

(11.7%)

1.18 ×
10−3

(5.34%)

8.26 ×
10−3

(2.81%)

3.18 ×
10−2

(1.82%)

7.02 ×
10−2

(1.42%)

Multiple-MPP
IS

NMC = 104 1.75 × 10−5

(3.91%)
1.04 × 10−4

(5.52%)

1.07 ×
10−3

(7.28%)

7.01 ×
10−3

(7.45%)

3.27 ×
10−2

(5.95%)

7.33 ×
10−2

(5.08%)
NMC = 5 ×

104
1.77 × 10−5

(1.74%)
1.09 × 10−4

(2.52%)

1.21 ×
10−3

(3.48%)

8.28 ×
10−3

(3.29%)

3.24 ×
10−2

(2.62%)

7.12 ×
10−2

(2.27%)

Figure 1 shows lines of Pf,c(0, t) and the corresponding coefficient of variation (t ∈
[0, 0.5]) obtained using crude MCS and the proposed IS. In each row of Figure 1, the size
of the random population associated with the methods are the same in order to visualize
the advantage of the proposed IS as well as the difference between single-MPP IS and
multiple-MPP IS. According to Figure 1 and Table 1, the efficiency of crude MCS and
the proposed IS are close in terms of estimating Pf,c(0, 0.5). However, the proposed IS
outperforms with respect to estimating the evolution of Pf,c(0, t) over the time interval
of interest. Multiple-MPP IS is capable of efficiently providing an accurate evolution of
Pf,c(0, t) (t ∈ [0, 0.5]).

To have some insight into the performance of the methods, Figure 2 shows random
points of X generated using crude MCS and the proposed IS and sampling centers of
the methods. By comparing Figure 2a,b, it can be concluded that the single MPP-based
auxiliary PDF generates a little more failure samples than crude MCS, so the single-MPP IS
is just a little more efficient than crude MCS with respect to estimating Pf,c(0, 0.5). Moreover,
the single-MPP IS explores a part of domain of importance for Pf,c(0, t) t ∈ [0, 0.5], revealing
the reason why it provides more accurate curve of Pf,c(0, t) than crude MCS. Figure 2c
indicates that multiple MPP-based auxiliary PDF generates the most failure samples, and it
explores most of domain of significance for the evolution of Pf,c(0, t). However, many of
them are far from the origin and contribute little to Pf,c(0, 0.5). The above explains why
multiple-MPP IS provides the most accurate curve of P̂f,c(0, t) but shows no advantage in
estimating Pf,c(0, 0.5).
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Figure 2. Random samples generated using crude MCS, single-MPP IS and multiple-MPP IS and their corresponding
sampling centers. In each subplot, 105 random samples are shown.

4.2. A Corroded Beam

The second example deals with a steel bending beam whose cross section is linearly
corroded [6,40]. Two loads are applied to the beam, i.e., dead load and a time-variant load.
The dead load is equal to p = ρstb0h0(N/m) where ρst = 78.5 N/m3 is the force density of
steel, and the pinpoint load F(t) applied at the mid span (Figure 3) is a Gaussian process.
The performance function of the corroded beam is:

G(X, F(t), t) = Mu(t)−M(t) (19)
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where,
X = [fy,b0,h0]T

Mu(t) =
b(t)h2(t)

4
fy

M(t) =
F(t)L

4
+

ρstb0h0L2

8
b(t) = b0-2ωt

h(t) = h0-2ωt

ω = 0.03 mm/year
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Table 2 lists the distribution information of random variables and the stochastic process
F(t).

Table 2. Distribution information of input variables (example 2).

Variable Distribution Mean Standard
Deviation

Autocorrelation
Coefficient Function

fy Lognormal 240 MPa 24 MPa -
b0 Lognormal 0.2 m 0.01 m -
h0 Lognormal 0.04 m 0.004 m -

F(t) Gaussian 3500 N 700 N exp(−(t2 − t1)
2)

The time interval of interest is [0, 20 year]. EOLE is still used to discretize the stochastic
process F(t). To obtain enough accurate results, the interval [0, 20] is discretized into 1500
time instants. Crude MCS with 109 random simulations is regarded as the benchmark.
Crude MCS and the proposed auxiliary PDFs are compared by Figures 4 and 5 and Table 3.
According to the results, it is hard to identify which auxiliary PDF proposed in Section 3.2
is better, because the variation of µ∗X,t over the time interval [0, 20] is insignificant (Table 4).
However, using the same size of random population, both of the proposed auxiliary PDFs
are capable of providing more accurate results, e.g., Pf,c(0, 20), the evolution of Pf,c(0, t)
t ∈ [0, 20] (Figure 4) and instantaneous failure probabilities (Figure 5).
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Table 3. Results of example 2.

Method
P̂f,c(δPf)

t = 0 [0, 5] [0, 10] [0, 15] [0, 20]

Benchmark NMC = 109 2.25 × 10−6 2.12 × 10−5 4.58 × 10−5 7.9 × 10−5 1.24 × 10−4

MCS
NMC = 106 7 × 10−6

(37.8%)
3.3 × 10−5

(17.4%)
6.3 × 10−3

12.6%)
1.0 × 10−4

(10%)
1.47 × 10−4

(8.25%)

NMC = 5 × 106 2.6 × 10−6

(27.7%)
2.5 × 10−5

(8.94%)
5.66 × 10−5

(5.94%)
8.98 × 10−5

(4.72%)
1.31 × 10−4

(3.9%)

Single-MPP IS
NMC = 104 1.76 × 10−6

(15.4%)
1.93 × 10−5

(5.77%)
4.38 × 10−5

(5.47%)
7.35 × 10−5

(4.25%)
1.13 × 10−4

(3.72%)

NMC = 5 × 104 2.31 × 10−6

(6.28%)
2.2 × 10−5

(2.91%)
4.66 × 10−5

(2.37%)
7.78 × 10−5

(1.97%)
1.2 × 10−4

(1.87%)

Multiple-MPP
IS

NMC = 104 1.82 × 10−6

(12.4%)
2.16 × 10−5

(7.58%)
4.52 × 10−5

(5.66%)
7.84 × 10−5

(5.6%)
1.17 × 10−4

(4.42%)

NMC = 5 × 104 2.35 × 10−6

(6.01%)
2.19 × 10−5

(3.07%)
4.7 × 10−5

(2.71%)
7.96 × 10−5

(2.32%)
1.23 × 10−4

(2.09%)

Table 4. Sampling centers of single-MPP IS and multiple-MPP IS (example 2). The sampling center of
single-MPP IS is [−1.67, −0.69, −3.19] (Equation (12)), and all points listed in the table are adopted
to construct the auxiliary PDF of multiple-MPP IS (Equation (14)).

Time Instant (t) µ∗X,t

0 [−1.88, −0.776, −3.43]
5 [−1.83, −0.754, −3.37]

10 [−1.78, −0.733, −3.31]
15 [−1.72, −0.711, −3.25]
20 [−1.67, −0.69, −3.19]

4.3. A Cantilever Tube Structure

A cantilever tube structure, modified from a previously published example [18,23], is
studied in this section. It is adopted herein to investigate the performance of the proposed
IS when involving multiple stochastic processes. As shown by Figure 6, four time-variant
loads, i.e., F1(t), F2(t), P(t) and T(t), are applied to the cantilever tube. The yield stress is
considered to linearly decrease over time resulting from the material degradation. The
decreasing model is:

σu(t) = σ0(1− 0.01t) (20)

where σ0 is the initial yield stress.
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The time interval of interest in this example is [0, 5 year]. The performance function
associated with the cantilever tube is:

G(X, Z(t), t) = σu(t)− σmax(t) (21)

where X = [d, h, σ0]T and Z(t) = [F1(t), F2(t), T(t), P(t)]T. σmax(t) is the maximum Von Mises
stress having the following expression:

σmax(t) =
√

σ2
x(t) + 3τ2

zx(t)

where,

σx(t) =
F1(t) sin(θ1) + F2(t) sin(θ2) + P(t)

A
+

M(t)d
2I

τzx(t) =
T(t)d

4I
M(t) = F1(t) cos(θ1)L1 + F2(t) cos(θ2)L2

A =
π

4

[
d2 − (d− 2h)2

]
I =

π

64

[
d4 − (d− 2h)4

]
Distribution parameters of X and Z(t) are listed in Table 5. The time interval [0, 5 year]

is uniformly discretized into 1000 time instants. Crude MCS with 109 random simulations
is still regarded as the benchmark. Figures 7 and 8 and Table 6 compare the proposed IS
against crude MCS, and Table 7 lists the sampling centers of auxiliary PDFs of the proposed
IS. It can be found that µ∗X,t does not change much over the time interval [0, 5], and the
performance of the auxiliary PDFs proposed in Section 3.2 seems evenly matched. Results
indicate that the proposed IS requires significantly fewer simulations than crude MCS
while maintaining the accuracy level of the estimate of Pf,c(0,5). Using the same size of
random population, the proposed method achieves much more accurate results. Both
auxiliary PDFs proposed in Section 3.2 have remarkable advantages over crude MCS.

Table 5. Distribution information of input variables (example 3).

Variable Distribution Mean Standard
Deviation

Autocorrelation
Coefficient Function

F1(t) (N) Gaussian
process 1800 180 exp(−|t2 − t1|/4)

F2(t) (N) Gaussian
process 1800 180 exp(−|t2 − t1|)

T(t) (Nm) Gaussian
process 1900 190 exp(−4|t2 − t1|2)

P(t) (N) Gaussian
process 1800 180 exp(−4|t2 − t1|)

d (mm) Normal 42 0.5 -
h (mm) Normal 5 0.1 -

σ0 (MPa) Normal 560 56 -
L1 (mm) Deterministic 60 - -
L2 (mm) Deterministic 120 - -

θ1 (◦) Deterministic 10 - -
θ2 (◦) Deterministic 5 - -



Sustainability 2021, 13, 7776 13 of 16Sustainability 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 
Figure 7. Lines of f,c (0, )P t  and the coefficient of variation of f,c (0, )P t  over [0, 5 year] (example 3). 

 
Figure 8. Lines of the instantaneous failure probability f,i (0, )P t  and the corresponding coefficient of variation over [0, 5] 
(example 3). 

  

Figure 7. Lines of Pf,c(0, t) and the coefficient of variation of Pf,c(0, t) over [0, 5 year] (example 3).

Sustainability 2021, 13, x FOR PEER REVIEW 15 of 18 
 

 
Figure 7. Lines of f,c (0, )P t  and the coefficient of variation of f,c (0, )P t  over [0, 5 year] (example 3). 

 
Figure 8. Lines of the instantaneous failure probability f,i (0, )P t  and the corresponding coefficient of variation over [0, 5] 
(example 3). 

  

Figure 8. Lines of the instantaneous failure probability Pf,i(0, t) and the corresponding coefficient of variation over [0, 5]
(example 3).



Sustainability 2021, 13, 7776 14 of 16

Table 6. Results of example 3.

Method
P̂f,c(δPf)

t = 0 [0, 1] [0, 2] [0, 3] [0, 4] [0, 5]

Benchmark NMC = 109 6.83 × 10−4 2.25 × 10−3 3.92 × 10−3 5.73 × 10−3 7.76 × 10−3 9.94 × 10−3

MCS
NMC = 104 1.5 × 10−3

(25.8%)
3.7 × 10−3

(16.4%)
5.5 × 10−3

(13.4%)
7.2 × 10−3

(11.7%)
9.9 × 10−3

(10%)
1.13 × 10−2

(9.35%)

NMC = 105 8.2 × 10−4

(11%)
2.43 × 10−3

(6.41%)
4.17 × 10−3

(4.89%)
6.02 × 10−3

(4.06%)
7.92 × 10−3

(3.54%)
1.03 × 10−2

(3.11%)

Single-MPP IS
NMC = 103 6.5 × 10−4

(15.3%)
2.06 × 10−3

(13.6%)
4.32 × 10−3

(10.6%)
6.11 × 10−3

(10.9%)
8.49 × 10−3

(10.4%)
1.08 × 10−2

(9.9%)

NMC = 104 6.71 × 10−4

(5.46%)
2.16 × 10−3

(4.23%)
2.72 × 10−3

(3.67%)
5.42 × 10−3

(3.31%)
7.55 × 10−3

(2.99%)
9.82 × 10−3

(3.03%)

Multiple-MPP
IS

NMC = 103 6.7 × 10−4

(16%)
2.35 × 10−3

(12.7%)
4.05 × 10−3

(9.69%)
5.6 × 10−3

(11.5%)
8.37 × 10−3

(10.3%)
1.08 × 10−2

(9.54%)

NMC = 104 6.81 × 10−4

(5.5%)
2.16 × 10−3

(4.08%)
3.78 × 10−3

(4.18%)
5.42 × 10−3

(3.62%)
7.51 × 10−3

(3.1%)
9.85 × 10−3

(3.03%)

Table 7. Sampling centers of single-MPP IS and multiple-MPP IS (example 3).

Time Instant (t) µ∗X,t

0 [−0.554, −0.25, −2.67]
1.25 [−0.544, −0.245, −2.59]
2.5 [−0.534, −0.24, −2.52]
3.75 [−0.523, −0.236, −2.44]

5 [−0.511, −0.23, −2.37]

5. Conclusions

This paper develops a framework of importance sampling for time-variant reliability
analysis. Considering that time-invariant random variables are commonly involved in time-
variant reliability analysis, the basic idea of the proposed framework is conducting IS on
time-invariant variables to generate more failure trajectories of time-variant performance
function. Two auxiliary PDFs based on MPP(s) are proposed in Section 3.2. Three examples
are utilized to validate the efficiency of the proposed IS. The results show that the proposed
IS remarkably reduces the size of the random population and saves computational cost
when the cumulative failure probability over the time interval of interest is small (example
2 and 3). When the cumulative failure probability over the time interval of interest is large
(example 1), the auxiliary PDFs proposed in Section 3.2 may show little advantage in terms
of estimating Pf,c(t0,te). However, the proposed IS is capable of efficiently providing accu-
rate curves of cumulative failure probability Pf,c(t0,t) and instantaneous failure probability
Pf,i(t0,t) (t ∈ [t0, te]).

It is worth noting that auxiliary PDFs available for the proposed IS framework are not
limited to the proposed two. More robust auxiliary PDF is in demand to address complex
time-variant performance function. It is obvious that the proposed IS framework cannot
deal with the time-variant problem involving no time-invariant random variables. An
IS framework conducting both time-invariant random variables and stochastic processes
may be able to address the limitation of the proposed framework and further increase
the computational efficiency. In addition, when combining with surrogate models, e.g.,
adaptive Kriging model, the proposed IS framework can be used to perform time-variant
reliability analysis involving time-consuming performance function. These ideas may be
discussed in future work.

6. Replication of Results

The details of the proposed IS are provided in Sections 3 and 4. The proposed IS
is easy to use and authors are confident that all results of the proposed method can be
replicated by readers with MATLAB. Readers are encouraged to contact the corresponding
author by email if they have any questions about the proposed IS framework.
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