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Abstract: In recent years, methods were proposed so as to efficiently perform time-variant reliability 

analysis. However, importance sampling (IS) for time-variant reliability analysis is barely studied 

in the literature. In this paper, an IS framework is proposed. A multi-dimensional integral is first 

derived to define the time-variant cumulative probability of failure, which has the similar expres-

sion to the classical definition of time-invariant failure probability. An IS framework is then devel-

oped according to the fact that time-invariant random variables are commonly involved in time-

variant reliability analysis. The basic idea of the proposed framework is to simultaneously apply 

time-invariant IS and crude Monte Carlo simulation on time-invariant random variables and sto-

chastic processes, respectively. Thus, the probability of acquiring failure trajectories of time-variant 

performance function is increased. Two auxiliary probability density functions are proposed to im-

plement the IS framework. However, auxiliary PDFs available for the framework are not limited to 

the proposed two. Three examples are studied in order to validate the effectiveness of the proposed 

IS framework. 

Keywords: time-variant reliability analysis; importance sampling; cumulative failure probability 

 

1. Introduction 

Most mechanical structures and systems are vulnerable against uncertainties, such 

as loads and material properties. Reliability analysis provides an appropriate framework 

to evaluate the probability that a structure or system successfully performs its intended 

functions over a time interval of interest without failures, considering various forms of 

uncertainties [1]. Over the past decades, time-invariant reliability analysis methods have 

been well developed, e.g., analytical methods [2] and simulation-based methods [3,4]. 

Since dynamic or time-variant uncertainties are often involved, mechanical structures and 

systems are commonly related to performance degradation, and time-invariant methods 

cannot be directly used to perform time-variant reliability analysis. Time-variant reliabil-

ity analysis has gained much attention as a method to deal with the issue. Methods for 

time-variant reliability analysis in the literature can be roughly summarized into two cat-

egories: first-crossing-based methods and extreme-value-based methods. 

After the well-known Rice formula was proposed, first-crossing-based methods 

gained much attention [5–8]. This kind of method concentrates on calculating the proba-

bility that the out-crossing event occurs for the first time in a predefined time interval. 

The out-crossing event shows that the performance value of a structure exceeds a prede-

fined threshold. With the assumption that out-crossing events are mutually independent 

when they occur, first-crossing-based methods approximate the cumulative probability 

of failure using an integration of the out-crossing rate which represents the mean number 

of out-crossing events per unit of time. Accordingly, calculating the out-crossing rate is 

vital to first-crossing-based methods. For instance, Renaud et al. [6] presented a PHI2 
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method which calculated the out-crossing rate by solving a two-component parallel sys-

tem reliability problem. Sudret [9] proposed an improved version of PHI2 by providing 

analytical expressions of out-crossing rate. However, the independence assumption may 

lead to large errors in engineering when out-crossing events are strongly dependent. To 

address the deficiency, Hu and Du [10] relaxed the assumption using the concept of joint 

crossing rate, and Yu et al. [11] proposed an approximation of the first-crossing probabil-

ity density function (PDF) method to avoid direct calculations of the out-crossing rate. The 

performance of a mechanical structure is commonly a stochastic process because of time-

variant uncertainties and uncertainty propagation. Zhang et al. [12] first transformed the 

time-variant performance into an equivalent Gaussian process and then used crude Monte 

Carlo simulation (MCS) to calculate the cumulative probability of failure. In addition, 

composite limit state [13,14], failure process decomposition [15], total probability theorem 

[16] and stochastic process discretization [17,18] have also been proposed to evaluate the 

cumulative probability of failure. 

It is acknowledged that a mechanical structure fails if the extreme value of its time-

variant performance over the time interval of interest exceeds a predefined threshold. 

Therefore, the extreme value is the primary focus of extreme-value-based methods. Hu 

and Du [19] proposed a sampling method to estimate the distribution of the extreme value 

of a stochastic process. Ping et al. [20] proposed an extreme-value event evolution method 

to obtain the time-variant failure probability corresponding to arbitrary time interval and 

arbitrary failure threshold. Yu et al. [21] combined the extreme-value moment method 

and improved the maximum entropy method to address time-variant problems involving 

multiple failure modes and temporal parameters. In recent years, surrogate models have 

been adopted to improve the computational efficiency of extreme-value-based methods 

[22–24]. For instance, Hu et al. [25] proposed a single-loop Kriging (SILK) to reduce com-

putational effort of the double-loop procedure [26,27]. In SILK, the Kriging model is adap-

tively refined based on the learning function U [28] that was originally developed for time-

invariant reliability analysis. Considering that the acquisition of failure information may 

be difficult, Zafar and Wang [29] used transfer learning and the Kriging model to over-

come this issue. Lara et al. [23] used polynomial chaos expansion to construct an approx-

imate expression of a time-consuming model and then applied crude MCS on the surro-

gate model to obtain the cumulative probability of failure. Compared with other methods, 

surrogate-model-based methods remarkably reduce the number of evaluations of time-

consuming models. 

The random simulation-based method is also a representative extreme-value-based 

method. Crude MCS directly generates random trajectories of time-variant performance 

function. The computational cost presents a major challenge for the application of crude 

MCS even though it is easy to implement. Therefore, it is often combined with other meth-

ods to evaluate time-variant probability of failure, such as surrogate-model-based meth-

ods and a part of first-crossing-based methods. A great amount of the literature in regards 

to crude MCS as the benchmark compares efficiency and accuracy of other methods 

[6,24,25,30]. Subset simulations (SS), such as Markov Chain Monte Carlo (MCMC), SS with 

splitting method [31,32] and SS with splitting and partitioning in time [33], are efficient 

methods for precisely evaluating time-variant probability of failure. However, they are 

developed to deal with dynamical systems subject to stochastic excitation, and not appli-

cable to problems involving general stochastic process (e.g., Gaussian processes). To ad-

dress time-variant reliability analysis involving stochastic processes, Du et al. [34] applied 

parallel SS which was first used to evaluate the failure probabilities of multiple time-in-

variant limit states, and proposed a method to determine the so-called principal variable. 

Importance sampling (IS) techniques for time-variant reliability analysis are barely 

studied in the literature, whereas IS for time-invariant reliability analysis have been well 

developed [35,36]. This paper intends to fill the gap and propose an importance sampling 

framework for time-variant reliability analysis. The input variables of a time-variant per-
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formance function of a mechanical structure commonly contain both time-invariant ran-

dom variables and stochastic processes. Performance values of the structure at different 

time instants are correlated, because they share the same time-invariant variables and re-

alizations of stochastic processes at different instants are correlated with each other. Con-

sidering that applying IS on stochastic processes is difficult, the IS framework proposed 

in this paper applies time-invariant IS on the time-invariant random variables and sam-

ples random trajectories of stochastic processes according to crude MCS in order to gen-

erate more failure trajectories of time-variant performance function and enhance the com-

putational efficiency of time-variant reliability analysis. 

The remainder of this paper is organized as follows. Section 2.1 provides the problem 

statement of time-variant reliability analysis and Section 2.2 briefly introduces the crude 

MCS. The proposed IS framework is developed in Section 3.1, which is followed by two 

auxiliary PDFs in Section 3.2. The proposed framework is validated in Section 4. Section 

5 is the conclusion. 

2. Time-Variant Reliability Analysis and Crude MCS 

2.1. Time-Variant Reliability Analysis 

In engineering, the reliability of a mechanical structure or system generally degrades 

over its service time t. The performance function G(X, Z(t), t), also called limit state func-

tion, is commonly used to determine whether a structure or system can fulfill its intended 

functions under intended conditions. 1( )(1) T[ , , ]MX XX    is the vector of random vari-

ables, collecting the time-invariant variables, e.g., geometric properties. 
2( )(1) T( ) [ ( ), , ( )]Mt X t X tZ    represents the vector of stochastic processes, e.g., loadings 

and degradations in material properties. Failure occurs when the performance value is 

beyond a prescribed threshold. For simplicity, this paper defines the failure state as 

G(X,Z(t),t) ≤ 0. Therefore, the cumulative probability of failure associated with G(X, Z(t), 

t) can be expressed as: 

  (1)

where [t0, te] is the time interval of interest. Pr    is the probability operator and “   ” 

means “there exists”. It is worth noting that Pf,c(t0,te) is relatively different from the instan-

taneous probability of failure Pf,i(t) at time 0 e[ , ]t t t   which has the following expression: 

 (2)

As illustrated in Section 1, estimating the probability defined by Equation (1) has re-

ceived wide attention in the literature, and two categories of methods, i.e., first-crossing-

based methods and extreme-value-based methods, have been proposed. 

The former category focuses on calculating the out-crossing rate, 

 (3)

Sequentially, the cumulative probability of failure can be approximated by: 

 (4)

where Pf,i(t0) is the instantaneous probability of failure at the initial time instant t0. Out-

crossing rate methods are developed under the assumption that out-crossing events are 

mutually independent. They may provide inaccurate results, especially when out-cross-

ing events are strongly dependent. 

Extreme-value-based methods are based on the fact that a failure event occurs when 

the minimum of G(X,Z(t),t) over [t0, te] is negative. The minimum of G(X,Z(t),t) relies on 

    f ,c 0 0, Pr ( , ( ), ) 0, ,e eP t t G t t t t t   X Z
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the realization of X and the trajectory of Z(t), so expansion techniques are essential to gen-

erate random trajectories of Z(t). Currently, the expansion optimal linear estimation 

method (EOLE) and Karhunen–Loève (KL) expansion are widely employed in the litera-

ture. In spite of their difference, both methods represent a stochastic process with a set of 

uncorrelated random variables. This section does not discuss which method is more suit-

able for discretizing a stochastic process and just assumes that the stochastic process Z(m)(t) 

is modeled by the random vector ( ) ( ) ( ) ( )
1 2, , ,

m

m m m m
p     ξ   (m = 1, …, M2). The notation 

W is introduced to collect all the uncorrelated variables ( )
1
m   (I = 1, …, pm; m = 1, …, M2). 

Consequentially, the trajectory of Z(t) fully relies on the realization of random vector W. 

From the perspective of extreme-value-based methods, the cumulative probability of fail-

ure can be expressed as a formulation of a multi-dimensional integral: 

 (5)

where fX(x) and fW(w) are the joint PDFs of X and W, respectively. I(x,w) is the cumulative 

failure indicator defined as follows: 

 (6)

where z(t) (t0 ≤ t ≤ te) is the trajectory of Z(t) determined by w. 

2.2. Crude Monte Carlo Simulation 

Crude MCS is obviously the most robust method to estimate the cumulative proba-

bility of failure defined by Equation (3). It estimates  f , 0 ,c eP t t   using the expression be-

low: 

 (7)

where MC,nx   and MC,nw   (n = 1, …, NMC), i.i.d. realizations of X and W, are generated 

according to fX(x) and fW(w), respectively. 

The coefficient of variation of  MC
f ,c 0 ,
ˆ

eP t t   is: 

 (8)

where, 

 (9)

3. Importance Sampling for Time-variant Reliability Analysis 

For any x and w, there is a trajectory of G(X,Z(t),t) associated with them, and hun-

dreds or even thousands of evaluations of the time-variant performance function are 

needed to determine the value of I(x,w). Moreover, crude MCS requires enormous trajec-

tories of G(X,Z(t),t) to achieve a desired estimate of the cumulative failure probability. For 

example, to achieve a coefficient of variation close to 3%, about 10p + 3 random trajectories 

are required to access a probability of 10-p. Therefore, regardless of whether crude MCS is 

used alone or is combined with a surrogate model, its computational cost is significantly 

high when  f ,c 0 , eP t t   is small. This section aims to propose a framework in order to re-

duce the size of random population. 
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3.1. The Importance Sampling Framework 

IS methods to improve the efficiency of time-invariant reliability analysis have been 

extensively studied and adopted in the literature [37,38], e.g., those based on the most 

probable point (MPP) of failure and kernel-density-based IS methods. Their basic idea is 

to increase the probability that failure samples are generated by introducing an auxiliary 

density. 

IS methods for time-variant reliability analysis are barely studied in the literature 

because stochastic processes are commonly involved in time-variant problems and IS is 

difficult to conduct on stochastic processes. According to Section 2.2, crude MCS for time-

variant reliability analysis can be performed as follows: (1) generate random samples 

MC,nx  (n = 1, …, NMC) according to the joint PDF fX(x); (2) generate MC,nw  (n = 1, …, NMC) 

according to fW(w); (3) determine values of  MC, MC,,n nI x w   (n = 1, …, NMC) based on the 

combination  MC, MC,,n nx w  ; (4) compute  MC
f ,c 0 ,
ˆ

eP t t  . In other words, the random reali-

zations of X and W are separately generated in the procedure of crude MCS. Therefore, 

this paper conducts IS on the random vector X by introducing the basic idea of IS methods 

for time-invariant reliability analysis into time-variant reliability analysis. Equation (3) 

can be rewritten as follows: 

 (10)

where hX(x) is the auxiliary PDF this paper introduces. Sequentially,  f ,c 0 , eP t t   can be 

estimated as: 

 (11)

where IS,nx   and IS,nw   (n = 1, …, NIS) are generated according to hX(x) and fW(w), respec-

tively. The coefficient of variation of  IS
f ,c 0 ,
ˆ

eP t t   is: 

 (12)

where 

 (13)
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The auxiliary PDF hX(x) plays an important role in the IS framework proposed for 

time-variant reliability analysis. This section proposes two strategies to construct hX(x). 

However, it is worth noting that methods of constructing hX(x) are not limited to the pro-
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instantaneous probability of failure. Shifting the sampling center from the origin to the 

MPP is widely employed in IS methods for time-invariant reliability analysis. Hence, this 

section shifts the sampling center of X and defines hX(x) as: 

 (14)

where , et

Xμ   is determined by the optimization problem Equation (13) with t = te. 

 (15)

It is obvious that , ( ),t t
   X Zμ μ  is the MPP associated with the instantaneous perfor-

mance function G(X,Z(te),te) and , et

Xμ  is the component of the MPP corresponding to X. 

This section sets the standard deviation of hX(x) equal to 1, but one can also choose a dif-

ferent value to tighten or spread out the samples IS,nx   (n = 1, …, NIS). 

3.2.2. Multiple MPP-Based Auxiliary PDF 

It is easily noted from Equation (4) that the structure whose performance function is 

G(X,Z(t),t) may fail at any time instant 0[ , ]i et t t  . The auxiliary PDF proposed above ap-

parently pays more attention to the end time instant te than any other time instant. For 

any 0[ , ]i et t t , the MPP , ( ),t t
   X Zμ μ  associated with the instantaneous performance 

function G(X,Z(ti),ti) can be obtained according to Equation(13). , it

Xμ  apparently varies 

with ti. The auxiliary PDF in Section 3.2.1 is acceptable when the variation of , it

Xμ  from 

t0 to te is tiny. However, a part of the domain of importance may have very small value of 

h(·) determined by Equation (12) when the variation is significant. To overcome the defi-

ciency, this section develops an auxiliary PDF based on multiple MPPs. 

We first discrete the interval [t0, te] into Ns + 1 uniform time instants tn (n = 0, …, Ns). 

The auxiliary PDF based on multiple MPPs is then expressed as: 

 (16)

where , nt

Xμ  (n = 0, …, Ns) are obtained by solving Equation (13) with t = tn. 

4. Validation of the Proposed Method 

This section thoroughly investigates the performance of the IS proposed in Section 3. 

Three examples of varying complexities with respect to the dimension and the extent of 

nonlinearity are employed to conduct the investigation. 

4.1. A Numerical Example 

This example is modified from a numerical example involving two time-invariant 

variables and a stochastic process. The original version comes from References [34,39]. 

The performance function employed herein is: 

 (17)
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 (18)

The time interval of interest in the example is [0, 0.5]. EOLE is retained in this paper 

to discretize the stochastic process. The time interval [0, 0.5] is uniformly discretized into 

100 instants. Crude MCS with 109 simulation is regarded as the benchmark. The two aux-

iliary PDFs in Section 3.2 are respectively used to conduct the proposed IS (Ns = 4, Equa-

tion(14)). Some of the results are summarized in Table 1. In the table, single-MPP IS and 

multiple-MPP IS represent the proposed IS implemented with the single MPP-based aux-

iliary PDF (Equation(12)) and multiple MPP-based auxiliary PDF (Equation(14)), respec-

tively. 

Table 1. Results of example 1. 

Method f,cP̂ ( fP )
 

t = 0 [0,0.1] [0,0.2] [0,0.3] [0,0.4] [0,0.5] 

Benchmark NMC = 109 
1.77 × 

10−5 
1.1 × 10−4 

1.21 × 

10−3 

8.46 × 

10−3 

3.09 × 

10−2 

7.02 × 

10−2 

MCS 

NMC = 5 × 

104 

2 × 10−5 

(100%) 

10−4 

(44.7%) 

1.5 × 10−3 

(11.5%) 

8.24 × 

10−3 

(4.91%) 

3.16 × 

10−2 

(2.47%) 

7.15 × 

10−2 

(1.61%) 

NMC = 105 
10−5 

(100%) 

8 × 10−5 

(35.4%) 

1.28 × 

10−3 

(8.83%) 

8.31 × 

10−3 

(3.45%) 

3.14 × 

10−2 

(1.76%) 

7.04 × 

10−2 

(1.15%) 

Single-MPP IS 

NMC = 104 

1.62 × 

10−5 

(58%) 

1.37 × 

10−4 

(23.6%) 

9.08 × 

10−4 

(13.3%) 

7.17 × 

10−3 

(6.99%) 

2.97 × 

10−2 

(4.27%) 

6.69 × 

10−2 

(3.26%) 

NMC = 5 × 

104 

1.53 × 

10−5 

(25.7%) 

1.14 × 

10−4 

(11.7%) 

1.18 × 

10−3 

(5.34%) 

8.26 × 

10−3 

(2.81%) 

3.18 × 

10−2 

(1.82%) 

7.02 × 

10−2 

(1.42%) 

Multiple-MPP IS 

NMC = 104 

1.75 × 

10−5 

(3.91%) 

1.04 × 

10−4 

(5.52%) 

1.07 × 

10−3 

(7.28%) 

7.01 × 

10−3 

(7.45%) 

3.27 × 

10−2 

(5.95%) 

7.33 × 

10−2 

(5.08%) 

NMC = 5 × 

104 

1.77 × 

10−5 

(1.74%) 

1.09 × 

10−4 

(2.52%) 

1.21 × 

10−3 

(3.48%) 

8.28 × 

10−3 

(3.29%) 

3.24 × 

10−2 

(2.62%) 

7.12 × 

10−2 

(2.27%) 

Figure 1 shows lines of f,c (0, )P t  and the corresponding coefficient of variation (

[0,0.5]t ) obtained using crude MCS and the proposed IS. In each row of Figure 1, the 

size of the random population associated with the methods are the same in order to visu-

alize the advantage of the proposed IS as well as the difference between single-MPP IS 

and multiple-MPP IS. According to Figure 1 and Table 1, the efficiency of crude MCS and 

the proposed IS are close in terms of estimating f,c (0,0.5)P . However, the proposed IS out-

performs with respect to estimating the evolution of f,c (0, )P t  over the time interval of 

interest. Multiple-MPP IS is capable of efficiently providing an accurate evolution of 

f,c (0, )P t  ( [0,0.5]t ). 

    2

1 2 1 2, expr t t t t 
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Figure 1. Lines of f,c (0, )P t  and the coefficient of variation of f,c (0, )P t  over [0, 0.5] (example 1). A few lines are not com-

plete because missing values of f,c (0, )P t  and f,cP  are null. 

To have some insight into the performance of the methods, Figure 2 shows random 

points of X generated using crude MCS and the proposed IS and sampling centers of the 

methods. By comparing Figure 2a,b, it can be concluded that the single MPP-based auxil-

iary PDF generates a little more failure samples than crude MCS, so the single-MPP IS is 

just a little more efficient than crude MCS with respect to estimating f,c (0,0.5)P . Moreover, 

the single-MPP IS explores a part of domain of importance for f,c (0, )P t  [0,0.5]t , reveal-

ing the reason why it provides more accurate curve of f,c (0, )P t  than crude MCS. Figure 

2c indicates that multiple MPP-based auxiliary PDF generates the most failure samples, 

and it explores most of domain of significance for the evolution of f,c (0, )P t . However, 

many of them are far from the origin and contribute little to f,c (0,0.5)P . The above explains 

why multiple-MPP IS provides the most accurate curve of f,c
ˆ (0, )P t   but shows no ad-

vantage in estimating f,c (0,0.5)P .  
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Figure 2. Random samples generated using crude MCS, single-MPP IS and multiple-MPP IS and their corresponding 

sampling centers. In each subplot, 105 random samples are shown. 

4.2. A Corroded Beam 

The second example deals with a steel bending beam whose cross section is linearly 

corroded [6,40]. Two loads are applied to the beam, i.e., dead load and a time-variant load. 

The dead load is equal to 0 0 (N / m)stp b h  where 3=78.5N / mst  is the force density of 

steel, and the pinpoint load F(t) applied at the mid span (Figure 3) is a Gaussian process. 

The performance function of the corroded beam is: 

 (19)

where,  

X = [fy,b0,h0]T 

2( ) ( )
( )

4
u y

b t h t
M t f  

 

2
0 0( )

( )
4 8

stb h LF t L
M t


   

 

b(t) = b0-2ωt 

h(t) = h0-2ωt 

ω = 0.03 mm/year 

Table 2 lists the distribution information of random variables and the stochastic pro-

cess F(t).  

 

Figure 3. The corroded bending beam submitted to dead load and a time-variant load. 

  

( , ( ), ) ( ) ( )uG F t t M t M t X

t

0
b

0
h

t
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Table 2. Distribution information of input variables (example 2). 

Variable Distribution Mean Standard Deviation 
Autocorrelation Coeffi-

cient Function 

fy Lognormal 240 MPa 24 MPa - 

b0 Lognormal 0.2 m 0.01 m - 

h0 Lognormal 0.04 m 0.004 m - 

F(t) Gaussian 3500 N 700 N 
2

2 1exp( ( ) )t t    

The time interval of interest is [0, 20 year]. EOLE is still used to discretize the stochas-

tic process F(t). To obtain enough accurate results, the interval [0,20] is discretized into 

1500 time instants. Crude MCS with 109 random simulations is regarded as the bench-

mark. Crude MCS and the proposed auxiliary PDFs are compared by Figure 4 and Figure 

5 and Table 3. According to the results, it is hard to identify which auxiliary PDF proposed 

in Section 3.2 is better, because the variation of ,t

Xμ  over the time interval [0,20] is insig-

nificant (Table 4). However, using the same size of random population, both of the pro-

posed auxiliary PDFs are capable of providing more accurate results, e.g., f,c (0,20)P , the 

evolution of f,c (0, )P t  [0, 20]t  (Figure 4) and instantaneous failure probabilities (Figure 

5). 

 

Figure 4. Lines of f,c (0, )P t  and the coefficient of variation of f,c (0, )P t  over [0, 20] (example 2). 
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Figure 5. Lines of the instantaneous failure probability f,i (0, )P t  and the corresponding coefficient of variation over [0, 

20] (example 2). 

Table 3. Results of example 2. 

Method f,cP̂ ( fP )
 

t = 0 [0,5] [0,10] [0,15] [0,20] 

Benchmark NMC = 109 2.25 × 10−6 2.12 × 10−5 4.58 × 10−5 7.9 × 10−5 1.24 × 10−4 

MCS 

NMC = 106 
7 × 10−6 

(37.8%) 

3.3 × 10−5 

(17.4%) 

6.3 × 10−3 

12.6%) 

1.0 × 10−4 

(10%) 

1.47 × 10−4 

(8.25%) 

NMC = 5 × 106 
2.6 × 10−6 

(27.7%) 

2.5 × 10−5 

(8.94%) 

5.66 × 10−5 

(5.94%) 

8.98 × 10−5 

(4.72%) 

1.31 × 10−4 

(3.9%) 

Single-MPP IS 

NMC = 104 
1.76 × 10−6 

(15.4%) 

1.93 × 10−5 

(5.77%) 

4.38 × 10−5 

(5.47%) 

7.35 × 10−5 

(4.25%) 

1.13 × 10−4 

(3.72%) 

NMC = 5 × 104 
2.31 × 10−6 

(6.28%) 

2.2 × 10−5 

(2.91%) 

4.66 × 10−5 

(2.37%) 

7.78 × 10−5 

(1.97%) 

1.2 × 10−4 

(1.87%) 

Multiple-MPP IS 

NMC = 104 
1.82 × 10−6 

(12.4%) 

2.16 × 10−5 

(7.58%) 

4.52 × 10−5 

(5.66%) 

7.84 × 10−5 

(5.6%) 

1.17 × 10−4 

(4.42%) 

NMC = 5 × 104 
2.35 × 10−6 

(6.01%) 

2.19 × 10−5 

(3.07%) 

4.7 × 10−5 

(2.71%) 

7.96 × 10−5 

(2.32%) 

1.23 × 10−4 

(2.09%) 
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Table 4. Sampling centers of single-MPP IS and multiple-MPP IS (example 2). The sampling center 

of single-MPP IS is [−1.67, −0.69, −3.19] (Equation (12)), and all points listed in the table are adopted 

to construct the auxiliary PDF of multiple-MPP IS (Equation (14)). 

Time Instant (t) ,t

Xμ  

0 [−1.88, −0.776, −3.43] 

5 [−1.83, −0.754, −3.37] 

10 [−1.78, −0.733, −3.31] 

15 [−1.72, −0.711, −3.25] 

20 [−1.67, −0.69, −3.19] 

4.3. A Cantilever Tube Structure 

A cantilever tube structure, modified from a previously published example [18,23], 

is studied in this section. It is adopted herein to investigate the performance of the pro-

posed IS when involving multiple stochastic processes. As shown by Figure 6, four time-

variant loads, i.e., F1(t), F2(t), P(t) and T(t), are applied to the cantilever tube. The yield 

stress is considered to linearly decrease over time resulting from the material degradation. 

The decreasing model is: 

 (20)

where σ0 is the initial yield stress.  

 

Figure 6. The cantilever tube structure submitted to four time-variant loads. 

The time interval of interest in this example is [0, 5 year]. The performance function 

associated with the cantilever tube is: 

 (21)

where X = [d, h, σ0]T and Z(t) = [F1(t), F2(t), T(t), P(t)]T. σmax(t) is the maximum Von Mises 

stress having the following expression: 
2 2

max ( ) ( ) 3 ( )x zxt t t     

  

where, 

   1 1 2 2( )sin ( )sin ( ) ( )
( )

2
x

F t F t P t M t d
t

A I

 


 
   

   0  1 0.01u t t  

max( , ( ), ) ( ) ( )uG t t t t  X Z



Sustainability 2021, 13, 7776 13 of 17 
 

( )
( )

4
zx

T t d
t

I
   

   1 1 1 2 2 2( ) ( )cos ( ) cosM t F t L F t L    

2 2( 2 )
4

A d d h


      

4 4( 2 )
64

I d d h


      

Distribution parameters of X and Z(t) are listed in Table 5. The time interval [0, 5 

year] is uniformly discretized into 1000 time instants. Crude MCS with 109 random simu-

lations is still regarded as the benchmark. Figures 7 and 8 and Table 6compare the pro-

posed IS against crude MCS, and Table 7 lists the sampling centers of auxiliary PDFs of 

the proposed IS. It can be found that ,t

Xμ  does not change much over the time interval 

[0, 5], and the performance of the auxiliary PDFs proposed in Section 3.2 seems evenly 

matched. Results indicate that the proposed IS requires significantly fewer simulations 

than crude MCS while maintaining the accuracy level of the estimate of Pf,c(0,5). Using the 

same size of random population, the proposed method achieves much more accurate re-

sults. Both auxiliary PDFs proposed in Section 3.2 have remarkable advantages over crude 

MCS. 

Table 5. Distribution information of input variables (example 3). 

Variable Distribution Mean Standard Deviation 
Autocorrelation Coefficient 

Function 

F1(t) (N) 
Gaussian pro-

cess 
1800 180 2 1exp( / 4)t t    

F2(t) (N) 
Gaussian pro-

cess 
1800 180 2 1exp( )t t    

T(t) 

(Nm) 

Gaussian pro-

cess 
1900 190 

2

2 1exp( 4 )t t    

P(t) (N) 
Gaussian pro-

cess 
1800 180 2 1exp( 4 )t t    

d (mm) Normal 42 0.5 - 

h (mm) Normal 5 0.1 - 

σ0 (MPa) Normal 560 56 - 

L1 (mm) Deterministic 60 - - 

L2 (mm) Deterministic 120 - - 

θ1 (°) Deterministic 10 - - 

θ2 (°) Deterministic 5 - - 
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Figure 7. Lines of f,c (0, )P t  and the coefficient of variation of f,c (0, )P t  over [0, 5 year] (example 3). 

 

Figure 8. Lines of the instantaneous failure probability f,i (0, )P t  and the corresponding coefficient of variation over [0, 5] 

(example 3). 
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Table 6. Results of example 3. 

Method f,cP̂ ( fP )
 

t = 0 [0,1] [0,2] [0,3] [0,4] [0,5] 

Benchmark NMC = 109 6.83 × 10−4 2.25 × 10−3 3.92 × 10−3 5.73 × 10−3 7.76 × 10−3 9.94 × 10−3 

MCS 

NMC = 104 
1.5 × 10−3 

(25.8%) 

3.7 × 10−3 

(16.4%) 

5.5 × 10−3 

(13.4%) 

7.2 × 10−3 

(11.7%) 

9.9 × 10−3 

(10%) 

1.13 × 10−2 

(9.35%) 

NMC = 105 
8.2 × 10−4 

(11%) 

2.43 × 10−3 

(6.41%) 

4.17 × 10−3 

(4.89%) 

6.02 × 10−3 

(4.06%) 

7.92 × 10−3 

(3.54%) 

1.03×10−2 

(3.11%) 

Single-MPP IS 

NMC = 103 
6.5 × 10−4 

(15.3%) 

2.06 × 10−3 

(13.6%) 

4.32 × 10−3 

(10.6%) 

6.11 × 10−3 

(10.9%) 

8.49 × 10−3 

(10.4%) 

1.08 × 10−2 

(9.9%) 

NMC = 104 
6.71 × 10−4 

(5.46%) 

2.16 × 10−3 

(4.23%) 

2.72 × 10−3 

(3.67%) 

5.42 × 10−3 

(3.31%) 

7.55 × 10−3 

(2.99%) 

9.82 × 10−3 

(3.03%) 

Multiple-MPP IS 

NMC = 103 
6.7 × 10−4 

(16%) 

2.35 × 10−3 

(12.7%) 

4.05 × 10−3 

(9.69%) 

5.6 × 10−3 

(11.5%) 

8.37 × 10−3 

(10.3%) 

1.08 × 10−2 

(9.54%) 

NMC = 104 
6.81 × 10−4 

(5.5%) 

2.16 × 10−3 

(4.08%) 

3.78 × 10−3 

(4.18%) 

5.42 × 10−3 

(3.62%) 

7.51 × 10−3 

(3.1%) 

9.85 × 10−3 

(3.03%) 

Table 7. Sampling centers of single-MPP IS and multiple-MPP IS (example 3). 

Time Instant (t) ,t

Xμ  

0 [−0.554, −0.25, −2.67] 

1.25 [−0.544, −0.245, −2.59] 

2.5 [−0.534, −0.24, −2.52] 

3.75 [−0.523, −0.236, −2.44] 

5 [−0.511, −0.23, −2.37] 

5. Conclusions 

This paper develops a framework of importance sampling for time-variant reliability 

analysis. Considering that time-invariant random variables are commonly involved in 

time-variant reliability analysis, the basic idea of the proposed framework is conducting 

IS on time-invariant variables to generate more failure trajectories of time-variant perfor-

mance function. Two auxiliary PDFs based on MPP(s) are proposed in Section 3.2. Three 

examples are utilized to validate the efficiency of the proposed IS. The results show that 

the proposed IS remarkably reduces the size of the random population and saves compu-

tational cost when the cumulative failure probability over the time interval of interest is 

small (example 2 and 3). When the cumulative failure probability over the time interval 

of interest is large (example 1), the auxiliary PDFs proposed in Section 3.2 may show little 

advantage in terms of estimating Pf,c(t0,te). However, the proposed IS is capable of effi-

ciently providing accurate curves of cumulative failure probability Pf,c(t0,t) and instanta-

neous failure probability Pf,i(t0,t) ( 0[ , ]et t t ). 

It is worth noting that auxiliary PDFs available for the proposed IS framework are 

not limited to the proposed two. More robust auxiliary PDF is in demand to address com-

plex time-variant performance function. It is obvious that the proposed IS framework can-

not deal with the time-variant problem involving no time-invariant random variables. An 

IS framework conducting both time-invariant random variables and stochastic processes 

may be able to address the limitation of the proposed framework and further increase the 

computational efficiency. In addition, when combining with surrogate models, e.g., adap-

tive Kriging model, the proposed IS framework can be used to perform time-variant reli-

ability analysis involving time-consuming performance function. These ideas may be dis-

cussed in future work. 
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6. Replication of results 

The details of the proposed IS are provided in Sections 3 and 4. The proposed IS is 

easy to use and authors are confident that all results of the proposed method can be rep-

licated by readers with MATLAB. Readers are encouraged to contact the corresponding 

author by email if they have any questions about the proposed IS framework. 
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