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Abstract: Demand has increased for analytical solutions to determine the velocities and dispersion
coefficients that describe solute transport with spatial, temporal, or spatiotemporal variations en-
countered in the field. However, few analytical solutions have considered spatially, temporally, or
spatiotemporally dependent dispersion coefficients and velocities. The proposed solutions consider
eight cases of dispersion coefficients and velocities: both spatially dependent, both spatiotemporally
dependent, both temporally dependent, spatiotemporally dependent dispersion coefficient with
spatially dependent velocity, temporally dependent dispersion coefficient with constant velocity,
both constant, spatially dependent dispersion coefficient with spatiotemporally dependent velocity,
and constant dispersion coefficient with temporally dependent velocity. The spatial dependence
is linear, while the temporal dependence may be exponential, asymptotical, or sinusoidal. An
advection–dispersion equation with these variable coefficients was reduced to a non-homogeneous
diffusion equation using the pertinent coordinate transform method. Then, solutions were obtained
in an infinite medium using Green’s function. The proposed analytical solutions were validated
against existing analytical solutions or against numerical solutions when analytical solutions were
unavailable. In this study, we showed that the proposed analytical solutions could be applied for
various spatiotemporal patterns of both velocity and the dispersion coefficient, shedding light on
feasibility of the proposed solution under highly transient flow in heterogeneous porous medium.

Keywords: analytical solution; Green’s function; pertinent coordinate transformation; spatiotempo-
rally varying variables

1. Introduction

The dispersion coefficient and pore velocity in an advection-dispersion process have
generally been treated as constants in previous studies [1–5]. However, recharge rates vary
regionally and temporally, and therefore groundwater velocity can change over time and
space. Specifically, groundwater flow around a river can shift between river-to-land and
land-to-river flow patterns due to changes in rainfall and evapotranspiration conditions.
Moreover, groundwater levels near the sea fluctuate continuously due to tides. Groundwa-
ter flow can vary spatially due to pumping and injection for contaminant remediation [6,7].
Groundwater velocity can also vary with distance under steady recharge conditions [8,9],
and similar spatially varying velocity can be observed in open channel flows where water
velocity increases proportional to distance due to steady lateral inflow that is uniformly
distributed over its whole length [10]. Additionally, velocity may change temporally in
response to the rainy season or tidal effects [11,12]. In all of these situations, the groundwa-
ter velocity in a system may change temporally, spatially, or spatiotemporally. Therefore,
the dispersion coefficient may also change temporally, spatially, or spatiotemporally.
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In various previous studies, groundwater velocity has often been treated as a con-
stant mean value [13–19]. In theoretical and field analyses, longitudinal dispersivity is
scale-dependent due to the influence of natural heterogeneities that produce irregular
flow patterns at the field scale [20–22]. On the other hand, temporally variable dispersion
coefficients have also been considered by many researchers [23–27]. Field experiments and
numerous theoretical studies have demonstrated that dispersion coefficients are functions
of time or travel distance [15,23]. Following Rehfeldt and Gelhar [21], dispersivity in tran-
sient flow is a function of both the spatial and temporal variability through the interrelation
of bulk hydraulic conductivity and the flow factor.

Accordingly, in order to account for situations characterized by various spatiotempo-
ral patterns of both velocity and the dispersion coefficient, many researchers have provided
analytical solutions under specific types of both velocity and dispersion coefficient they
hypothesized. For example, Su et al. [15], Basha and El-Habel [28], and Aral and Liao [25]
provided analytical solutions for a temporally dependent dispersion coefficient with a uni-
form flow field, and these analytical solutions were compared to the breakthrough curves
observed in laboratory testing by Su et al. [15]. Selvadurai [29] provided an analytical
solution with a constant diffusion coefficient and time-dependent velocity for the situation
in which transient flow is induced at the inflow boundary. Unlike either constant velocity
or dispersion coefficients as above, Huang et al. [30], Zamani and Bombardelli [12] and
Suk [31] assumed both the dispersion coefficient and velocity to be spatially, temporally,
and spatiotemporally dependent, respectively, for solving their problems, and provided
analytical solutions. Furthermore, in order to analyze the effects of velocity fluctuations
on dispersive mixing in a porous medium, Sternberg et al. [32] used a spatiotemporally
dependent dispersion coefficient. Besides, in order to explain solute transport behavior in
much less permeable layers (such as a rock matrix or aquitard) of a stratified multi-layer
system, Zhou et al. [33] applied the concept of a scale-dependent diffusion coefficient.

Demand for consideration of various velocities and dispersion coefficients mea-
sured under actual field conditions is increasing, but few analytical solutions are avail-
able that consider spatiotemporal variation in both velocity and the dispersion coeffi-
cient [31,34–36], although many analytical solutions exist [9,15,25,28,29,32,37–50]. Specif-
ically, Kumar et al. [34] and Sanskrityayn et al. [35] employed a dispersion coefficient
proportional to the square of the velocity, while Sanskrityayn al. [36] and Suk [31] allowed
for a linear relationship between the dispersion coefficient and advection velocity. However,
situations in which the dispersion coefficient is linearly proportional to velocity are of great
hydrological importance in the groundwater literature, and therefore a linear relationship
between the dispersion coefficient and velocity has been widely applied in numerous
previous studies. Suk [31] proposed an analytical solution with spatiotemporal variations
in both velocity and the dispersion coefficient in a homogeneous aquifer based on a linear
relationship between velocity and the dispersion coefficient, but did not consider velocity
variability in a heterogeneous aquifer. In addition, the analytical solution obtained by San-
skrityayn et al. [36] with both temporal and spatial dependency was limited to only three
cases: both dispersion coefficient and velocity spatially dependent, both spatiotemporally
dependent, and both temporally dependent.

However, the present proposed analytical solution considers eight types of analytical
solutions for various dispersion coefficients and velocities, as shown in Table 1: dispersion
coefficient and velocity both spatially dependent, both spatiotemporally dependent, both
temporally dependent, spatiotemporally dependent dispersion coefficient with spatially
dependent velocity, temporally dependent dispersion coefficient with constant velocity,
both dispersion coefficient and velocity constant, spatially dependent dispersion coefficient
with spatiotemporally dependent velocity, and constant dispersion coefficient with tem-
porally dependent velocity. Accordingly, the analytical solutions proposed in this study
are an extension of those in Sanskrityayn et al. [36]. Furthermore, the proposed analytical
solutions can be degenerated to other existing analytical solutions, including those of Basha
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and El-Habel [28], Sanskrityayn et al. [36], Yeh [51], De Marsily [52], Selvadurai [29], and
Singh et al. [11], as shown in Table 1 and described in Section 3.

Table 1. Application areas of the proposed analytical solution.

Sect.
Dispersion Coefficient, D Velocity, u Source

Ref.a C b L c T d S a C b L c T d S § I † C

2.3.1

• • • Not existed
• • • Not existed

• • • [28]
• • • [28]

2.3.2

• • • [36]
• • • [36]

• • • [51]
• • • [52]

2.3.3

• • • Not existed
• • • Not existed

• • • [29]
• • • [29]

2.3.4

• • • [36]
• • • [36]

• • • [36]
• • • [11,36]

a C is Constant, b L is Linear distance-dependent, c T is Time-dependent, d S is Spatiotemporally dependent, § I is Instantaneous point
injection, and † C is Continuous point injection. Time-dependent indicates a non-dimensional temporal function, which could be expressed
as an exponential, asymptotical, or sinusoidal function.

The objective of this study is to present analytical solutions for various types of
dispersion coefficients and velocities to meet the requirement for consideration of various
dispersion coefficients and velocities under field conditions. In this study, the spatial
dependence is assumed to be linear and the temporal dependence to be exponential,
asymptotical, or sinusoidal. To solve those problems, a general form of the advection
dispersion equation (ADE) with spatially, temporally, or spatiotemporally dependent
parameters was reduced into a diffusion equation with a constant diffusion coefficient
using appropriate transformation equations. Then, Green’s function method (GFM) was
employed to obtain analytical solutions because it can handle easily a non-homogeneous
boundary value problem. GFM is based on the superposition principle and provides
a solution to an inhomogeneous differential equation with a driving term that is delta
function. In addition, GFM is a convenient method for solving more complicated non-
homogeneous diffusion equation and Green’s function can easily be obtained through
Fourier transform in infinite medium.

2. Mathematical Formulation and Analytical Solution

The general form of the linear ADE in a one-dimensional infinite medium [53] can be
written as:

∂c
∂t

=
∂

∂x

[
D(x, t)

∂c
∂x
− u(x, t)c

]
+ q(x, t),−∞ < x < ∞, t > 0 (1)

where c(x, t), D(x, t), u(x, t), and q(x, t) are the concentration, dispersion coefficient, pore
velocity, and the sink/source term, respectively, at position x and time t. Initially, the
domain is assumed to be solute free. For the initial conditions,

c(x, t = 0) = 0,−∞ < x < ∞ (2)
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We used the following expressions for the dispersion coefficient and pore velocity:

D(x, t) = D0h1(x, t) = D0(axφ1(t) + φ2(t)) (3)

u(x, t) = u0h2(x, t) = u0(axg(t) + φ(t)) (4)

where D0 and u0 are the dispersion coefficient and pore velocity obtained at the local scale,
respectively, and a is the spatial dependence parameter, such that ax is dimensionless. φ1(t),
φ2(t), and g(t) are dimensionless time functions determined by the user. The dimensionless
function φ(t) in Equation (4) is determined from φ1(t), φ2(t), and g(t) through derivation
of the pertinent transformation under some restrictions: the spatial dependence parameter
a cannot exceed the range of 0.05 to 0.1 for porous medium [40], the local-scale dispersion
coefficient D0 is limited to values of less than 1, the local-scale velocity of u0 is sufficiently
greater than 0, and the temporal dependent function is limited to exponential, asymptotical,
or sinusoidal.

Using the dispersion coefficient and velocity expressed in Equations (3) and (4),
respectively, Equation (1) becomes:

∂c
∂t

= D0h1(x, t)
∂2c
∂x2−u0

[
h2(x, t)− D0

u0

∂h1(x, t)
∂x

]
∂c
∂x
−au0g(t)c + q(x, t) (5)

The first-order term is eliminated using the transformation

c(x, t) = K(x, t) exp

−au0

t∫
0

g(t′)dt′

 (6)

Equation (5) becomes:

∂K
∂t

= D0h1(x, t)
∂2K
∂x2 −u0

[
h2(x, t)− D0

u0

∂h1(x, t)
∂x

]
∂K
∂x

+q(x, t) exp

au0

t∫
0

g(t′)dt′

 (7)

where t′ denotes the dummy variable. The initial condition in Equation (2) becomes:

K(x, t = 0) = 0;−∞ < x < ∞ (8)

The following two coordinate transformation equations were developed (for details,
see Appendix A):

X2 =
4
a2

∣∣∣∣ axφ1(t) + φ2(t)
β(t)φ1(t)

∣∣∣∣ (9)

and

T =

t∫
0

φ1(t′)
β(t′)

dt′ (10)

where

β(t) = exp

au0

t∫
0

g(t′)dt′

 (11)

φ(t) in Equation (4) is obtained as follows (see Appendix A):

φ(t) =
1

(au0φ1)

[
au0g(t)φ2 +

a2D0φ2
1

2
+

φ2φ1
′

φ1
− φ2

′
]

(12)
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where prime marks are used to denote differentiation with respect to t. Using the transfor-
mations expressed in Equations (9) and (10), Equation (7) is reduced to a non-homogeneous
diffusion equation with a constant coefficient, as follows:

∂K(X, T)
∂T

= D0
∂2K(X, T)

∂X2 +
Q(X, T)

φ1(t)
β2(t) (13)

where Q(X, T) = q
(

a
4 X2β− φ2

aφ1
, l−1[T(t)]

)
= q(x, t). Here, l−1[T(t)] = t. X and T are

new spatial and temporal variables, respectively. The initial condition for the diffusion
equation becomes:

K(X, T = 0) = 0,−∞ < X < ∞, T > 0 (14)

Using GFM [28,51,54], the analytical solution of the diffusion Equation (13), subject to
the initial conditions described by Equation (14), can be obtained as:

K(X, T) =
T∫

0

∞∫
−∞

1√
4πD0(T − ζ)

exp

{
− (X− χ)2

4D0(T − ζ)

}
Q(χ, ζ)

φ1(ζ)
β2(ζ)dχdζ (15)

where χ and ζ are dummy variables. Using the transformations in Equations (6) and (9), and (10),
the solution of concentration can be written as:

c(x, t) =
t∫

0

∞∫
0

Q1(ξ, t0)

β(t)
√

4πD0(T − ζ)
exp

(
− (X− η)2

4D0(T − ζ)

)
×

√
β(t0)

aξ
× dξdt0 (16)

where η = 2
√

ξ
aβ(t0)

, ζ =
t0∫
0

φ1(t′)
β(t′) dt′, and Q1(ξ, t0) = q

[
ξ − φ2(t0)

aφ1(t0)
, t0

]
.

2.1. Instantaneous Point Injection

An instantaneous point source q(x, t) in Equation (1) was assumed to be injected at
x = x0 · q(x, t) can be defined as:

q(x, t) = Mδ(x− x0)δ(t) (17)

where M is the injected pollutant mass per unit area in the porous medium and δ(•) is the
Dirac delta function. An analytical solution can be obtained in the case of an instantaneous
source using Equation (16), as follows:

c(x, t) =
M

β(t)
1√

4πD0T
exp

− 1
a2D0T


√

φ2(t)+aφ1(t)x
β(t)φ1(t)

−
√

φ2(0)+ax0φ1(0)
φ1(0)


2
×

√
φ1(0)

ax0φ1(0) + φ2(0)
(18)

2.2. Continuous Point Injection

A continuous source injected at x = x0 at a groundwater velocity of u(x, t) can be
defined as

q(x, t) = C0u(x, t)δ(x− x0), t > 0 (19)

where C0 is the injected concentration The analytical solution for solute transport in the
case of a continuous source as defined in Equation (19) can be obtained using Equation (16) as
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c(x, t) =
C0

β(t)

t∫
0

u(x0, t0)√
4πD0(T − ζ)

exp

− 1
a2D0(T − ζ)


√

φ2(t)+axφ1(t)
β(t)φ1(t)

−
√

φ2(t0)+ax0φ1(t0)
β(t0)φ1(t0)


2
×

√
β(t0)φ1(t0)

ax0φ1(t0) + φ2(t0)
dt0 (20)

2.3. Specific Cases of Dispersion Coefficient and Velocity

The analytical solutions for both instantaneous and continuous sources are presented
here for eight specific cases of dispersion coefficient and velocity variations (Table 1). The
first case is a spatiotemporally dependent dispersion coefficient and spatially dependent
velocity. The second case represents both the dispersion coefficient and velocity being
spatially dependent. The third case involves a spatially dependent dispersion coefficient
with spatiotemporally dependent velocity. In the fourth case, both the dispersion coefficient
and velocity are spatiotemporally dependent. These four cases can be degenerated into
the following additional four cases using a very small value of the spatial dependence
parameter, namely a temporally dependent coefficient with constant flow, both dispersion
coefficient and velocity constant, constant dispersion coefficient with temporally dependent
velocity, and both dispersion coefficient and velocity temporally dependent (Table 1). The
second and fourth cases were also explored by Sanskrityayn et al. [36] and therefore the
analytical solution proposed in this study is an extension of that of Sanskrityayn et al. [36].
In Appendix B, the present analytical solution is mathematically derived as a generalization
of the analytical solution of Sanskrityayn et al. [36].

2.3.1. Case 1: Spatiotemporally Dependent Dispersion Coefficients and Spatially
Dependent Velocities

In the case of φ1(t) = φ2(t) = ψ(t), and g(t) = 1, φ(t) is determined as
φ(t) = 1 + a

2
D0
u0

ψ(t) using Equation (12). The spatial dependence parameter a cannot
exceed the range of 0.05 to 0.1 for a porous medium [40]. If the local-scale dispersion
coefficient D0 is limited to values of less than 1, the local-scale velocity of u0 is sufficiently
greater than 0, and ψ(t) is limited to exponential, asymptotical, or sinusoidal functions,
then φ(t) ≈ 1. Under the assumptions φ1(t), φ2(t), g(t), and φ(t), the dispersion co-
efficient and velocity are D(x, t) = D0(1 + ax)ψ(t) and u(x, t) = u0(1 + ax) based on
Equations (3) and (4), respectively. In this case, a spatiotemporally dependent dispersion
coefficient and spatially dependent velocity are considered. From Equations (18) and (20),
the respective solutions for an instantaneous source and continuous source injected at
x0 = 0 become:

c(x, t) =
M exp(−au0t)√

4πD0T
exp

− 1
D0T

{√
(1 + ax) exp(−au0t)− 1

a

}2
 (21)

and

c(x, t) = C0u0

t∫
0

exp(−au0t)
√

exp(au0t0)√
4πD0(T − ζ)

exp

 − 1
D0(T−ζ){√

(1+ax) exp(−au0t)−
√

exp(−au0t0)
a

}2

[u0 +
aD0ψ(t0)

2

]
dt0. (22)

Furthermore, four expressions of ψ(t) can be considered, as can the corresponding
expressions for the new time variable T in Equations (21) and (22), as follows:

(i) ψ(t) = exp(−mt) and T =
1−exp(−mt−au0t)

m+au0
.

(ii) ψ(t) = 1/(1 + mt) and T =
t∫

0

exp(−au0t′)
(1+mt′) dt′.
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(iii) ψ(t) = 1 + mt/(1 + mt) and T =
2[1−exp(−au0t)]

au0
−

t∫
0

exp(−au0t′)
(1+mt′) dt′.

(iv) ψ(t) = t/(t + k) and T =
t∫

0

t′
t′+k exp(−au0t′)dt′.

From Equations (21) and (22), an analytical solution can easily be obtained for a tempo-
rally dependent dispersion coefficient with uniform flow with an instantaneous source and
a continuous source, respectively. If a→ 0 , then D(x, t) = D0ψ(t) and u(x, t) = u0. Basha
and El-Habel [28] provided an analytical solution for a temporally dependent dispersion
coefficient D0ψ(t) with uniform flow u0 in the case of ψ(t) = t/(t + k). The analytical
solutions of Basha and El-Habel [28] for instantaneous and continuous sources can be
obtained using Equations (21) and (22) for a→ 0 , respectively.

2.3.2. Case 2: Both Dispersion Coefficient and Velocity Spatially Dependent

In the case of φ1(t) = g(t) = 1 and φ2(t) = b, φ(t) is determined as φ(t) = b + a
2

D0
u0

using Equation (12). If the local-scale dispersion coefficient D0 is limited to less than 1
and u0 >> 0, then φ(t) ≈ b for values of the spatial dependence parameter a from 0.05
to 0.1 [40]. Under such φ1(t), φ2(t), g(t), and φ(t) conditions, the spatially dependent
dispersion coefficient and velocity are D(x, t) = D0(b + ax) and u(x, t) = u0(b + ax) based
on Equations (3) and (4), respectively. The corresponding analytical solution with the
dispersion coefficient and velocity described above can be obtained using Equation (18) for
an instantaneous source:

c(x, t) =
M exp(−au0t)√

4πD0T
exp

− 1
D0T

{√
(b + ax) exp(−au0t)−

√
b + ax0

a

}2
×√ 1

ax0 + b
(23)

where T = 1
au0

[1− exp(−au0t)]. An analytical solution for a continuous source injected at
x = x0 can be obtained using Equation (20):

c(x, t) =
C0

exp(au0t)

t∫
0

u0(b + ax0) +
aD0

2√
4πD0(T − ζ)

exp

 − 1
D0(T−ζ){√

(b+ax) exp(−au0t)−
√

(b+ax0) exp(−au0t0)
a

}2

×
√

exp(au0t0)

ax0 + b
dt0 (24)

If x0 = 0, b = 1 and a→ 0 in Equation (23), then D(x, t)→ D0 , u(x, t)→ u0 ,√
(b+ax) exp(−au0t)−1

a → x−u0t
2 , and T → t . Accordingly, the solution of Equation (23) ap-

plies to the case of both a constant dispersion coefficient and velocity given by Yeh [51],
Haberman [54], and Basha and El-Habel [28] for an instantaneous source. In other words, if

b = 1 and a→ 0 in Equation (24), the expression
√

(b+ax) exp(−au0t)
a −

√
(b+ax0) exp(−au0t0)

a

approaches x−x0−u0(t−t0)
2 and T− ξ becomes t− t0. Accordingly, the solution of Equation (24)

for a continuous source is as follows:

c(x, t) = C0u0

t∫
0

1√
4πD0(t− t0)

exp
{
− 1

4D0(t− t0)
[x− x0 − u0(t− t0)]

2
}

dt0 (25)

De Marsily [52] obtained an analytical solution using both the dispersion coefficient
and velocity constant in a semi-infinite homogeneous medium for a continuous source
injected at x = x0, which is equivalent to Equation (25). Assuming x0 = 0 in Equation (25),
we can obtain the solutions of Yeh [51], Beck et al. [55], and Yeh and Yeh [56] with both the
dispersion coefficient and velocity constant and a continuous point source at the origin.
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2.3.3. Case 3: Spatially Dependent Dispersion Coefficient with Spatiotemporally
Dependent Velocity

In the case of φ1(t) = φ2(t) = 1, g(t) = ψ(t), φ(t) is determined as φ(t) = ψ(t) + a
2

D0
u0

using Equation (12). If the local-scale dispersion coefficient of D0 is limited to values
less than 1, and u0 >> 0, then φ(t) ≈ ψ(t) for the range of a from 0.05 to 0.1 [40].
Under such φ1(t), φ2(t), g(t), and φ(t) conditions, the dispersion coefficient and velocity
are D(x, t) = D0(1 + ax) and u(x, t) = u0(1 + ax)ψ(t), respectively. In this case, the
dispersion coefficient is spatially dependent and velocity is spatiotemporally dependent,
and Equations (18) and (20) for the instantaneous and continuous sources, respectively, can
be rewritten as follows.

c(x, t) =
M

β(t)
1√

4πD0T
exp

− 1
a2D0T

{√
1 + ax

β(t)
− 1

}2 (26)

and

c(x, t) =
C0u0

β(t)

t∫
0

u0ψ(t0) + aD0/2√
4πD0(T − ζ)

exp

− 1
a2D0(T − ζ)

{√
1 + ax

β(t)
−
√

1
β(t0)

}2×√β(t0)dt0 (27)

where β(t) = exp

(
au0

t∫
0

ψ(t′)dt′
)

and T =
t∫

0

dt′
β(t′) . In accordance with the previous

section, exponentially decelerating, asymptotically decelerating and asymptotically ac-
celerating forms of ψ(t) are considered and corresponding expressions for the new time
variable T and β(t) can be obtained as follows:

(i) ψ(t) = exp(−mt). Using Equations (10) and (11), we obtain T =
t∫

0
exp

[ au0
m {exp(−mt′)− 1}

]
dt′

and β(t) = exp
[ au0

m {1− exp(−mt)}
]
.

(ii) ψ(t) = 1/(1 + mt), and thus T =
{
(1 + mt)1−au0/m − 1

}
/(m− au0) and β(t) = (1 + mt)au0/m.

(iii) ψ(t) = 1 + mt/(1 + mt); therefore, T =
t∫

0
exp(−2au0t′)(1 + mt′)au0/mdt′ and

β(t) = exp(2au0t)/(1 + mt)au0/m.

If a→ 0 , the analytical solution with a constant dispersion coefficient, temporally
dependent velocity, and continuous source can be obtained from Equation (27), which is
the same as the analytical solution provided by Selvadurai [29].

2.3.4. Case 4: Both Dispersion Coefficient and Velocity Spatiotemporally Dependent

In the case of φ1(t) = φ2(t) = g(t) = ψ(t), φ(t) is calculated as φ(t) = ψ(t) + a
2

D0
u0

ψ(t)
using Equation (12). If the local-scale dispersion coefficient of D0 is limited to values
of less than 1, u0 >> 0, and ψ(t) is limited to exponential, asymptotical, or sinusoidal
functions, then φ(t) ≈ ψ(t) for the range of a from 0.05 to 0.1 [40]. Under such φ1(t),
φ2(t), g(t), and φ(t) conditions, the dispersion coefficient and velocity are given by
D(x, t) = D0(1 + ax)ψ(t) and u(x, t) = u0(1 + ax)ψ(t), respectively. Accordingly, the dis-
persion coefficient and velocity are both spatiotemporally dependent. Using Equation (10),
the new time variable T can be expressed as T = 1

au0

[
1− 1

β(t)

]
, and β(t) can be obtained

using Equation (11). The solutions for an instantaneous source and a continuous source
can be obtained using Equations (18) and (20), respectively, as:

c(x, t) =
M

β(t)
1√

4πD0
au0

[1− 1/β(t)]
exp

− u0

aD0[1− 1/β(t)]

{√
1 + ax

β(t)
− 1

}2 (28)
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c(x, t) =
C0

β(t)

t∫
0

u0[ψ(t0) + aD0/2]√
4πD0

au0
[1/β(t0)− 1/β(t)]

exp

− u0

aD0[1/β(t0)− 1/β(t)]


√

1+ax
β(t)

−
√

1
β(t0)


2
×√β(t0)dt0 (29)

In accordance with previous sections, exponentially decelerating, asymptotically
decelerating, asymptotically accelerating, and sinusoidal forms of ψ(t) are considered
and the corresponding expressions for the new time variable T and β(t) can be obtained
as follows:

(i) ψ(t) = exp(−mt), and thus β(t) = exp{au0(1− exp(−mt))/m}.
(ii) ψ(t) = 1/(1 + mt), and thus β(t) = (1 + mt)au0/m.
(iii) ψ(t) = 1 + mt/(1 + mt), and thus β(t) = exp(2au0t)/(1 + mt)au0/m.

(iv) ψ(t) = 2 + cos(mt), and thus β(t) = 2t + sin(mt)
m .

By setting a→ 0 , analytical solutions for solute transport from instantaneous and
continuous sources in the case of both temporally dependent dispersion coefficients and
velocity can be obtained simply from Equations (28) and (29), respectively. Notably,
dispersion coefficients and velocities corresponding to ψ(t) = exp(−mt) were used by
Singh et al. [11] to obtain analytical solutions with temporal dependence of both dispersion
coefficients and velocity for a continuous source, which can be obtained from Equation (29)
by substituting ψ(t) = exp(−mt) and β(t) = exp{au0(1− exp(−mt))/m}. Similarly, the
analytical solutions for a continuous source given by Zamani and Bombardelli [12] under
conditions of both dispersion coefficients and velocity being temporally dependent, corre-
sponding to ψ(t) = 2 + cos(mt), can be obtained using Equation (29) with substitutions
of ψ(t) = 2 + cos(mt) and β(t) = 2t + sin(mt)

m . In Zamani and Bombardelli [12], m (day−1)
defines the seasonal fluctuation frequency of groundwater. In tropical regions, recharge
into the aquifer is maximal after the rainy season and is minimal in summer.

3. Verification and Discussion

This section describes the verification of the proposed analytical solutions through
comparison against either existing analytical solutions or the numerical solution from
two-dimensional subsurface flow, fate and transport of microbes and chemicals (2DFAT-
MIC) [57]. When existing analytical solutions were available, we compared the proposed
solutions against existing analytical solutions; otherwise, comparison was performed
against the numerical solutions of 2DFATMIC. To guarantee that the numerical solution
had negligible numerical error, 2DFATMIC employed a sufficiently fine grid and small
time step (∆x = 0.005 m and ∆t = 0.01 day) to maintain low Courant and Peclet numbers.
To assess the performance of the proposed analytical solution with various dispersion
coefficients and velocities, concentration distributions were calculated for eight different
dispersion coefficients and velocities, as described above (Table 2). All input parameters
used for all cases are presented in Table 2. A schematic diagram of the flow region including
initial condition, boundary domains, and sink/sources for solute transport is shown in
Figure 1.

In this study, the effect of spatial dependence on solute transport is reflected using
two values of a (m−1). The larger value of the spatial dependence parameter a (m−1)
represents a heterogeneous medium and the smaller value of the spatial dependence
parameter a (m−1) is too small for the dispersion coefficient or velocity to vary with
position, and thus represents a homogeneous medium. Therefore, we determined the
dispersion coefficient and velocity for the heterogeneous case using the larger value of a,
and for the homogeneous case using a very small a.

Figure 2 shows the proposed analytical solutions obtained with a spatiotemporally
dependent dispersion coefficient and spatially dependent velocity, representing Case 1 in
Section 2.3.1. In this case, no previous analytical solution exists, and therefore verification
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was performed through comparison with the numerical solution of 2DFATMIC. To describe
solute transport for a spatiotemporally dependent dispersion coefficient and spatially
dependent velocity under Case 1 from an introduced instantaneous source, solutions of
Equation (21) for both the dispersion coefficient and velocity are shown for two dispersion
coefficient expressions, ψ(t) = 1 + mt/(1 + mt) and ψ(t) = 1/(1 + mt), and for two
spatial values a, 0.1 m−1 and 0.0001 m−1. The input parameters used for the proposed
analytical solution illustrated in Figure 2 are indicated in Table 2. The effect of temporal
dependence of the dispersion coefficient is illustrated in Figure 2, which shows solutions
to Equation (21) for asymptotically accelerating expressions of ψ(t) = 1 + mt/(1 + mt)
and asymptotically decelerating expressions of ψ(t) = 1/(1 + mt), described by cases (ii)
and (iii) in Section 2.3.1, respectively. As shown in the upper-left subfigure of Figure 2, the
asymptotically accelerating form of ψ(t) = 1 + mt/(1 + mt) increases over time, but the
asymptotically decelerating form of ψ(t) = 1/(1 + mt) decreases over time. Accordingly,
the dispersion coefficient for the accelerating form increases over time, while that for the
decelerating form decreases over time. Because the dispersion coefficient is higher for the
accelerating form than for the decelerating form at any time t, the peak concentration is
lower for the accelerating function than for the decelerating function with both values of a,
as shown in Figure 2.
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Figure 2. Comparison of analytical solutions for an instantaneous source from Equation (21) with a
spatiotemporally dependent dispersion coefficient and spatially dependent velocity (a = 0.1 m−1)
shown as solid curves and with a temporally dependent dispersion coefficient and constant velocity
(a = 0.0001 m−1) shown as dashed curves, with numerical solutions of 2DFATMIC at t = 25 days.
Temporal values ψ(t) are shown in the upper-left subfigure for asymptotically decelerating and
asymptotically accelerating temporal functions, respectively.
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Table 2. Parameters used for analysis of all examples.

Figs u0
(m/Day)

D0
(m2/Day)

x0
(m)

t
(day)

a
(m−1)

b
(-)

m (Day−1),
k (Day)

M (g/m2),
C0 (g/m3)

Figure 2 D(x,t) = D0(1 + ax)ψ(t) and u(x) = u0(1 + ax)
0.20 0.25 0 25 0.1, 0.0001 1 m = 0.05 M = 1

D(t) = D0ψ(t) and u = u0
Figure 3a 0.25 1.0 0 5 0.1, 0.0001 1 k = 0,20,50 M = 1
Figure 3b 0.25 1.0 0 5 0.1, 0.0001 1 k = 0,20,50 C0 = 1

Figure 4 D(x) = D0(1 + ax) and u(x) = u0(1 + ax)
2.0 0.25 0 1, 3, 5 0.1, 0.0001 1 - M = 1

Figure 5
D = D0, u = u0 for Equation (25) and

D(x) = D0 x, u(x) = u0 x for Equation (24)
Equation (25) 1.0
Equation (24) 1.0

0.02
0.0001

0
1

2
2

0
1

1
0

-
-

C0 = 100
C0 = 100

Figure 6a,b D(x) = D0(1 + ax) and u(x,t) = u0(1 + ax) ψ(t)
0.20 0.25 0 25 0.1, 0.0001 1 m = 0.05 M = 1

Figure 7 D = D0 and u(t) = u0 ψ(t)
0.20 0.005 0 5, 25, 50 0.0001 1 m = 0.01 C0 = 1

Figure 8a,b D(x,t) = D0(1 + ax)ψ(t) and u(x,t) = u0(1 + ax) ψ(t)
2.0 0.25 0 5 0.1, 0.0001 1 m = 0.2 M = 1

D(t) = D0 ψ(t) and u(t) = u0 ψ(t)
Figure 9a 0.20 0.01 0 5, 25, 50,100 0.0001 1 M = 0.0008 C0 = 1
Figure 9b 0.20 0.01 0 5, 25, 50 0.0001 - M = 12.41 C0 = 1

In addition, to assess the effects of spatial dependence of the dispersion coefficient
and velocity, two values of a were applied in a heterogeneous medium (a = 0.1 m−1) and a
homogeneous medium (a = 0.0001 m−1). As shown in Figure 2, at all positions in the het-
erogeneous medium (a = 0.1 m−1), the dispersion coefficient and velocity were higher than
in the homogeneous medium (a = 0.0001 m−1), and thus solute transport was faster in the
heterogeneous medium (a = 0.1 m−1) than in the homogeneous medium (a = 0.0001 m−1).
In addition, the peak concentrations were lower in a heterogeneous medium than in a
homogeneous medium. As shown in Figure 2, the numerical solutions obtained using
2DFATMIC aligned well with the proposed solutions for the cases described above.

In Figure 3a,b, the proposed analytical solutions were obtained for a temporally
dependent dispersion coefficient with uniform flow from instantaneous and continuous
sources, respectively. A temporally dependent dispersion coefficient with uniform flow is
a special case of Case 1, described in Section 2.3.1, which is obtained using a very small
value of a = 0.0001 m−1. Using the asymptotically accelerating temporal expression of
ψ(t) = t/(t + k), the solutions for an instantaneous source described by Equation (21)
and for a continuous source expressed in Equation (22) are compared with existing solu-
tions corresponding to Equations (28) and (29) of Basha and El-Habel [28], respectively, in
Figure 3. As shown in the upper-left subfigures of Figure 3a,b, the asymptotically accelerat-
ing temporal function ψ(t) = t/(t + k) increases over time, but the slope of ψ(t) decreases
with k (day). For example, in the case of k = 0 days, ψ(t) is maximized, whereas in the case
of k = 50 days, ψ(t) is minimized. Accordingly, the dispersion coefficient is maximized at
k = 0 days, and minimized at k = 50 days. Because the dispersion coefficient is higher in
the case of k = 0 days than for k = 20 days and k = 50 days, the plumes are more widely
spread and the peak concentrations are lower at k = 0 days, as shown Figure 3a,b.

Figure 3a,b show that the proposed solutions align perfectly with the existing solutions
of Basha and El-Habel [28] for instantaneous and continuous sources, respectively, with
a temporally dependent dispersion coefficient and constant velocity. The temporally
dependent dispersion coefficient and constant velocity have been commonly applied
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to solute transport considering the influence of natural heterogeneity, which produces
irregular flow patterns at the field scale [23–28].
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For Case 2, with spatial dependence of both the dispersion coefficient and velocity,
as described in Section 2.3.2, the parameter values listed in Table 2 are used to solve
Equation (23) for an instantaneous source, as shown in Figure 4. Both the dispersion
coefficient and velocity increase linearly across space, depending on the spatial dependence
parameter a(m−1). To represent heterogeneous and homogeneous media, two values of
the spatial dependence parameter a(m−1) are employed, as before. In a heterogeneous
medium (a = 0.1 m−1), the dispersion coefficient and velocity increase across space, while
in a homogeneous medium (a = 0.0001 m−1), the dispersion coefficient and velocity change
little spatially, and thus remain at almost constant values. Therefore, as the travel distance
increases, the dispersion coefficient and velocity increase more sharply in a heterogeneous
medium (a = 0.1 m−1) than in a homogeneous medium (a = 0.0001 m−1). Accordingly,
as shown in Figure 4, as the travel distance increases, the plumes migrate faster in a
heterogeneous medium (a = 0.1 m−1) than in a homogenous medium (a = 0.0001 m−1), as
the velocity is greater in the heterogeneous medium than in the homogeneous medium. In
addition, peak concentrations are lower in a heterogeneous medium than in a homogeneous
medium, as the dispersion coefficient is greater in the heterogeneous medium than in the
homogenous medium. Lastly, all analytical solutions proposed for these cases are identical
to the solutions of Sanskrityayn et al. [36], as shown in Figure 4.

To validate the proposed analytical solution of Equation (25) for solute transport with
a constant dispersion coefficient and velocity assumed to be a = 0 m−1 for a continuous
source, the analytical solution of De Marsily [52] was used for comparison, as shown in
Figure 5. The detailed input parameters for these analytical solutions are listed in Table 2.
In addition, the proposed analytical solution of Equation (24) with spatial dependence of
both the dispersion coefficient and velocity for a continuous source was verified against the
analytical solutions of Zoppou and Knight [10], as shown in Figure 5. The detailed input
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parameters for these analytical solutions are listed in Table 2. Note that in the analytical
solution of De Marsily [52], the velocity was assumed to be constant, whereas in Zoppou
and Knight [10] the velocity was assumed to increase with travel distance. Accordingly, the
analytical solution for the concentration distribution reported by De Marsily [52] shows a
flat trend around the source point, while that of Zoppou and Knight [10] decreases rapidly
from the source point, as shown in Figure 5. Moreover, the proposed analytical solutions
for a constant dispersion coefficient and velocity, as well as for spatial dependence of
both the dispersion coefficient and velocity with a continuous source align well with the
analytical solutions of De Marsily [52] and Zoppou and Knight [10], respectively, as shown
in Figure 5.
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To verify the analytical solutions of Equation (26) for an instantaneous source with
a spatially dependent dispersion coefficient and spatiotemporally dependent velocity, as
described for Case 3 in Section 2.3.3, against the numerical solutions of 2DFATMIC, a
comparison was conducted, as shown in Figure 6a.

The temporal dependence of velocity was considered using the exponentially decel-
erating, asymptotically accelerating, and asymptotically decelerating expressions of ψ(t)
described in Section 2.3.3, as well as a constant value of ψ(t). As shown in the upper-left
subfigure of Figure 6a, the asymptotically accelerating form of ψ(t) = 1 + mt/(1 + mt)
increases over time, whereas the asymptotically and exponentially decelerating forms of
ψ(t) = 1/(1 + mt) and ψ(t) = exp(−mt) both decrease over time. Accordingly, velocity
increases over time when using the asymptotically accelerating form, but decreases over
time with the exponentially and asymptotically decelerating forms. Thus, in Figure 6a,
transport is faster with the asymptotically accelerating form of ψ(t) = 1 + mt/(1 + mt)
than with the constant expression of ψ(t) = 1, while transport is slower with the asymp-
totically and exponentially decelerating forms of ψ(t) = 1/(1 + mt) and ψ(t) = exp(−mt)
than with the constant expression of ψ(t) = 1. In turn, solute transport is fastest when
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the asymptotically accelerating function is applied, and slowest with the exponentially
decelerating function, as shown in Figure 6a.
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Figure 6. Comparison of the proposed analytical solutions at t = 25 days for an instantaneous source described in
Equation (26) with the numerical solutions of 2DFATMIC, when (a) the dispersion coefficient is spatially dependent and
velocity is spatiotemporally dependent (a = 0.1 m−1), and when (b) the dispersion coefficient is constant and velocity is
temporally dependent (a = 0.0001 m−1). The temporal values ψ(t) are shown in the upper-left subfigure for the constant,
exponentially decelerating, asymptotically decelerating, and asymptotically accelerating forms.
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The analytical solutions obtained using a constant dispersion coefficient with tempo-
rally dependent velocity for an instantaneous source can be obtained from Equation (26)
using a = 0.0001 m−1. As described above, to verify the analytical solutions, analytical
solutions were obtained for a homogeneous medium (a = 0.0001 m−1) and compared to
the numerical solutions of 2DFATMIC, as shown in Figure 6b. Depending on the function
of ψ(t) used, as described in Section 2.3.3, transport values were obtained that followed a
similar trend as the values with a spatially dependent dispersion coefficient, spatiotempo-
rally dependent velocity, and an instantaneous source obtained previously. Namely, solute
transport is fastest with an asymptotically accelerating function, while an exponentially
decelerating function results in the slowest transport value.

Peak concentrations with a constant dispersion coefficient, temporally dependent
velocity and an instantaneous source showed little difference in behavior relative to those
obtained with a spatially dependent dispersion coefficient, spatiotemporally dependent
velocity and an instantaneous source, as demonstrated by comparison of Figure 6a,b. As
shown in Figure 6b, the peak concentrations are almost identical for all four expressions
of ψ(t), due to the constant dispersion coefficients used in all four expressions. On the
other hand, as shown in Figure 6a, the peak concentrations varied among expressions
of ψ(t). The peak concentration was minimal with the asymptotically accelerating form
of ψ(t) = 1 + mt/(1 + mt), and maximal with the exponentially decelerating form of
ψ(t) = exp(−mt), as the dispersion coefficient for the asymptotically accelerating form
with the longest travel distance is greatest, whereas the dispersion coefficient for the
exponentially decelerating form with the smallest travel distance is lowest with the spatially
dependent dispersion coefficients shown in Figure 6a.

All analytical solutions obtained using a spatially dependent dispersion coefficient
with spatiotemporally dependent velocity, i.e., Case 3 in Section 2.3.3, for an instantaneous
source, as well as those obtained with a constant dispersion coefficient and temporally
dependent velocity, aligned well with numerical solutions obtained from 2DFATMIC, as
shown in Figure 6a,b, respectively.

In addition to the case of a constant dispersion coefficient and temporally depen-
dent velocity for an instantaneous source discussed above, the analytical solutions of
Equation (27) for a continuous source were validated through comparison with the an-
alytical solution obtained by Selvadurai [29] under the assumption of an exponentially
decelerating velocity over time and a constant diffusion coefficient. The analytical solution
of Selvadurai [29] simulated one-dimensional solute transport under advective-dispersive
conditions encountered in column flow, which was characterized by exponential decay
of the velocity over time and a constant dispersion coefficient. The proposed analytical
solution was obtained using Equation (27) with a very small value of a = 0.0001 m−1 and
compared to the analytical solution of Selvadurai [29]. As shown in Figure 7, the proposed
analytical solution was identical to that of Selvadurai [29].

To describe solute transport from an instantaneous source with spatiotemporal depen-
dence of both the dispersion coefficient and velocity, as well as with temporal dependence
of both the dispersion coefficient and velocity, as described for Case 4 in Section 2.3.4,
Equation (28) was employed to obtain concentration distributions in a heterogeneous
medium (a = 0.1 m−1) and a homogeneous medium (a = 0.0001 m−1). Figure 8a,b
show the concentration distributions in a heterogeneous medium and a homogeneous
medium, respectively, for three temporal dependence forms of ψ(t) described as (i)–(iii)
in Section 2.3.4 and a constant value of ψ(t) = 1. The three temporal dependence forms of
ψ(t) are the exponentially decelerating expression ψ(t) = exp(−mt), the asymptotically
accelerating expression ψ(t) = 1 + mt/(1 + mt) and the asymptotically decelerating ex-
pression ψ(t) = 1/(1 + mt), as shown in Figure 6a,b. Therefore, in Figure 8a,b, transport is
faster in the case of ψ(t) = 1 + mt/(1 + mt) than with ψ(t) = 1, as the velocity is greater
when using the asymptotically accelerating form than with ψ(t) = 1. On the other hand,
transport with ψ(t) = 1/(1 + mt) or ψ(t) = exp(−mt) is slower than with ψ(t) = 1, as
the velocities are slower for the asymptotically and exponentially decelerating forms than
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for ψ(t) = 1. In addition, as illustrated in Figure 8a,b, the peak concentrations are lower
for ψ(t) = 1 + mt/(1 + mt) than for ψ(t) = 1, as the dispersion coefficients are larger for
the asymptotically accelerating form than for ψ(t) = 1. Meanwhile, peak concentrations
are higher for ψ(t) = 1/(1 + mt) and ψ(t) = exp(−mt) than for ψ(t) = 1, as the asymp-
totically and exponentially decelerating forms have smaller dispersion coefficients than
ψ(t) = 1.
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Furthermore, the transport rates for all temporal functions when both the dispersion
coefficient and velocity are temporally dependent in a homogeneous system, as illustrated
in Figure 8b, are slower than the transport rates for all temporal functions when both the
dispersion coefficient and velocity are spatiotemporally dependent in a heterogeneous
system, as illustrated in Figure 8a. This difference arises because the advection velocities
are smaller for all temporal functions in a homogeneous system than in a heterogeneous
system. The reason why the advection velocities for all temporal functions in a homoge-
neous system are low is apparent from the advection expressions listed in Table 2: in the
homogeneous system, the advection velocities do not increase with distance, while in the
heterogeneous system, the advection velocities increase with travel distance. Furthermore,
Figure 8a,b clearly show that the peak concentrations for all temporal functions when
both the dispersion coefficient and velocity are temporally dependent in a homogeneous
system, as illustrated in Figure 8b, are higher than the peak concentrations for all temporal
functions when both the dispersion coefficient and velocity are spatiotemporally dependent
in a heterogeneous system, as shown in Figure 8a. This difference can be attributed to
differences in the dispersion coefficients between the cases in which both dispersion coeffi-
cient and velocity are temporally dependent and both are spatiotemporally dependent. The
dispersion coefficients of all temporal functions with a temporally dependent dispersion
coefficient and velocity in a homogeneous system are smaller than the coefficients of all
temporal functions with a spatiotemporally dependent dispersion coefficient and velocity
in a heterogeneous system, which is apparent from the dispersion coefficient expressions
in Table 2. Specifically, in a homogeneous system, the dispersion coefficients do not in-
crease with distance, while dispersion coefficients in a heterogeneous system increase with
travel distance.

As shown in Figure 8a,b, all proposed analytical solutions of Equation (28) for solute
transport from an instantaneous source with spatiotemporal dependence of both the dis-
persion coefficient and velocity or temporal dependence of both the dispersion coefficient
and velocity, described as Case 4 in Section 2.3.4, are identical to the analytical solutions of
Sanskrityayn et al. [36].

Finally, in contrast to the proposed analytical solution for an instantaneous source with
both the velocity and dispersion coefficient temporally dependent, which is a special case of
Case 4 in Section 2.3.4, the proposed analytical solution for a continuous source with both
the velocity and dispersion coefficient temporally dependent, another special case of Case 4
described in Section 2.3.4, were compared with the solutions of Singh et al. [11] and Zamani
and Bombardelli [12]. Singh et al. [11] provided analytical solutions of solute transport in
an aquifer where flow velocity and the dispersion coefficient decreased exponentially over
time. Zamani and Bombardelli [12] provided analytical solutions for solute transport in an
aquifer where groundwater flow changed sinusoidally over time. The sinusoidal form can
be used to represent seasonal rainfall variations in tropical regions or to indicate monthly
or daily tidal variations. Accordingly, Singh et al. [11] and Zamani and Bombardelli [12]
provided analytical solutions for a continuous source with temporal dependence of both the
velocity and dispersion coefficients, but employed velocity and dispersion coefficients with
different temporal dependences. As shown in Figure 9a,b, the proposed analytical solutions
obtained using Equation (29) with a = 0.0001 m−1 agree well with those of Singh et al. [11]
and Zamani and Bombardelli [12], respectively.
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4. Conclusions

Numerous classical analytical solutions have been applied under limited circum-
stances where the velocity or dispersion coefficient can be considered constant. To increase
the utility of such analytical solutions and support consideration of various dispersion
coefficient and velocity types, we generalized the analytical solutions for one-dimensional
solute transport under various conditions of the flow regime and dispersion coefficients.
The generalized analytical solutions consider solute transport from instantaneous and con-
tinuous point sources with eight types of dispersion coefficient and velocity. In addition, the
flow velocity and dispersion coefficient can vary temporally, spatially, or spatiotemporally.

In this study, the eight velocity and dispersion coefficient patterns were considered
to account for various situation encountered in the field. The spatial dependencies of
velocity and dispersion coefficients are linear, while their temporal dependencies include
asymptotically accelerating, asymptotically decelerating, exponentially decelerating, and
sinusoidal forms. The ADE with various spatiotemporally variable coefficients was reduced
to a solvable form through pertinent coordinate transformations, together with definition
of new spatial and temporal variables. The transformed equation was solved using the
Green’s function method. This study showed that the proposed analytical solution could
be used to accurately describe the distinctive features of the observed breakthrough curve
at various locations in laboratory test, to provide a solution of solute transport with highly
transient flow rates induced from the inflow source, and to analyze the effects of velocity
fluctuation on dispersive mixing in a porous medium.

Previous analytical solutions developed for special cases with various spatiotemporal
variations in the velocity and dispersion coefficients employed in this study were used to
validate the proposed analytical solutions [10–12,28,29]. Furthermore, when no analytical
solutions were available, the proposed analytical solutions were verified through compari-
son with the numerical solutions of 2DFATMIC. In addition, mathematical derivation was
used to demonstrate that the analytical solutions proposed in this study are an extension
and generalization of previously reported analytical solutions.
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Finally, the analytical solutions presented here are not only applicable to specific
situations, such as solute transport under seasonal rainfall variations and monthly or
daily variations due to tidal effects in areas near a river or sea, but could also be used
to validate numerical solutions that account for complicated situations characterized by
various spatiotemporal patterns of both velocity and the dispersion coefficient.
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Appendix A

To reduce the variable coefficients of the ADE in Equation (7) and obtain the diffu-
sion equation with a constant coefficient, as expressed in Equation (13), the coordinate
transformation equations in Equations (9) and (10) are derived as follows:

Given that
X = X(x, t), T = T(t). (A1)

Using Equation (A1), Equation (7) can be rewritten as:

f (t) ∂K(X,T)
∂T = D0h1

(
∂X
∂x

)2 ∂2K(X,T)
∂X2

−
[
u0h2

∂X
∂x + ∂X

∂t − D0
∂

∂x

(
h1

∂X
∂x

)]
∂K(X,T)

∂X + Q(X, T)β(t),
(A2)

where
f (t) =

dT
dt

. (A3)

If Equation (A2) is equivalent to the diffusion equation in Equation (13), then

h1

(
∂X
∂x

)2
= f and (A4)

D0
∂

∂x

(
h1

∂X
∂x

)
− u0h2

∂X
∂x
− ∂X

∂t
= 0. (A5)

Substituting Equation (A4) into Equation (A5), Equation (A5) is obtained, as follows:

D0

2

√
f

h1

∂h1

∂x
− u0h2

√
f

h1
− ∂X

∂t
= 0 (A6)
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Integrating Equation (A4) with respect to x, we obtain

X =
∫ √ f

h1
dx. (A7)

Using Equation (A7), Equation (A6) can be rewritten as follows:

D0

2

√
f

h1

∂h1

∂x
− u0h2

√
f

h1
=

∂

∂t

[∫ √ f
h1

dx

]
(A8)

Using the terms h1 and h2 from Equations (3) and (4), Equation (A8) can be expressed as

a(aD0φ1 − 2u0φ)
√

f
h1
− 2a2u0g

√
f

h1
x

=

{
4 φ2√

h1

d
dt

(√
f

φ1
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+ 2 φ2

′
√

h1

√
f

φ1

}
+

{
4φ1

d
dt

(√
f

φ1

)
+ 2φ1

′
√

f
φ1

}
ax√
h1

.
(A9)

Equating the coefficients of x0 and x1 from both sides of Equation (A9), we obtain

4φ1φ2√
f

d
dt

(√
f

φ1

)
+ 2φ2

′ = a2D0φ2
1 − 2au0φ1φ (A10)

and
2φ2

1√
f

d
dt

(√
f

φ1

)
+ φ1

′ = −au0φ1g (A11)

From Equation (A11), f (t) can be obtained as

f (t) = φ1(t) exp

−au0

t∫
0

g
(
t′
)
dt′

. (A12)

From Equation (A12), we can express f (t) in terms of φ1(t) and g(t) as:

f (t) = φ1(t)/β(t), (A13)

where

β(t) = exp

au0

t∫
0

g
(
t′
)
dt′

 (A14)

Using Equations (A3) and (A13), we can obtain a new temporal variable as follows:

T =

t∫
0

φ1(t′)
β(t′)

dt′. (A15)

From Equations (A7) and (A13), we can obtain the new spatial variable as follows:

X2 =
4
a2

∣∣∣∣ axφ1(t) + φ2(t)
β(t)φ1(t)

∣∣∣∣, (A16)

Equation (A16) is the same as Equation (9). Using Equations (A10) and (A11), we can
obtain an expression of φ(t) as:

φ(t) =
1

(au0φ1)

[
au0g(t)φ2 +

a2D0φ2
1

2
+

φ2φ1
′

φ1
− φ2

′
]

. (A17)
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Appendix B

To verify that the present analytical solution can be degenerated into the analytical so-

lution of Sanskrityayn et al. [36], consider: φ1(t) = ψ(t),φ2(t) = ψ(t)

[
1 + a2D0

2

t∫
0

ψ(t′)dt′
]

and g(t) = ψ(t). Using φ1(t), φ2(t), g(t), and Equation (12), we determine φ(t) as follows:

φ(t) = ψ(t)

1 +
a2D0

2

t∫
0

ψ
(
t′
)
dt′

 (A18)

Using Equations (3), (4), and (A18), we obtain the dispersion coefficient and velocity as

D(x, t) = D0ψ(t)

1 + ax +
a2D0

2

t∫
0

ψ
(
t′
)
dt′

 (A19)

u(x, t) = u0ψ(t)

1 + ax +
a2D0

2

t∫
0

ψ
(
t′
)
dt′

 (A20)

where the dispersion coefficient and velocity in Equations (A19) and (A20), respectively,
are identical to the dispersion coefficient and velocity of Sanskrityayn et al. [36]. Therefore,
using φ1(t), φ2(t), g(t), and φ(t) described above, we obtain an analytical solution identical
to that of Sanskrityayn et al. [36]. Therefore, the present paper is a generalization of the
work of Sanskrityayn et al. [36].
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