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Abstract: A novel application of the spherical prune differential evolution algorithm (SpDEA) to 

solve optimal power flow (OPF) problems in electric power systems is presented. The SpDEA has 

several merits, such as its high convergence speed, low number of parameters to be designed, and 

low computational procedures. Four objectives, complete with their relevant operating constraints, 

are adopted to be optimized simultaneously. Various case studies of multiple objective scenarios 

are demonstrated under MATLAB environment. Static voltage stability index of lowest/weak bus 

using modal analysis is incorporated. The results generated by the SpDEA are investigated and 

compared to standard multi-objective differential evolution (MODE) to prove their viability. The 

best answer is chosen carefully among trade-off Pareto points by using the technique of fuzzy Pareto 

solution. Two power system networks such as IEEE 30-bus and 118-bus systems as large-scale op-

timization problems with 129 design control variables are utilized to point out the effectiveness of 

the SpDEA. The realized results among many independent runs indicate the robustness of the 

SpDEA-based approach on OPF methodology in optimizing the defined objectives simultaneously. 

Keywords: optimal power flow; multi-objective optimization methodologies; pareto-set; stability; 

voltage analysis 

 

1. Introduction 

Till this moment, power networks remain one of the most complicated systems in 

industry due to many reasons, such as variation of generation and load demand, the in-

clusion of renewable energy systems, and storage devices. These power systems are en-

tirely nonlinear systems, where many components including synchronous generators, 

transformers, transmission lines, and induction motors have a deep nonlinearity. The op-

timal operation of such components to achieve a concise economic target, emission mini-

mization possibility, power loss reduction and other objectives under the power system 

constraints plays an important role in the power system operation and is named optimal 

power flow (OPF) [1–5]. This problem, as mentioned earlier, is consequently considered 

a significant nonlinear optimization problem. In this issue, some fitness functions can be 

sequentially solved under the system operating conditions, including fuel consumption 

cost (FC), pollution release rate, active power loss, reactive power loss, bus voltage de-

clines and many more. 
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Previously, several classical mathematical optimization approaches have been em-

ployed to solve the OPF problem [6–10]. Among the said traditional methods are: (i) mo-

ment-based relaxations [6], (ii) linear and quadratic programming [7], (iii) decomposition 

of the network graph into a spanning tree and closed cycles [8], (iv) safety barrier interior- 

point approach [9], and (v) a semi-definite method [10]. Nevertheless, these traditional 

approaches have many disadvantages, including their dependency on the values of the 

problem initial conditions, solver type, and accuracy. It shall be stuck into a local solution 

under the OPF problem’s nonlinearity. For that reason, different heuristics-based optimi-

zation techniques have been developed for solving such problems. Principally, similar 

heuristic techniques are randomly initialed populations of their agents , and the subopti-

mal/optimal answer is based on their methodologies. Several optimization methods have 

been used to tackle the OPF problem whether the target is single or multiple objective 

functions, such as genetic procedures [11], particle swarm optimizer [12], imperialist com-

petitive algorithm [13], chaotic invasive weed optimization algorithms [14], JAYA algo-

rithm [15], shuffled-frog-leaping algorithm [16], social spider optimization algorithm [17], 

chaotic salp swarm optimizer [18], new adaptive partitioning flower pollination algorithm 

[19], and others [20–38]. 

Among these kinds of literature, as mentioned earlier, the reader can notice that an 

avalanche of articles is presented to solve OPF problems using differential evolution (DE) 

with various versions [23,34–38], in which the authors concluded the powerful features 

and advantages of DE in solving OPF problems. Few of these works are employed to solve 

simultaneous multiple conflicting objectives such as OPF problems. Principally, these re-

ported studies indicate the great development of metaheuristic algorithms. Therefore, a 

novel spherical prune DE algorithm (SpDEA) is implemented to solve the multiple objec-

tive OPF problems in this study. 

It is well-known that DE is considered a much-enhanced version of the genetic algo-

rithm originally established by Storn and Price [39]. DE procedures have many variants 

for mutation schemes, such as DE/X/Y/Z, DE/best/2, DE/best/2, DE/rand/1/bin, and so on; 

each variant has its own advantage, and its performance relies on the nature of the prob-

lem to be optimized [40,41]. DE has many key advantageous items e.g., (i) it’s simple to 

apply with a very effective mutation process, (ii) DE has a comparatively smooth conver-

gence at high speeds of processing, (iii) a smaller size of the population generally suffices 

for solving large-scale engineering problems, and (iv) accordingly, it can be confirmed 

that there are significant reductions in computation burdens placed on the computer pro-

cessors. The SpDEA has the flexibility to select the best compromise Paretos within the 

search space, and this leads to obtaining the optimal point in a quick manner, representing 

good merit. 

The problem defines the optimal settings of design variables of the network through 

optimizing various identified objectives under system operating and capacity constraints. 

The control variables involve the active power output, the generating units’ voltage, tap-

changer adjustments, and reactive compensating apparatuses. The control variables are 

continuous except for the transformer tap settings, which are discrete, and its step is cho-

sen ±1.25%. Many objective functions may be involved through the OPF formulation, such 

as FC of generating units, pollution rate released by these units, network real power loss, 

voltage deviation, etc. 

In this article, a novel SpDEA is presented to solve different multiple objective OPF 

problems. The vector objective functions include the FC, network overall real power 

losses, voltage deviation index, and stability of power networks. Voltage stability analysis 

has attracted much interest. It relies on a modal analysis, which is represented as a fitness 

function. In this issue, the Jacobian matrix is reduced, and then eigenvalues and eigenvec-

tors are determined. The amplitude of eigenvalues measures the system instability. When 

this amplitude increases, the incremental voltage decreases, indicating the system’s strong 

voltage stability. The output (active power) of the units, their voltages, tap settings of 

power transformers, and compensating devices represent the design control variables of 
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the problem. The SpDEA is employed to solve the OPF problem for two medium-size 

systems: a 30-bus network and a large-scale system, for instance, 118-bus network under 

multiple objective functions. The value of the SpDEA is compared to that obtained by 

using other optimization techniques. The numerical results are performed on MATLAB 

software. The results achieved demonstrate a competition of the SpDEA with other com-

peting methods to solve multi-objective OPF problems. 
The paper is sectionalized and arranged as follows: Section 2 introduces OPF prob-

lem representations with the proposed objectives and their associated constraints. In Sec-

tion 3, the SpDEA mathematical model and its general procedures are presented. Section 

4 gives the simulation scenarios, numerical results, and discussions. In Section 5, final 

concluding remarks along with future trends are drawn. 

2. OPF Mathematical Representations 

In this study, the optimization problem is expressed with four objectives for simulta-

neous optimization. The adopted objectives are depicted in (1)–(4): 

��� = � �����
� + ����� + ��

��

���

 (1)

��� = ��� − ��� (2)

����� = ��|V�| − |V���|�

���

���

 (3)

�� =
∆���

 ∆��� 

 (4)

where TFC is the total FC of the generating units, ���  is the active output generating 

power at ith bus, a�, b�, c� are FC coefficients of ith generating unit, N� defines the num-

ber of generators, TPL is the system total active power loss, TGP is the total generated 

power, TPD is total power demand, �����  is the total voltage deviation of all PQ buses, 

|V���| is the reference voltage magnitude (typically, |V���| has a value of 1 per unit (pu)), 

N�� defines the number of PQ buses, λ� specifies the magnitude of eigen value, and ∆Q�� 

and  ∆V�� define the ith modal reactive power and voltage changes, respectively. 

It is worth mentioning that the stability of the mode i is based on ��. The largest �� 

indicates slight variations of the modal voltage due to reactive power change. Therefore, 

the least value of �� is chosen as a fourth objective, which requires upgrading for a better 

power system voltage stability. A further derivation regarding eigenvalues and eigenvec-

tors for the modal analysis can be found in [42]. 

The aforementioned optimization problem undergoes to set of equality/inequality 

limitations such as: 

��� − ��� = |��| ��������������� + ����������
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���
��� ≤ ��� ≤ ���

���, ∀ � ∈ �� (10)

where PDi is the active demand power at bus i; ��� and ���  are the conductance and sus-

ceptance between bus i and j, respectively;  ��� is the power angle between bus i and j; ���  

is the reactive power generation at bus i; ��� is the load reactive demand power at bus I; 

���
��� , ���

���  are the lower and higher limits of PGi, respectively; ���
��� , ���

���  are the 

min/max limits of ��� , respectively; ���
����, |��

���| are the min/max limits of |��|, respec-

tively; ��
���, ��

��� are the min/max limits of tap settings of the kth transformer, respec-

tively; �� defines the number of power transformers; ��� is apparent power flow in ith 

line; ���
����� specifies the rated line maximum transfer capacity; ��� defines the number 

of network branches; ���
���, ���

��� are the min/max limits of ��� , respectively; and �� de-

fines the number of nominated buses for capacitive devices. 

In this study, the vector-defined objectives are solved using the SpDEA and are based 

on the fuzzification of Pareto fuzzy optimal (PFO) solutions. In this issue, the objective 

function ��� is expressed by a fuzzy membership function �� to normalize the values 

between 0 and 1 as expressed in (11) [23]: 

�� =
��� − ���

���

���
��� − ���

���
 (11)

In addition, for each k-th Pareto solution, the normalized membership μ� is esti-

mated by the formula depicted in (12): 

μ� =
∑ μ�

����
���

∑ ∑ μ�
����

���
�
���

, ∀� ∈ � (12)

where Noj and M define the number of objectives and the number of PFO solutions, re-

spectively. The best compromise solution is chosen for the minimum value of μ�. 

3. Mathematical Model of SpDEA 

The main three strategies for the DE procedure include mutation, crossover, and se-

lection stage. Similar to other challenging optimization methods, at initial stage, a vector 

of random positions ���,�
(�)

� for the population is created within the predefined bounda-

ries, which can be expressed in (13): 

��,�
(�)

= ��,��� + �(… ). ���,��� − ��,����, ∀ � ∈ ��, ∀ � ∈ ��� (13)

where ��� defines the number of decision variables, �� is the population-size, �(… ) is 

a uniform random distribution function ∈ [0, 1], and ��,���  and ��,��� are min/max lim-

its of the ��� decision control variable, respectively. 

At this moment, the DE starts to mutate and to recombine the population to generate 

trial vectors ��
�. Then, DE implements a uniform crossover procedure to produce trial vec-

tors ��
��. This is made by mixing ��

� and the target vector �� based on the crossover prob-

ability �� � [0,1], which is combined in a single formula as depicted in (14): 

��,�
��(�)

= �
��

(�)
+∝. ���

(�)
− ��

(�)
� , ∀ � ∈ ��  �� ��(… ) ≤ ��

��,�
(�)

         ����
       (14)

where � is the iteration counter, ��  is a base-vector and ��  and ��  are the difference 

trial vectors that are picked up randomly, factors of �, �, �, and i are unequal and ∝ de-

fines the scaling factor ϵ [0,1]. 

Then, a move is made to the new position, and as a final point, the collection occurs 

where a tournament is seized between the target and trial vectors, and the one with the 

best fitness value is endorsed to pass to the next generation. Through this, agents of a new 

generation are better than that of the previous ones. 
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The controlling parameters of the DE required for appropriate adaption by the users 

include ∝ and CR, along with those used with all other competing methods, such as the 

maximum iterations and PS. In common practice, the tuning of the DE-controlling factors 

is carried out by trial and error procedures to achieve a satisfactory performance of the 

DE algorithm. 

This work cares by solving multiple objective optimization problems, such as the de-

fined four objectives of OPF as stated in (1)–(4). SpDEA is applied to deal with such antic-

ipated simultaneous objectives. Spherical pruning has been proposed by Reynoso-Meza 

[43,44] to improve diversity in the approximated PFO. Spherical coordinates are em-

ployed to partition the search space, and a selection of one solution is chosen in each 

spherical sector, evading congestion regions. SpDEA comprises actions to expand rele-

vance applicability and to look effectively for a PFO approximation within the pertinency 

boundaries [45,46]. 

The principle motivation of the Sp is to investigate the offered solutions in the current 

PFO approximation using normalized spherical coordinates from a reference solution in 

the spherical sector. The general procedures of SpDEA are depicted in the flowchart 

shown in Figure 1. On the other hand, the detailed procedures of Sp mechanism are shown 

in Figure 2. 

Define the lower and higher bounds of 
the parameters to be optimised

Set the OFs to be optimized simultaneously 

Define the controlling parameters of the SpDEA

Apply dominance criteria 

Crop the best solutions of PFO approximations.

Max_Iter reached?

Initialize randomly population of agents

G = 1

Evaluate initial population

Generate offspring using DE operators

Evaluate offspring

Use greedy selection to update population with 
offspring

Apply dominance criteria

Apply pruning mechanism (Figure 2)

G = G+1

Obtain subpopulation with solutions

No
 

Figure 1. General procedures of SpDEA. 
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Read the generated archive

Update extreme values

Compute for each member its norm spherical 
coordinates

m = 1:solutions in the archive

Return the best archive 

Construct spherical grid

Compute for each member its spherical sector

Include to the archive

Include to the archive if having lowest norm

Compare with the rest of solutions

No other solution has
 the same spherical sector?

Other solutions in
 the same spherical sector?

A A

 

Figure 2. Procedures of Sp mechanism. 

Further detailed explanation concerning the Sp definitions such as normalized spher-

ical coordinates, sight range, spherical grid and sector, and so on, along with mathematical 

representations, can be obtained from [43,46]. The overall controlling parameters of 

SpDEA are ∝, CR, PS, and the number of arcs that should be tuned sufficiently for better 

performance. Fuzzy-based decision-making methodology [23] is used to choose the best 

compromise among trade-off PFO points for various scenarios. 

4. Numerical Simulations, Scenarios, and Discussions 

This current study focuses on solving the OPF problem in power systems from the 

multi-objective function perspective using the proposed SpDEA. The problem codes are 

built with MATLAB software [47]. The OPF problem is solved by different IEEE standard 

systems such as 30 and 118-bus systems. The main features of these two systems are de-

picted in Table 1, extracted from [1,15,23]. 

Table 1. Main features of the systems under study. 

Parameter 30-Bus 118-Bus 

Generators 6 54 

Load bus 21 99 

Branches 41 186 

Tap settings transformers 4 9 

Capacitive shunt compensa-

tors 
9 12 

Total Connected loads, MVA 283.4 + j126.2 4242 + j1438 

Number of control variables 25 129 

The aforementioned four objective functions are combined to form different multi-

objective functions through the OPF problem. The summary of various vector objectives 

of the OPF problem is demonstrated in Table 2. The computer simulations are performed 

using a PC (Intel(R) Core(TM) i7 2.4 GHz µP, 16 GB RAM, and Windows 10 system). The 

controlling parameters that adjust the performance of the SpDEA are specified in Table 3. 
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Table 2. Scenarios of multiple objective representation of the OPF problem. 

Formulation Case # ��� ��� ����� �/�� 

Two 

objectives 

1     

2     

3     

Three objec-

tives 

4     

5     

6     

Four objec-

tives 
7     

Table 3. Optimal characteristics of the proposed SpDEA for various systems under study. 

Controlling Parameter 
Best Settings 

30-Bus 118-Bus 

PS 50 50 

α 0.5 0.7 

CR 0.9 0.9 

Number of arcs 10��� 10��� 

Maximum Pareto solutions 1500 5000 

No. of iterations 1000 5000 

It is well-meaning to state that the power/load flow of the two systems under study 

is carried out using the full Newton–Raphson method implemented under MATPOWER 

[48]. It may be useful to state here some penalties added to the objective function (s) to 

produce a feasible solution. Among these penalties, the magnitude of bus voltages, power 

line flow, and reactive power of generating units are proposed. The typical MATLAB code 

to fulfill the condition of bus voltage and line flow limits is shown in Figure 3. The limita-

tions of generating units’ reactive power are controlled through N-R LF, as illustrated in 

the next subsections. The studied cases of the OPF problem for these IEEE standard power 

systems are demonstrated in the following subsections comprising necessary validations, 

comparisons, and discussions. It might be worth mentioning that all runs are performed 

on a Laptop with Intel® Core™ i7-7700HQ CPU with 16 GB installed memory. 

 

Figure 3. Check line flows and bus voltage limits. 

4.1. IEEE 30-Bus System 

In this system, nine buses are nominated for capacitive shunt compensators at bus 

numbers of {10, 12, 15, 17, 20, 21, 23, 24, and 29} [15,23]. The network data are demon-

strated in detail in [1,48]. The voltage magnitude of buses changes in the range 90%–110%, 

the transformer taps settings lie in the range 90%–110% with a step of ±1.25%, and the 
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reactive power of the shunt compensator is 5 MVAr. The SpDEA solves the different mul-

tiple objectives that are formulated in Table 2. The optimal characteristics of the SpDEA 

are revealed in Table 3. Many independent runs have been carried out to determine the 

optimal values of control variables. The optimal values of control variables and their cor-

responding fitness values are pointed out in Table 4. 

Table 4. Optimal design settings for various multiple objectives using the SpDEA. 

Control 

Variable 
���� � ���� � ���� � ���� � ���� � ���� � ���� � 

PG1 (MW) 113.1667 177.6982 166.9543 108.0535 118.6186 166.5374 133.9738 

PG2 (MW) 64.0182 41.8139 51.7267 64.7741 57.7370 47.3021 34.8274 

PG5 (MW) 31.3178 22.9850 24.3110 34.0394 38.7262 26.7118 37.8803 

PG8 (MW) 32.9767 21.8647 25.7964 34.6170 35.0000 10.0000 33.6451 

PG11 (MW) 22.3965 15.6356 11.7609 20.4313 26.8753 11.5664 27.0341 

PG13 (MW) 25.1334 12.4976 12.0000 26.9377 12.0000 30.3921 21.9287 

VG1 (pu) 1.1000 1.0566 0.9810 0.9434 1.0317 1.0474 1.0249 

VG2 (pu) 1.0444 0.9258 0.9875 1.0753 1.0577 0.9959 0.9991 

VG5 (pu) 1.0249 0.9957 0.9246 0.9395 1.0307 0.9808 0.9570 

VG8 (pu) 1.0062 0.9361 0.9098 0.9000 1.0432 0.9560 0.9915 

VG11 (pu) 0.9223 1.0808 1.0308 1.0922 1.0185 1.0441 0.9951 

VG13 (pu) 1.0238 1.0617 1.0963 0.9601 1.0344 0.9483 0.9026 

T6–9  90.00% 101.25% 110.00% 110.00% 97.50% 103.75% 97.50% 

T6–10  105.00% 101.25% 101.25% 96.25% 92.50% 103.75% 107.50% 

T4–12  98.75% 105.00% 102.50% 110.00% 90.00% 108.75% 105.00% 

T27–28  93.75% 96.25% 110.00% 96.25% 90.00% 90.00% 102.50% 

QC10 

(MVAr) 
0.0000 3.3390 1.8112 1.7133 1.2975 0.0000 1.6315 

QC12 

(MVAr) 
2.6816 1.8507 3.3804 0.6132 4.0053 5.0000 2.9783 

QC15 

(MVAr) 
2.5428 4.2656 1.7458 4.6312 2.8315 2.7412 1.4480 

QC17 

(MVAr) 
2.1897 4.6759 2.0146 1.7066 1.5406 5.0000 3.5829 

QC20 

(MVAr) 
5.0000 0.0000 0.0000 5.0000 2.3553 0.7706 0.0000 

QC21 

(MVAr) 
1.6192 0.0000 3.9538 3.7275 2.6113 0.0000 4.2438 

QC23 

(MVAr) 
5.0000 0.5253 2.8481 2.1642 0.8609 0.1956 3.9938 

QC24 

(MVAr) 
1.5333 3.5208 0.0000 4.3222 5.0000 2.1634 1.4571 

QC29 

(MVAr) 
2.8376 0.7658 2.9261 0.9703 5.0000 4.6769 0.8602 

TFC ($/h) 837.8510 803.0290 804.7330 846.2620 844.0380 815.9640 840.9170 

TPL (MW) 5.6093 9.0949 9.1493 5.4530 blod5.5572 9.1098 5.8894 

TVD�� (pu) 0.8106 0.2799 0.7761 0.2498 1.3021 0.4916 0.4575 

1/λi 2.0447 1.9569 1.8245 1.9681 2.1704 2.1167 1.8790 

Elapsed 

time (s) 
59.0 58.0 57.0 58.4 58.1 58.6 55.50 

It may be noted that in the N-R LF using MATPOWER, the option of “pf.en-

force_q_lims“ is set to 1. As a result of activating this option, any generator’s reactive 

power exceeds the min/max limits after running the N-R LF, and the corresponding bus 

is converted to a PQ-bus, with ��. If the reference bus is converted to PQ-bus, the first 

remaining PV-bus will be used as the slack bus for the next iteration at the limit, and the 

case is re-run. The voltage magnitude at the bus will deviate from the specified value to 
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satisfy the reactive power limit. In other words, the relevant operating constraints of the 

reactive power output from the generators are maintained within practical operating 

points. The corresponding generator’s reactive power outputs are arranged in Table 5 of 

design settings for various objectives using the SpDEA. 

Table 5. The related generator’s reactive power for optimal design settings for various multiple objectives using the SpDEA. 

�� ��,��� ��,��� ���� � ���� � ���� � ���� � ���� � ���� � ���� � 

QG1 

(MVAr) 
−200 200 8.0712 −10.9857 −7.5976 2.6806 11.2260 −10.8816 −1.3888 

QG2 

(MVAr) 
−20 100 22.5222 28.7441 23.9599 7.5863 29.6632 21.4916 23.6488 

QG5 

(MVAr) 
−15 80 22.5225 22.6871 20.7621 16.0374 20.0417 19.9615 16.8297 

QG8 (MVAr) −15 60 20.1239 8.8863 −2.1677 −9.2505 20.9694 6.7302 1.0296 

QG11 

(MVAr) 
−10 50 5.0564 28.4858 45.5612 40.5390 12.3456 34.1309 24.7763 

QG13 

(MVAr) 
−15 60 15.3335 34.9163 37.1135 42.7452 −6.0118 39.9768 35.7466 

Figure 4a–c illustrate PFO solutions and best compromise value for cases 1–3, repre-

senting the anticipated bi-objective cases. On the other hand, Figure 5a–c illustrate PFO 

solutions and best compromise value for cases 4–6, representing the anticipated tri-objec-

tive cases. It is worthy of note here that these Pareto optimal solutions lie in an acceptable 

range of minimization of each simultaneous objective function. Moreover, the best com-

promise value is located at a proper value within the suggested PFO solutions. 

  

(a) (b) 

 

(c) 

Figure 4. PFO solutions and best compromise value for cases 1–3 (a)–(c) for bi-objectives. (a) Case 1, (b) Case 2, (c) Case 3. 
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(a) (b) 

 

(c) 

Figure 5. PFO solutions and best compromise value for cases 4–6 (a)–(c) for triple-objectives. (a) Case 4, (b) Case 5, (c) Case 

6. 

For a rational comparison, the SpDEA-based OPF results are compared with MODE 

and others, summarized in Table 6. It can be noted from this comparison that the best 

compromise values of OPF solutions using the SpDEA are very competitive, even though 

the TFC and TNL functions are contradictory. It reflects the proper design of the SpDEA 

to solve the multi-objective OPF problem in power systems. In addition to that, the aver-

age elapsed CPU times for various objectives’ scenarios are mentioned in the last row of 

Table 4. It may be noted that bold font indicates the best results obtained so far. 
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Table 6. Comparison of optimal values for various cases. 

Method 

���� � ���� � ���� � ���� � 

���  

($/h) 
���  

(��) 

��� 

($/h) 

����� 

(pu) 

���  

($/h) 
1/λi 

���  

($/h) 
��� 

(��) 

�����  

(pu) 

SpDEA 837.85 5.61 803.03 0.279 804.73 1.83 846.26 5.45 0.250 

MODE 821.18 6.08 801.59 0.222 802.061 1.97 818.28 6.58 0.261 

MJaya [49] 827.91 5.80        

MOALO 

[50] 
826.46 5.77 803.06 0.379      

Method 

Case 5 Case 6 Case 7 
TFC 

($/h) 
TPL  

(MW) 
1/λi 

TFC  

($/h) 

TVD�� 

(pu) 
1/λi 

TFC  

($/h) 
TPL  

(MW) 

TVD��  

(pu) 
1/λi 

SpDEA 844.04 5.56 2.170 815.96 0.492 2.117 840.92 5.89 0.458 1.879 

MODE 818.001 7.24 1.822 811.78 0.300 1.911 819.02 6.90 0.297 1.932 

: not covered in this paper. 

4.2. IEEE 118-Bus System 

In this scenario, the SpDEA is applied to solve different vector objectives of the OPF 

problem for the standard 118-bus IEEE system [48] with the main features stated in  

Table 1. The capacitive compensating devices are installed on the bus numbers of {34, 44, 

45, 46, 48, 74, 79, 82, 83, 105, 107, and 110} and its maximum rated capacity is 30 MVAr 

[19,22,23]. The data are demonstrated in detail in Table 2. The generating voltage magni-

tude of buses changes in the range 90%–110%, the tap settings lie in the range 90%-110%. 

This optimization problem involves 129 control variables, posing a large challenge to the 

proposed algorithm. The optimal characteristics of the proposed SpDEA for this test case 

are demonstrated in Table 7 (last column). The various multiple objectives that are formu-

lated in Table 2 are solved using the proposed SpDEA. The best values of control variables 

and their best compromise settings are recorded. However, the data of all cases are huge, 

and it is incredibly difficult to write in a paper. Therefore, only one case (case 1) is pro-

posed, as illustrated in Table 7. The best compromise Pareto records 140,700 $/hr and 

30.339 MW to the TFC and TNL of the network. Figure 6a illustrates PFO solutions and 

best compromise value for case 1. It can be noted here that the SPDEA selects the best 

compromise Pareto within the search space. It is worthy to note here that these PFO solu-

tions lie in an acceptable range of minimization of each simultaneous objective function. 
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Table 7. Optimal design settings and best data of case 1 of 118-bus network using the SpDEA. 

Variable Setting Max Variable Setting Max Variable Setting Max 

���� (MW) 98.5129 100.0 ����� (MW) 18.4023 100.0 V��� (pu) 1.0611 1.10 

PG04 (MW) 0.0000 100.0 ����� (MW) 54.8394 100.0 V��� (pu) 0.9841 1.10 

PG06 (MW) 100.0000 100.0 ����� (MW) 0.0000 100.0 V��� (pu) 1.0121 1.10 

PG08 (MW) 23.0988 100.0 ����� (MW) 68.9143 100.0 V��� (pu) 1.0157 1.10 

PG10 (MW) 177.6589 550.0 ����� (MW) 0.0000 136.0 V��� (pu) 1.0678 1.10 

PG12 (MW) 42.8185 185.0 ����� (MW) 69.3657 100.0 V��� (pu) 0.9941 1.10 

PG15 (MW) 28.2670 100.0 ����� (MW) 67.3342 100.0 V���� (pu) 0.9000 1.10 

PG18 (MW) 83.6450 100.0 ����� (MW) 0.0000 100.0 V���� (pu) 1.0543 1.10 

PG19 (MW) 27.0238 100.0 V��� (pu) 1.0463 1.10 V���� (pu) 0.9646 1.10 

PG24 (MW) 17.0881 100.0 V��� (pu) 1.0600 1.10 V���� (pu) 0.9433 1.10 

PG25 (MW) 138.4995 320.0 V��� (pu) 1.0589 1.10 V���� (pu) 1.0516 1.10 

PG26 (MW) 38.1873 414.0 V��� (pu) 0.9462 1.10 V���� (pu) 0.9853 1.10 

PG27 (MW) 79.6290 100.0 V���  (pu) 1.1000 1.10 V���� (pu) 1.0258 1.10 

PG31 (MW) 14.7774 107.0 V���  (pu) 0.9113 1.10 V���� (pu) 0.9119 1.10 

PG32 (MW) 64.7293 100.0 V��� (pu) 0.9419 1.10 V���� (pu) 0.9721 1.10 

PG34 (MW) 66.3123 100.0 V��� (pu) 0.9341 1.10 V���� (pu) 0.9759 1.10 

PG36 (MW) 30.3050 100.0 V��� (pu) 1.0307 1.10 T��� 110.00% 110% 

PG40 (MW) 100.0000 100.0 V��� (pu) 1.0146 1.10 T����� 103.75% 110% 

PG42 (MW) 53.8052 100.0 V��� (pu) 0.9731 1.10 T����� 102.50% 110% 

PG46 (MW) 43.0222 119.0 V���  (pu) 0.9711 1.10 T����� 93.75% 110% 

PG49 (MW) 251.9802 304.0 V��� (pu) 1.0389 1.10 T����� 102.50% 110% 

PG54 (MW) 71.3719 148.0 V��� (pu) 1.0407 1.10 T����� 105.00% 110% 

PG55 (MW) 56.2296 100.0 V��� (pu) 1.0353 1.10 T����� 90.00% 110% 

PG56 (MW) 86.2878 100.0 V��� (pu) 0.9687 1.10 T����� 90.00% 110% 

PG59 (MW) 146.3078 255.0 V��� (pu) 0.9392 1.10 T����� 106.25% 110% 

PG61 (MW) 190.7961 260.0 V��� (pu) 1.0458 1.10 Q��� (MVAr) 4.4232 30 

PG62(MW)  0.0000 100.0 V��� (pu) 0.9000 1.10 Q��� (MVAr) 12.7388 30 

PG65(MW)  388.9586 491.0 V��� (pu) 0.9019 1.10 Q��� (MVAr) 11.0013 30 

PG66 (MW)  107.9369 492.0 V��� (pu) 0.9919 1.10 Q��� (MVAr) 4.0472 30 

PG69 (MW)  250.5058 805.2 V��� (pu) 0.9883 1.10 Q��� (MVAr) 15.6773 30 

PG70 (MW)  62.3974 100.0 V��� (pu) 1.0700 1.10 Q��� (MVAr) 2.9030 30 

PG72 (MW)  46.3690 100.0 V��� (pu) 0.9721 1.10 Q��� (MVAr) 15.9493 30 

PG73 (MW)  19.6229 100.0 V��� (pu) 0.9482 1.10 Q��� (MVAr) 25.4304 30 

PG74 (MW)  47.0583 100.0 V��� (pu) 0.9289 1.10 Q��� (MVAr) 23.0731 30 

PG76 (MW)  64.7490 100.0 V��� (pu) 0.9536 1.10 Q���� (MVAr) 10.7369 30 

PG77 (MW)  54.1489 100.0 V��� (pu) 0.9628 1.10 Q���� (MVAr) 8.8431 30 

PG80 (MW)  308.8801 577.0 V��� (pu)  1.0304 1.10 Q���� (MVAr) 0.0000 30 

PG85 (MW)  4.4758 100.0 V��� (pu) 1.0550 1.10 
Elapsed time 

(min) 
4.5 

PG87 (MW)  12.2678 104.0 V��� (pu)  0.9344 1.10 ��� ($/h)  140,700 

PG89 (MW)  255.0659 707.0 V��� (pu)  0.9000 1.10 ��� (��) 30.339 

PG90 (MW)  74.3701 100.0 V��� (pu) 0.9506 1.10 TVD�� (pu)  1.44273 

PG91 (MW) 39.3204 100.0 V��� (pu) 1.0810 1.10 1/λi 0.252525 

PG92 (MW) 31.5990 100.0 V��� (pu) 1.0081 1.10    

PG99 (MW) 30.0157 100.0 V��� (pu) 1.0907 1.10    

PG100 (MW) 130.2287 352.0 V��� (pu) 0.9479 1.10    

PG103 (MW) 35.1592 140.0 V��� (pu) 0.9526 1.10    
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Figure 6. PFO solutions for the cases 1–3 (a)–(c) for the 118-bus system (bi-objective functions). 

Moreover, Figure 6b–c point out the PFO solutions and their corresponding best com-

promise for the other cases that include bi-objective functions (cases 2–3). On the other 

hand, Figure 7a–c indicate the PFO solutions and their corresponding best compromise 

for three simultaneous objective functions (cases 4–6). The best compromise values for all 

these cases lie in acceptable ranges that can be confirmed. In addition, the SpDEA is ap-

plied to case 7 for solving the multi-objective function that contains all four objectives. In 

this issue, the best compromise Pareto records 150,718 $/hr, 33.69 MW, 1.415 pu, and 

0.2525 to the TFC, TNL of the system, TVD for PQ buses, and voltage stability index, re-

spectively. Therefore, it is successfully applied to various multiple adopted scenarios of 

the OPF problem regarding spot-on large-scale power systems. 
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(a) (b) 
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Figure 7. PFO solutions for the cases 4–6 (a)–(c) for the 118-bus system with three simultaneous objectives. 

Indeed, a fair comparison should be made between the proposed SpDEA-based OPF 

results and the MODE-based results to point out the flexibility, availability, and strength 

of the SpDEA-based OPF methodology. In this regard, Table 8 points out this detailed 

comparison for all seven cases. It is well-meaning here to say that the numerical results of 

the OPF problem using the SpDEA-based on OPF methodology are very similar to those 

obtained by the conventional MODE. The main merit of the proposed SpDEA is that it 

selects the best compromise among PFO solutions from several hundred Paretos within 

the search space. Moreover, the best compromise Paretos are within acceptable ranges. 

This property gives it a high possibility of reaching the optimal point in a quick way. This 

desired property is obviously illustrated in Figure 5. This reflects the proper design of the 

SpDEA to solve the multiple vector simultaneous objectives of the OPF problem in electric 

power networks. 

Table 8. Final cropped results of all cases 1–7 for the 118-bus network by SpMEA compared with MOALO [50]. 

Item 
Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

SpMEA MOALO SpMEA MOALO SpMEA SpMEA MOALO SpDEA 

TFC ($/hr) 140,700 156,745 139,400 154,570 134,100 142,100 157,453 139,380 141,686 150,718 

TPL (MW) 30.339 90.659 50.0982  66.3373 38.8512 77,496 37.1432 56.9677 33.6933 

TVD (pu) 1.4427  1.051 3.887 1.4763 1.161 2.5864 1.52995 1.37546 1.41465 

1/λi 0.252525  0.252519  0.252516 0.252519  0.25253 0.252529 0.252516 

λi 3.96001  3.9601  3.96014 3.9601  3.95993 3.95994 3.96014 

: not reported in the paper. 

At last, it can be concluded that the SpDEA proves its viability in solving a large-scale 

conventional power system such as a standard IEEE 118-bus network. It is well-known 
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strategically that many countries worldwide have planned to increase their shares of re-

newable energy generation from sources such as solar, wind, tidal, and many more, in-

cluding energy storage facilities [51–53]. As a result, such penetrations to conventional 

power systems increase uncertainty. Therefore, it is important to extend the existing 

frameworks/methodologies to address this challenge. The later mentioned defines the fu-

ture trend of our current work by incorporating system uncertainties and the variability 

of different types of renewable power sources and loads. 

5. Conclusions 

A novel application of the spherical prune differential evolution algorithm has been 

demonstrated to solve the OPF problem in electric power schemes to achieve simultane-

ous objectives under various scenarios. The OPF problem has been investigated with the 

well-known IEEE standard 30-bus and 118-bus networks as a large-scale optimization 

problem with 129 design control variables. All constraints have been respected with no 

violations. MATPOWER has been used to implement the full load flow analysis of the 

networks under study using full Newton–Raphson method. PFO solutions are generated, 

and the best settings are carefully selected by using the technique of normalized fuzzifi-

cations. The best results for the IEEE 30-bus system with quad objectives of TFC, TPL, 

TVD�� and 1/λi are equal to 840.92 $/h, 5.89 MW, 9458 PU and 1.879, respectively. On the 

other hand, for the best results for the IEEE 118-bus system are equal to 150,718 ($/h), 

33.6933 MW, 1.41465 PU and 0.252516 for the same quad objectives, respectively. The 

demonstrated numerical simulations using the proposed SpDEA-based OPF methodol-

ogy have proved their high performance, effectiveness, and robustness for solving the 

OPF problem of power systems in comparison to others reported in the literature. 

Since the shares of renewable power sources including energy storage facilities are 

booming, uncertainty is increasing. Therefore, it is important to extend the existing frame-

works/methodologies to address this challenge. The later mentioned defines the future 

trend of our current work by incorporating system uncertainties and the variability of 

different types of renewable power sources and loads. 
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