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Abstract: Although there are highly discrete stochastic demands in practical supply chain prob-
lems, they are seldom considered in the research on supply chain systems, especially the single-
manufacturer multi-retailer supply chain systems. There are no significant differences between
continuous and discrete demand supply chain models, but the solutions for discrete random demand
models are more challenging and difficult. This paper studies a supply chain system of a single
manufacturer and multiple retailers with discrete stochastic demands. Each retailer faces a random
discrete demand, and the manufacturer utilizes different wholesale prices to influence each retailer’s
ordering decision. Both Make-To-Order and Make-To-Stock scenarios are considered. For each
scenario, the corresponding Stackelberg game model is constructed respectively. By proving a series
of theorems, we transfer the solution of the game model into non-linear integer programming model,
which can be easily solved by a dynamic programming method. However, with the increase in the
number of retailers and the production capacity of manufacturers, the computational complexity of
dynamic programming drastically increases due to the Dimension Barrier. Therefore, the Fast Fourier
Transform (FFT) approach is introduced, which significantly reduces the computational complexity
of solving the supply chain model.

Keywords: decentralized supply chain; multiple retailers; discrete demand; Fast Fourier Transform

1. Introduction

Many studies in supply chain management focus on one manufacturer/supplier and
one retailer setting; those studies have produced abundant results in the supply chain
integration, supply chain coordination, and supply chain inventory management, etc. The
studies in one manufacturer/supplier and multiple retailers in the decentralized setting are
more complicated and challenging. Though there are attempts at supply chain integration,
many decentralized supply chain decisions remain vitally important in the practices.

Most supply chain models consider the uncertain demand as a continuous random
variable, but demands for certain products such as luxury automobiles, large appliances,
expensive jewelry, watches, etc., are discrete random variables. Though continuous and
discrete demand–supply chain models have no significant differences, the discrete ran-
dom demand models are considered as stochastic, dynamic games between supplier and
retailers. The solutions for such models are more challenging and difficult.

This paper studies a single-manufacturer multiple-retailers supply chain system. Each
retailer faces a different random discrete demand, and the manufacturer offers differential
wholesale prices to each retailer to influence each retailer’s ordering quantity, thereby
maximizing their expected profit. Both Make-To-Order and Make-To-Stock scenarios are
considered. For each scenario, the original stochastic game problems are transferred into
discrete optimization problems. Discrete optimization problems can be generally solved
by dynamic programming methods. However, as the problem dimension increases, the
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amount of computation drastically increases and makes them hard to solve. This paper uses
the Fast Fourier Transform (FFT) approach (cf., Golub and Van Loan [1]) to solve discrete
optimization problems. Birbil et al. [2] use this approach to study the airline seat allocation
problem. For the supply chain model in this paper, when there are one manufacturer
with a production capacity, C, and m retailers; the computation complexity for dynamic
programming is O(mC2), whereas the computation complexity for FFT is only O(mC).

The rest of the paper is as follows: Section 2 provides a brief review on the related
literature. Section 3 presents the model notations and assumptions. The Make-To-Order
model is discussed in Section 4, and the Make-To-Stock model is discussed in Section 5,
respectively. Numerical examples are presented in Section 6. Concluding remarks and
future work suggestions are presented in Section 7.

2. Literature Review

Most current research in single-manufacturer/supplier and multiple-retailers supply
chains focuses on supply chain integration and VMI (Vendor Managed Inventory). Dar-
wish and Odah [3] developed a model for a supply chain with single vendor and multiple
retailers under VMI mode of operation. This model explicitly includes the VMI contractual
agreement between the vendor and retailers. The developed model can easily describe
supply chains with capacity constraints by selecting a high penalty cost. Theorems were
established to alleviate the complexity of the model and render the mathematics tractable.
Moreover, an efficient algorithm was introduced to find the global optimal solution. This
algorithm reduces the computational efforts significantly. Mateen and Chatterjee [4] de-
veloped analytical models for a single-vendor multiple retailers system, showing various
approaches in which the system may be coordinated through VMI. They also discussed
the conditions under which each of these approaches may be preferred. Mateen et al. [5]
presented an approximate expression for minimizing the expected total cost for a VMI
system with one vendor and multiple retailers and tested the expression via simulations.
Chen and Chang [6] dealt with the problem of jointly determining the optimal retail price,
the replenishment cycle, and the number of shipments for exponentially deteriorating items
under conditions of channel coordination, joint replenishment program, and pricing policy.
Two profit-maximization models including the non-integrated policy and the integrated
policy were formulated with the objective of maximizing the channel-wide profit. The
study demonstrated the optimal properties of the models and developed a search algorithm
to obtain the optimal solutions.

Glock and Kim [7] studied a single-vendor multi-retailer supply chain and considered
the case where the vendor merges with one of its retailers. After the merger, the vendor
supplies products to the market both through a direct (integrated) sales channel and the
remaining retailers. They compared the pre-merger situation to the post-merger situation
and showed under which conditions the merger is beneficial to the vendor, the retailers,
the supply chain, and the consumers. The results indicated that the type of competition
is of major importance for the structure of the supply chain after the merger, and that
under certain conditions, the merger could benefit all parties involved. Yang et al. [8]
established the coordination mechanism of dual-channel supply chain. This paper ana-
lyzes the complex mechanism of retailer’s innovation input level affecting supply chain
operation and designs a dual-coordination mechanism. The results show that the optimal
combination of wholesale price, retail price, and innovation input level can optimize the
operation efficiency of the supply chain; the non-cooperation among channel members
affects the retailer’s product pricing, reduces the market share of the physical channel,
and increases the manufacturer’s market demand; this dual coordination mechanism can
alleviate the channel conflict and improve the operation efficiency of the supply chain.
Monthatipkul and Yenradee [9,10] studied appropriate levels and locations of safety stock
of a single product in a supply chain consisting of one centralized warehouse and multiple
retailers. It is controlled by the optimal inventory/distribution plan which is obtained
by solving a proposed linear programming model. The experimental results showed that
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the suitable location to carry safety stock depend on the operating environment. The
safety stock should be carried at the retailers for all cases. Carrying safety stock at the
warehouse is beneficial when the warehouse has no cycle stock due to lot-for-lot ordering.
The suitable level of safety stock is dependent on the supply chain cost structure and can
be determined by an experiment. Islam et al. [11] considered a three-tier supply chain
with a single supplier, a single manufacturer, and multiple retailers. The manufacturer
collects raw materials from the supplier to produce finished products and then delivers the
finished products to the retailer according to the demand of the retailer. They proposed a
manufacturer-managed consignment policy and compared it with the traditional policy.
It was found that, compared with the traditional policy, the profits of all supply chain
members under the consignment policy are increased, and the three-tier consignment mode
is better than the two-tier consignment mode.

Li [12] and Zhang [13] studied information sharing in single-manufacturer multiple-
retailer supply chain. Li [12] examined the incentives for firms to share information
vertically in a two-level supply chain in which there are an upstream firm (a manufacturer)
and many downstream firms (retailers). Vertical information sharing has two effects: “direct
effect” due to the changes in strategy by the parties involved in sharing the information and
“indirect effect” (or “leakage effect”) due to the changes in strategy by other competing firms
(who may infer the information from the actions of the informed parties). Both changes
would affect the profitability of the firms. The authors showed that the leakage effect
discourages the retailers from sharing their demand information with the manufacturer
while encouraging them to share their cost information. On the other hand, the direct
effect always discourages the retailers from sharing their information. When voluntary
information sharing is not possible, they identified conditions under which information
can be traded and showed how price should be determined to facilitate such information
exchange. They also examined the impact of vertical information sharing on the total
supply chain profits and social benefits. Zhang [13] considered a supply chain with one
manufacturer in the upstream and two competing retailers in the downstream. Retailers
compete with Cournot (quantity) or Bertrand (price), and their products can be substitutes
or supplements. This model is more restrictive than Li [12] because it only deals with two
retailers, while Li [12] considers any number of retailers. On the other hand, it allows
differentiated goods and/or Bertrand model, which Li [12] assumes homogeneous goods
and Cournot model. Zhang [13] studied the incentive mechanism of vertical information
sharing with a strict non-cooperative game. The results show what the consequences could
be if coordination and cooperation efforts fail. Darwish et al. [14] present a newsvendor
supply chain model with single supplier and multiple retailers, in which the newsvendor
has two ordering opportunities. At the beginning of the sales season, the retailer orders a
certain number of products from the supplier in order to achieve the predetermined service
level. At the second ordering moment, retailers learn more about demand patterns and use
new available demand data to update future demand using the Bayesian method. Based
on the updated demand, the retailer evaluates the new service level for the rest of the sales
season. If this service level is below a specific value, order the second batch. They establish
a general demand distribution model and determine the optimal quantity at the beginning
of the sales season and the second order opportunity. Su and Geunes [15] considered a
two-stage supply chain in which a supplier serves a set of stores in a retail chain. They
considered a two-stage Stackelberg game in which the supplier must set price discounts
for each period of a finite planning horizon under uncertainty in retail-store demand. As a
mechanism to stimulate sales, the supplier offers periodic off-invoice price discounts to the
retail chain. Based on the price discounts offered by the supplier and after store demand
uncertainty is resolved, the retail chain determines individual store order quantities in
each period. Sarkar et al. [16] and Malik and Kim [17] considered the supply chain with
variable productivity. Sarkar et al. [16] established a single-supplier multi-buyer supply
chain model with variable productivity and incomplete product quality. Unit production
cost is a function of productivity. By establishing three different production functions,
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process quality and productivity are linked. The purpose of this study is to explore the
impact of productivity elasticity on product quality and supply chain cost under a single
set of multiple delivery strategies. The results show that variable productivity has a great
influence on the total cost of the supply chain model. Aiming at the single-supplier single-
buyer supply chain model of complex products, Malik and Kim [17] studied a flexible
production system with variable productivity as an alternative method to overcome the
shortage risk caused by fuzzy random demand uncertainty in the supply chain model.
The relationship between productivity and quality of products under random demand
and uncertain demand is established. The mathematical function of unit production cost
is established, which depends on productivity and changes with the change of optimal
productivity. The results show that considering the fuzziness of demand and budget,
service level and spatial constraints can help management to reduce supply chain cost and
improve customer service level by shortening lead time.

Malik and Sarkar [18] proposed a supply-chain coordination method based on the
lead-time crashing, that adopts shortening transportation lead time as the coordination
scheme among supply chain members. They considered setting cost as a variable and
using discrete investment function to reduce setting cost. In order to make the model more
practical, they consider that the lead time demand is stochastic, with unknown distribution
function and limited known information. Therefore, the author adopts a distribution-free
approach to solve this problem. Yang et al. [19] studied the optimal spare parts inventory
management problem considering discrete Weibull distribution. Wei and Wei [20] studied a
centralized supply chain model with one supplier and multiple retailers, in which demand
is discrete and stochastic.

As shown in Table 1, we summarize the related literature regarding multi-retailer
supply chain.

Table 1. Summary of the related literature regarding multi-retailer supply chain.

Literature Decision-Making Multiple Retailers Discrete Stochastic

[3–6] Centralized Yes No

[7–17] Decentralized Yes No

[18,19] Centralized No Yes

[20] Centralized Yes Yes

Our study Decentralized Yes Yes

Most of the above studies are aimed at deterministic demand or stochastic continuous
demand, but there are few studies on single-manufacturer multi-retailer supply chain with
stochastic discrete demand. Though continuous and discrete demand supply chain models
have no significant differences, the discrete random demand decentralized models are
considered as stochastic, dynamic games between supplier and retailers. The solutions for
such models are more challenging and difficult.

3. Model Notation and Assumption

C: Manufacturer’s production capacity;
Q: Manufacturer’s production quantity, Q ≤ C;
m: Number of retailers;
qj: Retailer j’s order quantity, retailer j’s decision variable, q = (q1, q2, · · · , qm);
Qj(q, Q): Product quantity allocated to retailer j, Qj(q, Q) ≤ min

{
qj, Q

}
, q = (q1,

q2, · · · , qm). When the retailers’ total ordering quantity, ∑m
j=1 qj, is no more than manufac-

ture’s production quantity Q, all orders are satisfied, and Qj(q, Q) = qj; when the retailers’
total ordering quantity, ∑m

j=1 qj is more than manufacture’s production quantity, Q, the
manufacture allocates the Q unit products to m retailers according to a predetermined allo-
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cation rule, Yj(q, Q), where Yj(q, Q) ≤ qj is strictly decreasing in qj and ∑m
j=1 Yj(q, Q) = Q.

For example, a common allocation rule is proportional allocation, Yj(q, Q) = Q
∑m

j=1 qj
· qj

cp: Manufacturer’s unit production cost;
cj: Manufacturer’s allocation cost to retailer j, j = 1, 2 . . . , m;
wj: Manufacturer’s wholesale price to retailer j, manufacturer’s decision variables,

w = (w1, w2, · · · , wm);
Prj: Retailer j’s retail price;
v: Salvage value after the selling season, where Prj − cj > wj > cp > v to avoid

any triviality.
Dj: Retailer j’s random demand with a discrete probability distribution,pjk = P

{
Dj = k

}
,

k = 1, 2 . . ..
For a random demand with a continuous probability distribution function F(x),

Lariviere and Porteus [21] defines a generalized failure rate function e(x) = xdF(x)/dx
1−F(x) and

assumes it is strictly increasing to ensure profit function’s unimodality. This assumption
has since been widely used in the supply chain management, revenue management, and
queuing theory (see a summary about this assumption in Ziya et al. [22] and further
discussions in Wei et al. [23]).

Similarly, define the following general failure rate function for a discrete demand, Dj,

ej(n) =
n ·
(
P
{

Dj ≤ n
}
− P

{
Dj ≤ n− 1

})
P
{

Dj > n
} (1)

Without loss of generality, assume that

Assumption 1. There is an increasing generalized failure rate, that is, ej(n) is strictly increasing
in n.

We summarize the notations used throughout the paper in Table 2 for ease of reference.

Table 2. List of the notation.

Notation Explanations Remark

C Manufacturer’s production capacity -

Q Manufacturer’s production quantity Q ≤ C
Manufacturer’s decision in case of MTO scenario

m Number of retailers -

qj Retailer j’s order quantity Retailer j’s decision variable, q = (q1, q2, · · · , qm)

Qj(q, Q) Product quantity allocated to retailer j
If ∑m

j=1 qj ≤ Q, then Qj(q, Q) = q, else
Qj(q, Q) = Yj(q, Q), a predetermined allocation rule.

cp Manufacturer’s unit production cost -

cj Manufacturer’s allocation cost to retailer j -

wj Manufacturer’s wholesale price to retailer j Manufacturer’s decision variables
w = (w1, w2, · · · , wm)

Prj Retailer j’s retail price -

v Salvage value after the selling season Prj − cj > wj > cp > v

Dj Retailer j’s random demand pjk = P
{

Dj = k
}

ej(n) General failure rate function ej(n) is strictly increasing in n
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4. Make-To-Order

The manufacturer first announces wholesale price (w1, w2, . . . , wm) to each retailer;
then, each retailer decides his/her order quantity accordingly. After receiving each retailer’s
order, the manufacturer starts production and then delivers the products to each retailer
based on a pre-determined policy.

4.1. Model

When the retailers’ total ordering quantity, ∑m
j=1 qj, is less than the manufacturer’s

production capacity, C, then the manufacturer production quantity Q = ∑m
j=1 qj and would

then allocate Qj(q, Q) = qj to retailer j. When the retailers’ total ordering quantity, ∑m
j=1 qj,

is more than the manufacturer’s production capacity, C, then the manufacturer production
quantity equals its production capacity, C, and would then allocate Qj(q, Q) = Yj(q, C) to
retailer j.

With random demand Dj and allocation quantity Qj, retailer j’s expected profit is

π
j
r(Qj : wj)= (Prj − v) · Emin

{
Qj, Dj

}
− (wj − v)Qj (2)

Correspondingly, the manufacturer’s expected profit is

πs(w, Q1, . . . , Qm) =
m

∑
j=1

(wj − cj) ·Qj + v ·
(

Q−
m

∑
j=1

Qj

)
− cpQ =

m

∑
j=1

(wj − cj − v)Qj + (v− cp)Q (3)

Let Qj(wj) denote the allocation quantity that maximizes retailer’s expected profit at
wholesale price wj.

Theorem 1.

(1) π
j
r(Qj : wj) is concave in Qj;

(2) Qj(wj)=max
l∈Z+
{π j

r
(
l : wj

)
− π

j
r
(
l − 1 : wj

)
> 0};

(3) Qj(wj) is strictly decreasing in wj.

Proof of Theorem 1. (1) The first order and second order differences for retailer j’s expected
profit function π

j
r(Qj) are

∆π
j
r(Qj : wj) = π

j
r(Qj : wj)− π

j
r(Qj − 1 : wj) = (Prj − v) · P{Dj ≥ Qj} − (wj − v)

∆2π
j
r(Qj : wj) = ∆π

j
r(Qj : wj)− ∆π

j
r(Qj − 1 : wj) = −(Prj − v) · pj,Qj−1 ≤ 0

Thus, π
j
r(Qj : wj) is concave in Qj;

(2) It is easy to see because of concavity of π
j
r(Qj : wj) in Qj;

(3) Proof by contradiction, assume there are two points, w1
j < w2

j , such that

Qj(w1
j ) < Qj(w2

j ), then

π
j
r

(
Qj(w2

j ) : w1
j

)
=
(

Prj − v
)
· Emin

{
Qj(w2

j ), Dj

}
− (w1

j − v)Qj(w2
j )

= π
j
r

(
Qj(w2

j ) : w2
j

)
− (w1

j − v)Qj(w2
j ) + (w2

j − v)Qj(w2
j )

≥ π
j
r

(
Qj(w1

j ) : w2
j

)
− (w1

j − v)Qj(w2
j ) + (w2

j − v)Qj(w2
j )

= π
j
r

(
Qj(w1

j ) : w1
j

)
+ (w2

j − w1
j ) ·
(

Qj(w2
j )−Qj(w1

j )
)

≥ π
j
r

(
Qj(w1

j ) : w1
j

)
The first inequality derives from the definition of Qj(w2

j ); the second inequality derives

from w1
j < w2

j and Qj(w1
j ) < Qj(w2

j ).
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This result contradicts the definition of Qj(w1
j ); therefore, Qj(wj) is strictly decreasing

in wj. �

Although Qj(wj) is the quantity that maximizes retailer j’s expected profit, the retailer
may not be able to obtain Qj(wj) unit in full.

(1) If ∑m
j=1 Qj(wj) ≤ C, then retailer j’s orders Qj(wj), and is allocated Qj(wj), unit of

product, to achieve his maximum profit π
j
r(Qj(wj) : wj);

(2) If ∑m
j=1 Qj(wj) > C, then retailers’ order cannot be fully satisfied, and some retailers

are not able to obtain Qj(wj) unit of product. However, the following theorem shows that
this situation is uneconomical for the manufacturer, and the manufacturer adjusts the
wholesale price to avoid this situation.

Theorem 2. If there is a wholesale strategy, w1 = (w1
1, w1

2, . . . , w1
m), such that ∑m

j=1 Qj(w1
j ) > C,

then w1 is manufacturer’s strictly dominated strategy.

Proof of Theorem 2. When ∑m
j=1 Qj(w1

j ) > C, let retailer j’s equilibrium order quantity be
q′j and its corresponding allocation quantity be Q′j. There must exists a wholesale strategy

w2 = (w2
1, w2

2, . . . , w2
m) with Qj(w2

j ) = Q′j and w2
j ≥ w1

j , so that πs(w1, Q′1, . . . , Q′m) <

πs(w2, Q1(w2
1), . . . , Qm(w2

m)). Therefore, w1 is a strictly dominated strategy for the manu-
facturer. �

Since ∑m
j=1 Qj(wj) > C is the manufacturer’s strictly dominated strategy, we need

only consider the condition where ∑m
j=1 Qj(wj) ≤ C. When the optimal order quantity for

retailer j, qj = Qj(wj), the manufacturer’s production quantity equals the sum of retailers’
order quantities, ∑m

j=1 Qj(wj). The manufacturer’s decision model becomes

max
w

πs(w) =
m
∑

j=1
(wj − cj − cp)Qj(wj)

s.t.
m
∑

j=1
Qj(wj) ≤ C

(4)

Let wj(Qj) =
(

Prj − v
)
·

∞

∑
k=Qj

pjk + v, Qj = 0, 1, 2 · · · (5)

Theorem 3. The manufacturer’s equilibrium wholesale price w∗j must be attainable in the set of{
wj(Qj), Qj = 0, 1, 2 · · ·

}
.

Proof of Theorem 3. By contradiction, assume there is a non-negative integer, gj, such that

(
Prj − v

)
·

∞

∑
k=gj+1

pjk + v < w∗j <
(

Prj − v
)
·

∞

∑
k=gj

pjk + v = wj(gj)

From Theorem 1, Qj(w
∗
j ) =Qj(wj(gj)) =gj. Then,

πS
(

w∗j ; j = 1, ..., m
)
=

m
∑

j=1
(w∗j − v)Qj(w

∗
j )− (c− v)Q

=
m
∑

j=1
(w∗j − v)Qj(wj(gj))− (c− v)Q

<
m
∑

j=1
(wj(gj)− v)Qj(wj(gj))− (c− v)Q

= πS
(

wj(gj); j = 1, . . . , m
)
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This contradicts the definition of w∗j . �

Theorem 3 makes the manufacturer’s decision set from continuous set to a discrete set
of
{

wj(Qj), Qj = 0, 1, 2 · · ·
}

, and there is a one-to-one correspondence between wholesale
price wj and allocation quantity Qj. The manufacturer’s decision changes to Qj instead of
wj. The manufacturer’s decision model becomes

max
Qj

πs(Q1, Q2, . . . , Qm) =
m
∑

j=1

(Prj − v
)
·

∞
∑

k=Qj

pjk + v− cj − cp

Qj

s.t.
m
∑

j=1
Qj ≤ C

Qj ∈ Z+, j = 1, 2, . . . , m

(6)

Denote the optimal solution as Q∗ = (Q∗1 , Q∗2 , . . . , Q∗m).

Let ajQj = πs

(
Q1, . . . , Qj, . . . , Qm

)
− πs

(
Q1, . . . , Qj − 1, . . . , Qm

)
be the marginal

profit for the manufacturer when the allocation quantity to retailer j from Qj − 1 to
Qj, then,

ajQj =
(

Prj − v
)
·

 ∞

∑
k=Qj−1

pjk −Qj pj,(Qj−1)

− (cj + cp − v) (7)

Theorem 4. Under Assumption 1, ajQj decreases in Qj, i.e., πs(Q1, Q2, . . . , Qm) is concave in Qj.

Proof of Theorem 4. Since,

ajQj =
(

Prj − v
)
·
(

∞
∑

k=Qj

pjk −
(
Qj − 1

)
pj,(Qj−1)

)
− (cj + cp − v)

=
(

Prj − v
)
·∑∞

Qj+1 pjk ·
(
1− ej(Qj − 1)

)
− (cj + cp − v)

∑∞
Qj+1 pjk decreases in Qj and ej(Qj) increases in Qj, it is easy to show that ajQj decreases

in Qj. �

4.2. Simplified Solution

The non-linear integer programming problem in (6) is difficult to solve using integer
programming method. For this type of the model, it is common to convert it to a dynamic
programming model and make it easy to solve.

Let Vl(h) be the manufacturer’s maximum expected profit when allocating h units’
products to retailers, l, l + 1, . . . , m, then, V1(C) = maxπs(Q1, Q2, . . . , Qm). Using dynamic

programming method, Vl(h) (l = 1, 2, . . . , m) satisfies the following Bellman equation:

Vm+1(h) = 0;

Vl(h) = max
Ql∈Z+

{[(
Prj − v

)
·

∞
∑

k=Ql

plk + v− cl − cp

]
Ql + Vl+1(h−Ql)

}
, l = 1, 2, . . . , m (8)

Using recursion to solve (8) is much simpler than directly solving (6). However, the
amount of computation for this dynamic program is O(mC2), and it becomes harder when
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there are more states and decision variables. We propose to use the FFT approach and
construct the following matrix for the marginal profit:

α11 α12 · · · α1C
α21 α22 · · · α2C

· · ·
... · · ·

...
αm1 αm2 · · · αmC

 (9)

Using marginal matrix (9), it is easy to obtain the optimal solution for Model (5). If the
number of positive values, denoted Q, is less than C, then Q∗j = max

l
{l ∈ Z+, ajl > 0} and

the manufacturer’s total production, ∑m
j Q∗j = Q. If Q > C, then the optimal solution is

determined by the C largest values, and the sum of those values is the maximum expected
value for the manufacturer. In addition, in these numbers of C values, the occurrences of
subscript j is Q∗j . Since αjQj strictly deceases in Qj, in selecting these C largest values, we
only need to compare with the non-selected value in the far left in each row. There are m
rows and C comparisons; therefore, the amount of computation becomes O(mC).

5. Make-To-Stock

In this situation, the manufacturer produces a fixed quantity of goods in advance
(the production is no longer a decision variable) and determines the wholesale price
(w1, w2, . . . , wm) for each retailer; then, each of m retailers decides his/her own order
quantity qj according to the wholesale price wj. The actual quantity of goods Qj(q, Q) are
assigned to the retailer j according to the pre-set rules Yj(q, Q). Accordingly, the retailer’s
expected profit is

π
j
r(Qj : wj)= (Prj − v) · Emin{Qj, Dj} − (wj − v)Qj (10)

Correspondingly, the manufacture’s expected profit is

πS(w, Q1, . . . , Qm) =
m

∑
j=1

(wj − cj − v)Qj + (v− cp)Q (11)

It can be seen from Theorem 1 that the retailer j’s expected profit function π
j
r(Qj :

wj) is concave in Qj. Let Qj(wj) = max
l∈Z+
{π j

r
(
l : wj

)
− π

j
r
(
l − 1 : wj

)
> 0} and denote the

optimal assigned quantity that maximizes the retailer’s profit; then, Qj(wj) is strictly
decreasing in wj. Similar to the discussion in the previous section, the following properties
of manufacturer’s wholesale price can be obtained:

Theorem 5. If there is a wholesale price strategy, w1 = (w1
1, w1

2, . . . , w1
m), such that ∑m

j=1 Qj(w1
j ) >

Q and then w1 is manufacturer’s strictly dominated strategy.

Proof of Theorem 5. It is similar to that of Theorem 2. �

According to Theorem 5, the model of the manufacture can be simplified as

maxπS(w1, w2, . . . , wm) =
m
∑

j=1
(wj − cj − v)qj(wj) + (v− cp)Q

s.t.
m
∑

j=1
qj(wj) ≤ Q

(12)

Using the function of wj(Qj) =
(

Prj − v
)
·

∞
∑

k=Qj

pjk + v, we obtain the following theorem.



Sustainability 2021, 13, 8271 10 of 13

Theorem 6. The manufacturer’s equilibrium wholesale price w∗j must be attainable in the set of{
wj(Qj), Qj = 0, 1, 2 · · ·

}
.

Proof of Theorem 6. It is similar to that of Theorem 3. �

From Theorem 6, it can be seen that the manufacturer’s decision-making set changes
from a continuous set to a discrete set of

{
wj(Qj), Qj = 0, 1, 2 · · ·

}
, and there is a one-to-

one correspondence between the wholesale price wj and assigned quantity of goods Qj.
Therefore, we can change the manufacturer’s decision-making from wj to Qj, and then the
manufacturer’s model becomes,

max
Qj

πS(Qj; j = 1, . . . , m
)
=

m
∑

j=1

[(
Prj − v

)
·

∞
∑

k=Qj

pjk − cj

]
·Qj − (cp − v)Q

s.t.
m
∑

j=1
Qj ≤ Q

Qj ∈ Z+, j = 1, 2, . . . , m

(13)

Denote the optimal solution as (Q∗∗1 , Q∗∗2 , . . . , Q∗∗m ).
When the allocated quantity of goods to retailer j increases from Qj −1 to Qj, the

marginal profit of manufacturer, denoted as α′jQj
, increases.

α′jQj
= πS

(
Q1, . . . , Qj, . . . , Qm

)
− πS

(
Q1, . . . , Qj − 1, . . . , Qm

)
=
(

Prj − v
)
·

 ∞

∑
k=Qj−1

pjk −Qj pj,(Qj−1)

− cj (14)

By comparing Equations (14) and (7), we can find that there is only one constant differ-
ence (cp − v) between α′jQj

and ajQj ; therefore, we can easily obtain the following property.

Corollary 1. Under assumption 1, α′jQj
is decreasing in Qj.

Proof. It can be easily obtained according to Theorem 4. �

According to Corollary 1, we can construct a m×Q marginal profit matrix
α′11 α′12 · · · α′1Q
α′21 α′22 · · · α′2Q

...
...

...
...

α′m1 α′m2 · · · α′mQ

 (15)

The equilibrium profit of supply chain can be easily obtained from this matrix. If the
number of positive values in Matrix (14) exceeds Q, the largest Q values are selected, and
the sum of these Q values is the manufacturer’s equilibrium profit. In these Q values, the
number of times that subscript j appears is the retailer j’s equilibrium purchase quantity Q∗∗j ,
and the corresponding equilibrium wholesale price is wj(Q

∗∗
j ). If the number of positive

values Q in Matrix (14) is less than Q, then the sum of these Q values is the manufacturer’s
equilibrium profit, and in these Q values, the number of times that subscript j appears is
the retailer j’s equilibrium purchase quantity Q∗∗j .

6. Numerical Example

Considering a small furniture supply chain system, there is one furniture manufacturer
and three retailers in a supply chain system. The production cost for the manufacturer
is $1000 per set, and the salvage value for the unsold furniture is $600 per set. The
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distribution costs from the manufacturer to the retailers 1, 2, and 3 are $300, $200, and $400
per set, respectively. The retail prices for retailers 1, 2, and 3 are $2000, $2200, and $2300,
respectively. The random discrete demands follow Poisson distributions, and the mean
demands for retailers 1, 2, and 3 are 6, 7, and 8 sets of furniture per week, respectively.
Table 3 has the summary of the parameter values.

Table 3. Value of parameters.

Parameter cp v c1 c2 c3 Pr1 Pr2 Pr3 λ1 λ2 λ3

Value 1000 600 300 200 400 2000 2200 2300 6 7 8

In the MTO scenario, bringing the above parameter values into Formula (7), one
can obtain the marginal revenue under different order quantities. All that is needed is
to calculate the part with the value greater than 0 and bring it into the marginal revenue
Matrix (9).  696.53 654.89 488.31 113.53 −448.65

998.54 978.11 881.09 618.95 139.37 −502.87
899.43 890.31 840.12 681.96 341.31 −203.73

 (16)

At this time, only 17 values need to be calculated, of which 14 are positive values,
which means that the manufacturer’s production quantity does not exceed 14 sets. The
value of each row of matrix (16) decreases from left to right. In this case, the optimal order
quantity can be easily found from the matrix for any manufacturer’s production capacity
by using FFT method. For example, when the production capacity is 10, select the largest
10 positive values in the matrix in turn: if two values are selected in the first row, then the
optimal order quantity of retailer 1 is two sets; if four values are selected in the second
line, the optimal order quantity of retailer 2 is four sets; if four values are selected in the
third line, the optimal order quantity of retailer 3 is four sets. By introducing the retailer’s
optimal order quantity into Formula (5), the manufacturer’s equilibrium wholesale price
strategy can be easily obtained. Table 4 lists equilibrium strategy for the supply chain
under different production capabilities by the manufacturer.

Table 4. Equilibrium strategy under different manufacturers’ production capacity in MTO scenario.

C w1 w2 w3 q1 q2 q3 Q

5 2000 2152.58 2294.87 0 3 2 5
6 2000 2152.58 2276.62 0 3 3 6
7 2000 2152.58 2227.95 0 3 4 7
8 1996.53 2152.58 2227.95 1 3 4 8
9 1975.71 2152.58 2227.95 2 3 4 9

10 1975.71 2069.18 2227.95 2 4 4 10
11 1913.24 2069.18 2227.95 3 4 4 11
12 1913.24 2069.18 2130.62 3 4 5 12
13 1913.24 1923.21 2130.62 3 5 5 13
≥14 1788.31 1923.21 2130.62 4 5 5 14

In the MTS scenario, substituting all the parameter values into the MTS model, recall
that α′jQj

= ajQj + (cp − v) = ajQj + 400, and the manufacturer’s marginal profit matrix (15)

is expressed as α′jQj 1096.53 1054.89 888.31 513.53 −48.65
1398.54 1378.11 1281.09 1018.95 539.37 −102.87
1299.43 1290.31 1240.12 1081.96 741.31 196.27 −478.55

 (17)
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The above matrix has 15 positive values, which means the maximum production
quantity for the manufacturer is 15 sets. Similar to the MTO scenario, the supply chain
equilibrium strategy can be easily obtained by using FFT method. Table 5 summarizes
the retailers’ equilibrium orders and the manufacturer’s marginal profit under different
production quantities.

Table 5. Equilibrium strategy under different manufacturers’ production quantity in MTS Scenario.

Q (w1,w2,w3) (Q1,Q2,Q3)

≤14 Same as in MTO Scenario Same as in MTO Scenario

≥15 (1788.31, 1923.21, 1974.90) (4,5,6)

From the above analysis, one can see that for the above numerical example, whether
it is MTO scenario or MTS scenario, the equilibrium strategy of the supply chain can
be easily calculated in 20 steps by using the method in this paper. Moreover, when the
production capacity in MTO scenario or the output of MTS scenario changes, the marginal
profit matrix is not affected, only a few steps are needed to calculate the new equilibrium
strategy. For the same example, when the manufacturer’s production capacity is 15, the
computational complexity of the dynamic programming method is O(675). Although the
actual calculation may not take so many steps, it is far beyond the method in this paper.
Moreover, the more the number of retailers and the greater the manufacturer’s production
capacity, the more advantages of this method.

7. Conclusions

This paper studies a supply chain system of single manufacturer and multiple retailers
with discrete stochastic demands. The scenario of Make-To-Order model is discussed
firstly, and the corresponding Stackelberg game model is established. Through a series
of mathematical deduction and proof, the game model of wholesale price and purchase
quantity is transferred into an integer programming model of quantity allocation, which is
usually solved by dynamic programming. However, with the increase in the number of
retailers and the production capacity of manufacturers, the computational complexity of
dynamic programming increases sharply due to the Dimension Barrier. Therefore, based
on the quantity allocation model, the Fast Fourier Transform (FFT) method is introduced
to solve the integer programming, which can greatly reduce the complexity of the model.
When manufacturer capacity is C and retailer number is m, the computational complexity
for the dynamic programming approach is O(mC2) and for the FFT approach is O(mC).
Furthermore, the other scenario of Make-To-Order is discussed, and a similar conclusion
is obtained.

This study provides a reference for the multi-retailer supply chain with discrete
demands, but it also has the following limitations: Firstly, the generalized failure rate
function ej(n) is assumed strictly increasing in n, and future research can consider more
general demand function. Secondly, retail price is considered as an exogenous variable,
which can be considered controllable retail price in future work.
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