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Abstract: Power generation from wind energy is almost entirely performed in rural locations or at
sea, and very little attention has been given to the use of wind turbines in urban locations. Since the
re-emergence of wind turbines, the majority of their applications are in large commercial wind farms
in rural areas or out at sea, and there is an increasing focus on the use of wind turbines within an
urban environment possibly using existing structures, such as bridges and viaducts. There are very
few existing buildings which have been designed from the ground-up to include wind turbines in the
structure. In order to estimate the wind resources and the performance of a turbine at a particular site,
a CFD model is designed and CFD calculations are performed. In order to simplify the modelling
of a wind turbine actuator, disc theory is applied. Actuator disc theory is used, as it allows the
aerodynamic behaviour of a wind turbine to be analyzed by just considering the energy extraction
process without a specific wind turbine design. The power output of wind turbines installed beneath
an already existing civil infrastructure is determined and analyzed.

Keywords: renewable energy; wind turbine; actuator disc; viaduct; performance

1. Introduction

As conventional fossil fuel supplies diminish and cause concern over environmental
pollution rises, renewable energy sources have proved more attractive, such as wind, solar,
or geothermal sources [1]. The attractiveness of renewable sources has increased due to the
increase in costs associated with fossil fuel consumption and the growing awareness and
public desire for green methods of energy production. They also allow for the possibility of
effective de-centralization of energy production and an increase in self-sufficiency, which is
particularly attractive for remote populations. The method of renewable energy production
used varies across the globe in order to utilize the most effective method for the specific
location [2].

Integration of wind turbines in buildings has been studied for many years and is
expected to be well-developed in the near future [3]. Turbines are located in high points
of the building in order to take advantages of higher speeds. There are existing buildings
which have been designed from the ground-up to include wind turbines in the structure,
although more are proposed in the future.

The world’s leading example of a building-integrated wind energy conversion system
is probably the 50-storey, 240 m high Bahrain World Trade Center (Manama, Bahrain),
which uses three large turbines of 29 m diameter each between two towers to generate
approximately 1100–1300 MWh per year. These two towers are shaped specifically to
accelerate and direct the air flow to the fixed direction turbines, allowing them to operate
between 270 and 360 degrees, although they are restricted to operate only between 285
and 345 degrees to ensure no damage is caused [4]. Fixed-direction turbines have been
used in order to ease the integration into the building, although this restricts the amount of
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time that they can operate; however, the shape of the building which faces the dominating
prevailing wind is used to overcome this restriction. Results of the Computational Fluid
Dynamics (CFD) analysis performed in [4] show how the towers create an S-shaped
streamline through the centre.

One of the world’s first buildings with a fully integrated wind turbine system is
the 43 storey Strata building located in Elephant and Castle (London, UK), which was
completed in 2010. At the top of the tower, three 9 m diameter Horizontal Axis Wind
Turbines (HAWTs) are located, which are enclosed in order to increase their efficiency
through the venture effect. They provide 8% of the building’s energy needs and exceed UK
building regulations by 13%. The three 9 m turbines are rated at 19 kW and expected to
produce 50 MWh each year.

An example of a way to integrate wind power generation into existing structures is
the addition of a wind turbine to the Bolte Bridge in Melbourne (Australia), as proposed
in [5]. The Bolte Bridge is in a prize location to take advantage of wind energy generation
in an urban environment, as it is unobstructed by the surrounding buildings. This idea has
not been considered or developed into a viable proposition.

Two small turbines have been added to the top of the EMSD Headquarters Building
in Hong Kong, which are a 1 kW HAWT and a 1.5 kW Vertical Axis Wind Turbine (VAWT).
These are mainly to provide operational experience and demonstrate the application of
small wind turbines rather than as an effective energy generation proposal.

The Oklahoma Medical Research Facility (Oklahoma City, OK, USA) has had an array
of VAWTs included into the roof of a new research tower and was opened in 2012. This is
currently the largest building-integrated wind turbine system in the US, with 18 turbines
rated at 4.5 kW each produced by Venger Wind.

Obviously, not all proposed ideas are followed through—for example, the Freedom
Tower in New York was at one stage supposed to include the world’s first urban wind
farm; however, wind energy is now produced for the tower at a different location.

The Zona Eylica Canaria Socied ad Anynima (ZECSA) is a Spanish company that looks
to promote the use of renewable energy generation, particularly in an urban environment
for the Plan for Exploitation of Public Infrastructures for Renewable Energies (PAINPER
in Spanish initials). The Canary Islands possess optimum conditions for large-scale ex-
ploitation of renewable energies, especially wind energy. The Canaries are situated at
a point where Trade Winds, constant east winds, make these islands an interesting area
for the development of wind infrastructures. Along with these general currents, there
exist local winds owing to differential warming, sea breeze, or vale-mountain flows. In
addition, particular orographic conditions of terrains would affect local winds and create
small locations with good conditions for wind power.

ZESCA proposed a study into energy production using wind turbines implemented
into the structure of the Juncal Viaduct in Galdar, Gran Canaria. This viaduct is part of
the dual carriageway which connects the three main populations of Santa Maria de Guia,
Goldar and Agaete. The designed structure, with a direction of North–South, had a span of
250 m long and a height of 63 m, with a slope of 0.52%. The Juncal Viaduct has a platform
with a total length of 11 m and a camber of 1.42%. It is supported by two doubled pillars of
46.60 m and 33.80 m, respectively. The energy production from the wind farm would not
be very high due to conditions of the location, characterized by geographical and spacing
conditions. It is not possible to choose an ideal site for the wind turbine as it must be
adapted to the existing conditions.

Different arrangements of various sizes of HAWTs to find the most effective arrange-
ment were used in [6]. In this location, the air is channelled along a valley to the wind
turbines, and this would increase the turbulence of the air reaching the wind turbines.
Due to this, it is possible that the use of VAWTs would be more suited to this particular
application as they out-perform HAWTs in turbulent airflow [7]. The actuator disc theory
and analytical wake model were applied in [8] to assess power output generated by the
wind farm.
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The study presents an assessment of the expected power output from a wind turbine
placed in an existing viaduct, and describes CFD results used to model the wind flow
through a turbine for a range of resistances of disc representing turbine rotor. The use of
VAWTs to HAWTs at this specific location is compared against the results computed in [6]
for different configurations based on HAWTs.

During the research of [6], different arrangements of various sizes of HAWTs have
been used to find the most effective arrangement. In this location, the air is channelled
along a valley to the wind turbines, and this would increase the turbulence of the air
reaching the wind turbines. Due to this, it is possible that the use of VAWTs would be
more suited to this particular application, as they out-perform HAWTs in turbulent airflow.
This study attempts to re-create the CFD model created during the study in [6] in order to
compare the use of VAWTs to HAWTs at this specific location. The methodology exploitees
the actuator disc theory and CFD calculations to find the maximum power output of the
wind farm.

2. Actuator Disc

Actuator disc theory has been largely used in wind turbine studies. In fact, in order to
analyze the wind flow quantitatively, a resistance coefficient is introduced in the actuator
disc. This would give the disc a porosity which would diffuse the wind incident in its
upstream surface.

A porous disc was applied in [9] to analyze the effect of turbine resistance and shroud-
ing in order to calculate the maximum power extracted from a given rotor diameter and
from a given area of stream. The same procedure was used in [10] to study the performance
of a building-mounted ducted cross-flow wind turbine. The theory of actuator disc in the
study of wake flow in tidal turbines in both numerical and experimental procedures was
introduced in [11]. This study came to the conclusion that a porous disc instead of the real
blade model could be a validated and accurate way for tidal turbines modelling. The main
reason for using an actuator disc is its more simple design which avoids complex meshing,
which would require high computational effort.

A CFD package to study the behavior of tidal energy converters was used in [12]. A
simplified computational domain was designed to locate the converter with the aim of
decreasing computational times. The study confirms again that actuator disc models offer
an economically viable analysis tool in terms of mesh size and solution timescales. In fact,
as mesh size is reduced, generation time for a turbine model would be reduced as well.
Simulation of actuator discs in the study of wind flows is a potentially economically viable
analysis tool [13].

In order to use actuator disc theory, a frozen body in disc shape of the correct diameter
for the chosen wind turbine is created. The disc is then set as a porous domain consisting
of both the fluid (air is treated as ideal gas) and the solid (steel). The resistance of the
blades to the flow is given in terms or porosity for the disc with a value from 0 to 1, where
0 represents a solid wall and a value of 1 gives no resistance. For this study, the disc
representing the turbine is given a porosity of 9 or 90%, this means that there is only a 10%
reduction in the available flow area.

In order to measure the power generated by the turbine, the momentum extraction
is to be simulated. This is done by giving the disc a thrust term opposing the normal
flow. This loss model is defined by a liner or quadratic loss coefficient which takes into
account the pressure gradient across the disc. In this case, a quadratic loss coefficient is
used, ranging from 0 to 8 kg/m4, allowing the pressure drop to be measured for a variety
of different turbine characteristics. The power is calculated by

P = η(p1 − p2)uA =
1
2

ηkρu3 A,

where p1 and p2 are the static pressures immediately upstream and downstream of the
rotor, respectively, u is the one-dimensional wind speed immediately upstream of the rotor,
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and ρ is the air density, η is the efficiency of the turbine, and A is the flow area. The disc
has a drag coefficient, k, giving the relationship between the pressure drop across the disc
to the induced velocity immediately upstream of the disc [14].

3. Configurations of Wind Turbines

Initially, a full-size domain of the valley and the surrounding area as was done in
the [6] study was created and meshed (Figure 1a). In order to reduce the processing
requirements, a much smaller and less complicated domain was required. This was
done by taking the straight section of the valley where the viaduct is located (Figure 1b).
Dimension restrictions due to the presence of the irregular terrain, pillars, and viaduct
platform are taken into account. Distance between pillars is 119.25 m, while maximum
height between the ground and bottom surface of the viaduct is 60.90 m. Altogether it
makes a total available surface of approximately 5900 m2. However, due to the geometric
characteristics of wind turbines, not all the surface available would be occupied.

a) b)

Figure 1. Original domain (a) and new domain (b).

Three different models are used in CFD calculations. The first model, single HAWT,
is the same as the one used in the [6] study. It includes a single 46 m diameter HAWT
mounted below the viaduct with an area of 1661.9 m2 (Figure 2a). The second model, single
VAWT, is a large VAWT mounted below the viaduct in a similar manner to the previous
HAWT. It is 44 m tall by 36 m wide with a total area of 1584 m2 (Figure 2b). In order to take
advantage of different wind directions and the higher wind speeds above the viaduct, the
third model uses two VAWTs mounted on top of the viaduct supports, above the roadway.
They both measure 35 m tall by 20 m wide and each have an area of 700 m2, giving a
combined area of 1400 m2 (Figure 2c).

CFD models used in the study are similar to those designed in [6]. An unstructured
finite volume incompressible solver is used to carry out CFD calculations [15]. They are
based on Reynolds-averaged Navier–Stokes (RANS) equations and Shear Stress Transport
(SST) turbulence model [16]. Details of the numerical methods and finite-difference schemes
are provided in [17,18].
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a)

b)

c)

Figure 2. Different configurations of wind turbines: (a) single HAWT, (b) single VAWT, (c) dou-
ble VAWT.

4. Wind Data

In order to provide comparable results to those in the study performed in [6], the
same wind data are used. The raw data were taken from the IDAE (Instituto para la
Diversificacion Ahorro de Energia, atlaseolico.idae.es/meteosim) and the ITC (Instituto
Tecnologico de Canarias). Figure 3 shows the wind rose at 80 m at point (432450, 3109650)
taken from IDEA [6]. It shows the predominant wind direction is towards the north-east
with a 30% frequency, and a 25% frequency in the east-north-east direction.

Figure 3. Wind rising at 80 m at point (432450, 3109650) taken from IDEA.

Taking the wind direction to be north-east, the ITC and IDEA wind data at a variety of
different heights are given in Tables 1 and 2, where z is the height, v is the wind speed, c is
the form factor, and C is the scale factor. Wind data provided by IDAE are more complete
as Weibull constant, C, has been added, which is useful for the calculation of the wind
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resource at different speeds. Using data given by ITC, the Weibull distribution for the wind
inlet at 40 m high are calculated.

Table 1. ITC wind data.

z, m 40 60 80
v, m/s 6.25 6.68 6.99

c 2.271 2.285 2.276

Table 2. IDAE wind data.

z, m 30 60 80 100
v, m/s 5.57 6.34 6.69 6.91

c 2.271 2.285 2.276 2.246
C 6.05 6.91 7.29 7.56

Wind frequency is calculated by the equation proposed in [19]. To calculate the wind
height variation in a short-term period (minutes and hours), the model proposed in [20] is
applied. These equations contain a number of constants depending on wind speed and
surface roughness [21]. The chosen roughness length is fixed at 0.1 m as the assessed area,
due to the absence of woods and the presence of only a few trees and crops [22].

5. Domain

In order to produce the most accurate results, it is important to use a domain size
which has no effect on the simulations (the simulation is independent of the domain size).
To reduce the computing time required to process a problem, the smallest possible domain
size which still allows the simulation to be independent should be used. As one dimension,
the length of the valley, has been set by the physical geometry, only the domain height and
width can be varied. Each domain gets progressively larger until no change is recorded in
the results. The smallest domain that allows for a domain-independent solution is used in
order to speed-up the computational time.

The length and width of each domain used in CFD calculations are presented in
Table 3. The computed results are shown in Table 4.

Table 3. Dimensions of computational domain.

Domain Height, m Width, m

Domain 1 100 350
Domain 2 150 450
Domain 3 250 550
Domain 4 300 650
Domain 5 400 850

Table 4. Results of domain independence study.

Domain p1, Pa % p2, Pa % Ui, m/s % ṁ, kg/s % P, kW %

Domain 1 8.746 3.93 −4.544 1.78 0.064 4.64 1652 1.59 14.09 1.48
Domain 2 8.409 2.46 −4.464 1.36 0.067 1.32 1626 0.56 14.30 0.14
Domain 3 8.205 0.43 −4.525 0.55 0.068 2.07 1617 0.12 14.32 2.12
Domain 4 8.170 0.71 −4.550 0.94 0.066 0.78 1615 0.12 14.11 0.64
Domain 5 8.112 — −4.593 — 0.067 — 1617 — 14.11 —

The size of the domain has a large impact on the pressures recorded and the induced
velocity. For the first two domain (domains 1 and 2) sizes, the percentage difference was
over acceptable limits at 3.93% and 2.46% for p1 and 4.64% for Ui, meaning they were
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not independent. By domain three, much smaller percentage differences were calculated
with the exception of Ui and the generated power at 2.07% and 2.12%, respectively. After
domain 3, all percentage differences fall below 1%; hence, domain 3 is used in order to
reduce the processing time, whilst allowing for domain independence. Plots of this data
are given in Figure 4.

Figure 4. Domain-independent study: (a) average pressure, (b) power output, (c) induced velocity,
(d) mass flow rate.

6. Mesh

An unstructured hybrid mesh has been created using pyramid and tetrahedral ele-
ments and an inflation layer over the ground of the model and around the turbine. In
order to reduce the processing time, the mesh is biased, allowing it to be finer towards the
regions expected to undergo the greatest changes in wind velocity and pressure gradient,
such as the viaduct edges, bridge, and the porous disc, whilst also allowing the mesh to be
coarser in the outlying regions.

Wall functions are used to simulate the mean wind profile and the turbulent kinetic
energy, as this allows further simplification of the mesh and simulation. As a result, a
yplus coordinate of between 30 to 300 is used, as the first node distance ∆y does not need
to intercept the viscous sub-layer. At 10% stream-wise length, using an initial velocity of
4 m/s from the ITC data, the Reynolds number is Re = 1.06× 107, and the flow is turbulent.
The first node distance is calculated as

∆y = 8.6Ly+Re−13/14 = 0.0155 m.

As a hybrid mesh and inflation layer are being used, it is important that the inflation layer
extends above the maximum boundary layer thickness. The boundary layer thickness at a
100% characteristic length is δ = 0.382L/Re1/5 = 3.974 m, where Re = 1.06 × 106.

The inflation uses 39 layers with a growth rate kept at 20% to ensure a smooth
transition. The inflation layer first node distance is 0.0165 m and the final node is at
16.841 m, ensuring that the 100% boundary layer thickness of 7.52 m is included. The same
method is used to calculate the inflation layer for each of the different turbine models.

To ensure that the most accurate result is achieved using the set-up chosen, the
resolution of the mesh should be increased to check that the element size does not influence
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the results (mesh-independent solution). It then allows the smallest usable mesh to be
identified, saving on processing time. To check the independence, five different values are
monitored using configuration A from [6]. This allows the results to be validated against
their findings: pressure immediately before the turbine, p1; pressure immediately after the
turbine, p2; induced velocity, Ui; mass flow rate through the turbine, ṁ; power generated
by the turbine at 8 kg/m4, P. Monitoring these values allows the effect of increasing the
mesh resolution to be studied and comparisons between each resolution step to be made.
If the difference between each resolution is less than 2% for consecutive meshes, then the
study is independent. The coarsest resolution which displays this relationship with the
following meshes are used. The percentage difference between each mesh is calculated by

Difference in values
Average of values

× 100% =
Mesha − Meshb

0.5(Mesha − Meshb)
× 100%.

Number of cells and nodes used in CFD calculations is presented in Table 5. The
maximum values of the yplus coordinate are also included to provide a better insight
into details of CFD simulations. Figure 5 shows the typical mesh and how the inflation
is observed in one of the configurations (single HAWT) used in CFD calculations. To
minimize computational time, the mesh is predefined to be coarser in the region of the
flow domain and more refined in the porous flow domain to capture sudden changes of
the wind velocity.

Table 5. Number of mesh elements and nodes.

Mesh Elements Nodes Yplus

Mesh 1 1,699,380 500,828 182
Mesh 2 1,706,173 505,195 171
Mesh 3 1,829,597 546,562 156
Mesh 4 2,041,625 606,166 124
Mesh 5 2,960,299 885,269 86
Mesh 6 3,895,222 1,186,877 52

Figure 5. Mesh 4 used in CFD calculations for HAWT.

The results computed are shown in Table 6. It shows that there is a small difference in
the pressures and the mass flow rates through the wind turbine between all six meshes
tested. There is a range of 0.01% to 0.40% for p1, 0.47% to 1.11% for p2 and 0.06% to 0.31%
for the mass flow rate. The velocity and power generated, however, change significantly for
each increase in mesh resolution, further increases were not possible due to a restriction on
the processing power available. As a result, the third mesh is used as it represents the best
balance of mesh independence and processing time. Plots of this data are given in Figure 6.
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Table 6. Results of mesh independence study.

Mesh p1, Pa % p2, Pa % Ui, m/s % ṁ, kg/s % P, kW %

Mesh 1 8.383 0.32 −4.546 0.71 0.065 0.62 1631 0.06 13.86 0.58
Mesh 2 8.410 0.01 −4.514 1.11 0.064 4.13 1630 0.25 13.78 3.70
Mesh 3 8.409 0.68 −4.464 0.72 0.067 1.66 1626 0.12 14.30 1.91
Mesh 4 8.424 0.40 −4.432 0.58 0.066 9.96 1624 0.31 14.03 9.96
Mesh 5 8.390 0.27 −4.458 0.47 0.073 9.71 1629 0.12 15.50 10.17
Mesh 6 8.367 — −4.479 — 0.080 — 1631 — 17.16 —

Figure 6. Mesh-independent study: (a) average pressure, (b) power output, (c) induced velocity,
(d) mass flow rate.

Transition modelling allows to use a model to predict the change from laminar and
turbulent flows in fluids and their respective effects on the overall solution. The complexity
and lack of understanding of the underlining physics of the problems makes simulating the
interaction between laminar and turbulent flow difficult and very case-specific. Transition
does have the wide range of turbulence options available for most CFD applications
for various reasons. Transition involves a wide range of scales where the energy and
momentum transfer are strongly influenced by inertial or non-linear effects that are unique
to the simulation. Transition also occurs by different means, such as natural and bypass,
and modelling all possibilities is difficult. Most CFD simulations use Reynolds-averaged
Navier–Stokes equations, in which averaging eliminates linear disturbance.

7. Results and Discussion

A number of CFD simulations were carried out for various configurations of wind
turbines and several simulated rotor resistances.

The first simulations run after the independency studies were to investigate the
quadratic resistance value which gave the best performance for turbine model. For these
simulations, the inlet velocity was kept at 4 m/s, the turbulence was kept to 5%, and the
quadratic resistance was varied from 0 to 8 kg/m4. For the single large 46 m diameter
HAWT, the maximum power generation occurs at 2 kg/m4 with 1934.5 W generated, after
which the power slowly falls off to 1432.2 W at 8 kg/m4. For the single VAWT, the power
generated climbs from 0 and peaks at 1.1 kg/m4, and again after this point, the power
tails off. The double VAWT differs in that its maximum power generated is at the highest
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quadratic resistance level of 8 kg/m4 after building gently from 0. The values for each step
in quadratic resistance are presented in Table 7, Figures 7 and 8.

Table 7. Power generated (in W) at each quadratic resistance value.

K, kg/m4 Single HAWT Single VAWT Double VAWT

8.0 1432.20 1757.3 3390.5
4.0 1847.40 2646.9 3291.2
2.0 1934.50 3338.3 3170.4
1.1 1599.00 3404.6 2877.8
0.9 1408.30 3287.8 2742
0.7 1137.00 3054.3 2562.8
0.5 761.60 2621.9 2256.8
0.1 −102.23 552.45 856.86
0.0 −6.42 −3.7107 17.379

Figure 7. Power generated as a function of (a) quadratic resistance, (b) wind speed.

Figure 8. Power generated by HAWT (a) and VAWT (b) as a function of degree of turbulence.

Using the value of quadratic resistance determined previously, each configuration
was tested again whilst varying the level of turbulence from 1% to 10%. The inlet speed
remained at 4 m/s. The results obtained are shown in Table 8. Out of the three models, the
power-generation level of the HAWT turbine did fall more than the VAWTs, as predicted;
however, this was only a decrease of 10 W and less than a 1% decrease, whilst the single
VAWT power generation varied by 5 W and the double by 7 W. In all cases, the decrease in
power generation is not significant.

Table 8. Effect of turbulence level on power output (in W).

Turbulence Single HAWT Single VAWT Double VAWT

10% 1925.10 3408.0 3385.6
5% 1934.50 3404.6 3390.5
1% 1935.40 3403.0 3392.4
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Wind speed, as shown in Table 9, obviously has the biggest impact on the power
produced by the wind turbines as it allows a greater pressure difference to be created. The
wind speed was increased from 3 to 24 m/s with the turbulence set to a medium level
of 5% and the most suitable quadratic resistance value for each model. The wind speed
arriving at the wind turbines is roughly half of that of the wind speed in the predominate
wind direction of the north-east due to canalization effect of the valley [6], so to achieve the
speeds here the actual wind speed would be roughly doubled, starting at 3 m/s, which
is around the cut-in velocity of the average wind turbine. At this level of wind speed, all
three turbine models produce a low level of power, with the HAWT producing the least by
43.75%, and both VAWT turbines produce similar levels of power. Throughout the increase
in wind speed, the VAWTs track closely with each other, with the HAWT following behind.
There is a big step in power from the 4 m/s to 8 m/s, with the VAWTs outperforming
the HAWT by 44% again. Further increases to speeds which are unlikely to occur offer a
significant power output of almost 740 kW for the single VAWT, again a 44% increase in
performance over the HAWT.

Table 9. Power generated (in W) at varying wind speeds.

Wind Speed, m/s Single HAWT Single VAWT Double VAWT

3 0.81 1.44 1.43
4 1.93 3.41 3.40
8 15.45 27.25 27.14
16 123.94 218.37 217.32
24 419.29 739.07 735.18

However, the power generated does not take into account differences in the area of
each turbine, giving an unfair advantage to the larger turbines. The largest turbine is the
46 m diameter HAWT with an area of 1661.9 m2, followed closely by the single VAWT
with 1584 m2. The third model, the double VAWT, has a combined area of 1400 m2, and
is therefore the smallest. Calculating the power flux density, P/A, takes the area into
account and thus allows for a more even comparison. The results are presented in Table 10.
Due to its smaller combined area and similar power generation levels, the double VAWT
performs best at all wind speeds with around an 11% increase on the single VAWT for all
wind speeds. Due to its larger area and lower power output, the single HAWT trails with
approximately 48% less power generated per m2 of area.

Table 10. Power flux density (in W/m2).

Wind Speed, m/s Single HAWT Single VAWT Double VAWT

3 0.49 0.91 1.02
4 1.16 2.15 2.43
8 9.30 17.21 19.38
16 74.58 137.86 155.23
24 252.30 466.58 525.13

When running the simulations to determine the quadratic resistance values for the
double VAWT model, there was no definable peak as the power output stayed stable for
further increases. As such, it was decided to use 8 kg/m4; however, this could signify
a problem with the set-up of the simulation and may give a higher power output than
is realistic.

The results of CFD simulations presented in terms of pressure and velocity contours
are shown in Figures 9–11. The results of numerical simulations show that there was
canalization along the combe. The flow faces the actuator disc, modelling the wind
turbine blades at a small angle of attack. The wind speed near the porous disc decreases
significantly, and flow velocity at the rotor location reaches value, which is 50% of the
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inlet wind speed. The extracted wind power by the porous disc is substantially affected by
the velocity at the rotor location. This means that for the mean wind direction and wind
speed in the ravine, the wind under the viaduct is around 3 m/s. This leads to a lower
extraction of power from wind as the wind turbine starts to work properly from 6 or 7 m/s.
However, the wind flow is conducted through the ravine, arriving at the discs in an almost
normal direction. This effect is an interesting point as it can be seen how local wind flow is
modified with respect to the prevailing wind in the area in order to face the rotor surfaces.
Similar effects were observed in [6]. Adding a VAWT did not affect the mass flow through
the rotor surface of the disc.

a) b)
-30 15

p, Pa

0 5.8

v, m/s

Figure 9. Pressure contours (a) and velocity contours (b) for single HAWT.
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Figure 10. Pressure contours (a) and velocity contours (b) for single VAWT.
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Figure 11. Pressure contours (a) and velocity contours (b) for double VAWT.

The upstream flow does not utilize the entire surface of the simulated rotor. This effect
occurs for HAWT, and could be produced by the effect of the ground in the wind flow
due to the boundary layer. It decelerates the wind near the terrain surface. The power
production in the design option with single or double VAWTs is considerably increased
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as the available extraction surface is also highly increased. In this case, the wind stream
occupies the entire surface available, which results in a better exploitation of the available
rotor. This effect leads to a higher power flux density (concentration of watts per meter
squared) for both variants of VAWTs.

The study into the ability of VAWTs to outperform HAWTs under turbulent conditions
was inconclusive, as the results do not show a significant effect. More research and a wider
range of data would be required to clarify how turbulence affects both types of turbine. As
expected, an increase in wind speeds does provide a significant increase in power; however,
the sort of power levels that would be desired are not generated at realistic wind speed
levels. From the results, it appears clear that the smaller double VAWTs perform better
than the other two; however, this is likely to be mainly due to the superior location above
the viaduct which a smaller, lighter turbine could take advantage of. Above the turbine,
the wind speed is higher and less turbulent, and is therefore more suited to the extraction
of wind energy.

8. Conclusions

As expected, an increase in wind speeds does provide a significant increase in power.
From the results, it appears clear that the smaller double VAWTs perform much better than
the other two; however, this is likely to be mainly due to the superior location above the
viaduct which a smaller lighter turbine could take advantage of. Above the turbine, the
wind speed is higher and less turbulent, and therefore more suited to the extraction of
wind energy.

An important point to note is that the actual efficiency of the turbines was not taken
into account, and this will have a significant effect on the power generated by them and
may allow the HAWT to claw back some ground on the VAWTs as they are generally
thought of as being less efficient in practice. The location, local wind resources, and
siting are important factors in determining the power generated from a wind turbine. A
smaller turbine sited in a better location performs better than a larger one that is poorly
sited. Smaller turbines also have the advantage of being lighter in both the turbine and its
supporting structure, thus reducing the cost and environmental impact.

While this study provided a comparison between various configurations of wind
turbines based on the CFD and actuator disc method, it is also important to mention its
limitations. The study has been performed with the SST turbulence model. Although
advanced turbulence modelling techniques provide high-fidelity results, the computational
requirements of the method are high. For further research, the use of artificial canalization
could be undertaken, for instance by constructing ducting that will channel a greater
amount of air to the turbine and enhance the pressure differential.
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