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Abstract: Travel time prediction plays a significant role in the traffic data analysis field as it helps
in route planning and reducing traffic congestion. In this study, an XGBoost model is employed to
predict freeway travel time using probe vehicle data. The effects of different parameters on model
performance are investigated and discussed. The optimized model outputs are then compared with
another well-known model (i.e., Gradient Boosting model). The comparison results indicate that
the XGBoost model has considerable advantages in terms of both prediction accuracy and efficiency.
The developed model and analysis results can greatly help the decision makers plan, operate, and
manage a more efficient highway system.

Keywords: transportation systems; travel times; machine learning; forecasting; XGBoost model

1. Introduction

Travel time prediction plays a significant role in the traffic data analysis field as it helps
in route planning and reducing traffic congestion. Traditionally, the methods such as linear
regression and time series models have been widely applied to predict travel times using
historical travel time data. However, with the consideration of effectiveness, accuracy, and
feasibility, these models may become outdated and replaceable. With the development of
artificial intelligence technologies, various novel prediction methods have been developed
accordingly in recent years. Machine learning is an example of a data driven method which
aims to increase efficiency and accuracy of the prediction. Recently, different machine
learning approaches such as neural networks [1–6], ensemble learning [7–12], and support
vector machine (SVM) [13] are employed by researchers. Their results indicate that such
approaches for travel time prediction are adaptable and can give better performances than
traditional models. Therefore, the machine learning–based approach is selected for the
travel time prediction in this study. Table 1 provides a summary of the machine learning-
based travel time prediction studies in chronological order, and detailed description about
each literature reviewed will be given in the following subsections.

In recent years, ensemble learning–based methods have been more and more widely
used for traffic data analysis. The purpose of an ensemble learning algorithm is to achieve
an improved result by combining predictions of a group of individual base models. It has
been shown that the combined model often generates more stable and accurate predictions
in many applications [14,15].

Bagging and boosting are both ensemble techniques, where a set of base models are
combined to create a model that obtains better performance than a single model. However,
they utilize different re-sampling methods and therefore can have different performances
and generate different outputs. Random Forest is a bagging algorithm–based method.
Hamner et al. [7] applied a context-dependent Random Forest (RF) method to predict travel
time based on GPS data of the cars on the road in a simulation framework. The root mean
squared error (RMSE) of the RF prediction was less than 7.5%. Fan et al. [10] conducted a
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study using the RF method to predict highway travel time based on data collected from
highway electronic toll collection in Taiwan. The results can help highway drivers select
optimal departure times to avoid traffic congestion and thus minimize travel time.

Boosting is another ensemble learning method which improves the prediction accuracy
through developing multiple models in sequence by putting emphasis on the samples
in the model that are difficult to estimate. Zhang and Haghani [8] employed a gradient
boosting regression tree method to analyze and predict freeway travel time to improve
the prediction accuracy. The authors used travel time data along freeway sections in
Maryland and discussed the effects of different parameters on the proposed model and the
correlations of input and output variables. The prediction results showed the proposed
model can provide considerable advantages in freeway travel time prediction. Li and
Bai [9] employed a gradient boosting regression tree method to analyze and predict travel
time of freight vehicles. The authors used travel time data and vehicle trajectory data in
Ningbo, China. The prediction results showed the proposed model can be feasible in the
real world. Gupta et al. [11] employed RF and gradient boosting models to predict taxi
travel time in Porto, Portugal. The vehicle trajectory data were used as the database and it
was found that the gradient boosting model provided better prediction results than the
RF model.

In recent years, the XGBoost model has a recognized impact in solving machine learn-
ing challenges in different application domains. It has gained popularity by winning many
data science competitions (e.g., Kaggle competition). XGBoost has also been employed
in transportation related studies. Alajali et al. [16] utilized the XGBoost model to predict
intersection traffic volume. Dong et al. [17] employed the XGBoost model to predict short
term traffic flow based on the data collected in Beijing, China. However, it is rare that
studies on the application of the XGBoost model with freeway travel time prediction can
be found. Therefore, the XGBoost model has the potential to be applied in freeway travel
time prediction and is selected as the model of this study.

Table 1. Prior studies on travel time prediction using machine learning approaches.

Year Author Location Roadway
Category Data Source Data Type Prediction Method

2005 Wu et al. [13] Taiwan Highway Loop detector Travel speed SVM

2010 Hamner et al.
[7] N/A N/A Global Positioning

System (GPS) Travel speed Random Forest

2011 Myung et al.
[18] Korea N/A Automatic Toll

Collection system Travel time K-Nearest Neighbor
(KNN)

2012 Wisitpongphan
[1]

Bangkok,
Thailand Highway GPS Travel time,

GPS BP Neural Networks

2013 Zheng and Van
Zuylen [2]

Delft,
Netherlands Urban road GPS data

Vehicle
position,

travel speed

State-Space Neural
Networks

2015 Zhang and
Haghani [8] Maryland, US Interstate

highway INRIX company Travel time Gradient boosting

2016 Duan et al. [6] England Highway Cameras, GPS and
loop detectors Travel time

Long short-term
memory (LSTM)
Neural Networks

2016 Li and Bai [9] Ningbo, China N/A N/A

Truck
trajectory,

travel time,
travel speed

Gradient boosting

2017 Liu et al. [19] California, US Interstate
highway

Freeway
Performance
Measurement

System (PeMS)

Travel time LSTM Neural
Networks
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Table 1. Cont.

Year Author Location Roadway
Category Data Source Data Type Prediction Method

2017 Fan et al. [10] Taiwan Highway Electric toll
Travel time,

vehicle
information

Random forests
method

2017 Yu et al. [12] Shenyang,
China Bus route

Automatic vehicle
location (AVL)

system

Bus travel
time

Random Forest and
KNN

2018 Wang et al. [3] Beijing, China Urban road Floating Car Data

Taxi ravel
time, vehicle

trajectory
data

LSTM Neural
Networks

2018 Wei et al. [5] China Urban road Vehicle passage
records Travel time LSTM Neural

Networks

2018 Wang et al. [4]
Beijing and
Chengdu,

China
Urban road GPS

Vehicle
trajectory

data

LSTM Neural
Networks

2018 Gupta et al. [11] Porto, Portugal Urban road GPS Taxi travel
speed

Random forest and
gradient boosting

2019 Moonam et al.
[20]

Madison,
Wisconsin, US Freeway Bluetooth detector Travel speed KNN, Kalman filter

method (KF)

This study intends to employ an XGBoost model approach to predicting freeway travel
time using information such as time of day (TOD), day of the week (DOW), and weather.
The temporal correlation and spatial correlation between each segment are also considered
in the model. The relative importance of each feature in the model is investigated and
quantified. The modeling results can offer valuable insights on the relationship between
features and the prediction results. The prediction results are also compared with the
outputs of the gradient boosting model and indicate that the XGBoost model can perform
better from both the accuracy and efficiency perspectives.

The research findings can greatly help the decision makers plan, design, operate, and
manage a more efficient highway system.

2. Raw Data Description

In this study, the travel time data gathered from the Regional Integrated Transportation
Information System (RITIS) website were collected and used to conduct the travel time
prediction work. A series of major freeway segments were selected for the case study:
Interstate 77 (I-77) Southbound (Figure 1) is one of the most heavily traveled Interstate
highways in the Charlotte area and runs from north to south.

The selected section of I-77 Southbound starts from the intersection with US-21 (Exit 16)
and ends at the interchange with Nations Ford Road (Exit 4) at the south part of the city.
Twenty-six roadway segments were selected for this study, and the total length of the
selected section is 15 miles.

On the RITIS website probe data analytic suite, the raw probe data can be downloaded
with the desired section and format. The roadway section can be selected based on the
Road states and countries, Traffic message channels (TMC), Directions, Zip codes, Road
class, and Road name. The partial sections can be selected with the selection of begin and
end intersections. The date range can be selected from 1 January 2008 to today. Seven days
of the week and times of day from 12:00 A.M. to 11:59 P.M. can also be selected. The units
of travel time can be categorized into both seconds and minutes. The averaging period
can be selected as five minutes, ten minutes, fifteen minutes, and one hour. In this study, a
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fifteen-minute interval is used. A sample of raw travel time data utilized in this study is
shown in Table 2 below.
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Figure 1. Selected I-77 segments.

Table 2. Example of large table.

TMC Code Timestamp Travel Time (s)

125N04784 1/1/2015 0:00 53.58
125N04783 1/1/2015 0:00 12.82
125N04786 1/1/2015 0:00 47.56
125N04785 1/1/2015 0:00 11.85
125N04780 1/1/2015 0:00 14.59
125N04784 1/1/2015 0:15 54.62
125N04783 1/1/2015 0:15 12.86
125N04786 1/1/2015 0:15 48.17
125N04785 1/1/2015 0:15 12.03
125N04780 1/1/2015 0:15 15.34

In Table 2, the column labeled TMC code indicates the specific identification number
of each segment. Timestamp gives the specific time period of the record and can be used to
further provide the information including TOD and DOW. The third column in this table is
the travel time on the segment.

3. Methodology
3.1. Ensemble Learning Algorithm

The ensemble learning-based algorithms consist of multiple base models (e.g., decision
tree model), and each base model provides an alternative solution to the problem. The
prediction results of these base models are combined by some rules (such as weighted
or unweighted voting and averaging). The final output will be achieved through the
combined model. Bagging and boosting are both ensemble techniques, where a set of base
models are combined to create a model that obtains better performance than a single model.
However, they utilize different re-sampling methods and therefore can have different
performances and generate different outputs.

The idea of the boosting algorithm was first proposed by Kearns [21]. The boosting
algorithm also refers to several algorithms that convert weak learners to strong learners.
Several base models are combined together to form a stronger model that can make
generalizations [22].
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Different from the bagging method which has each base model running independently
and then aggregates their outputs at the end without any preference, the boosting method
improves the prediction through developing multiple models in sequence by putting
emphasis on the samples in the model that are difficult to estimate. There are many
boosting algorithms such as AdaBoost, Gradient boosting, and XGBoost. Gradient boosting
is a typical boosting approach. It is widely used in the machine learning area. The word
‘gradient’ means that it uses a gradient descent algorithm to minimize the loss when
adding new models [20]. The gradient boosting approach supports both classification and
regression predictive modeling problems.

Based on previous studies, the gradient boosting model generally gives better results
than Random Forest, since Random Forest has fewer parameters needing tuning and also is
less sensitive to these parameters [23,24]. However, the gradient boosting model is harder
to fit than Random Forests at the same time. The stopping criteria should also be chosen
carefully to avoid overfitting on training data.

3.2. XGBoost Algorithm

XGBoost is the short name for ‘Extreme gradient boosting’ proposed by Chen and
Guestrin [25]. In recent years, it has a recognized impact in solving machine learning
challenges in different application domains. The speed of XGBoost is much faster than that
of other common machine learning methods since it can process large amounts of data in
a parallel way efficiently. Therefore, the XGBoost model is selected and used to conduct
travel time prediction work. The detailed information of the XGBoost model is described
as follows:

The objective function (Obj(Θ)) of the XGBoost model is provided below [25]:

Obj(Θ) = L(Θ) + Ω(Θ) (1)

where,
L(Θ) = The training loss, which measures how well the model fit on training data.
Ω(Θ) = The regularization term, which measures the complexity of the model.
The loss on training data L can be expressed as:

L = ∑n
i=1 l(yi, ŷi) (2)

In detail, the square loss for the regression problem can be expressed as:

l(yi, ŷi) = (yi − ŷi)
2 (3)

In this study,
ŷi = the predicted travel time.
yi = the actual travel time.
The unit of travel time is seconds.
When a new tree is added to the model, the objective function can be transformed to:

Obj(t) = ∑n
i=1 l

(
yi, ŷi

(t)
)
+∑t

i=1 Ω( fi) = ∑n
i=1 l

(
yi, ŷi

(t−1) + ft(xi)
)
+Ω( ft)+ constant

(4)
where,

Ω( fi) = the complexity of tree fi.
In order to get the simplest goal, the constant term should be removed from the

function. The process of XGBoost uses second order Taylor expansion to extend the loss
function and removes the constant term [25].

Obj(t) = ∑n
i=1 l

(
yi, ŷi

(t−1) + gi ft(xi) +
1
2

hi ft
2(xi)

)
+ Ω( ft) (5)

where,
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gi = ∂ŷi
(t−1) l

(
yi, ŷi

(t−1)
)

, which is the first order partial derivative of the function.

hi = ∂2
ŷi

(t−1) l
(

yi, ŷi
(t−1)

)
, which is the second order partial derivative of the function.

After the removal of all the constants, the specific objective at step t becomes:

Obj(t) = ∑n
i=1[gi ft(xi) +

1
2

hi ft
2(xi)] + Ω( ft) (6)

In the XGBoost model, the complexity is defined as [22]:

Ω( f ) = γT +
1
2

λ
T

∑
j=1

w2
j (7)

where,
T = The number of leaf nodes.
γ = The penalty coefficient of the number of leaves.
λ = The penalty coefficient of regularization.
wj = The score of leaf j.
After re-formulating the tree model, the objective function with the t-th tree can be

written as [25]:

Obj(t) = ∑n
i=1

[
giwq(xi)

+
1
2

hiw2
q(xi)

]
+ γT +

1
2

λ
T

∑
j=1

w2
j (8)

Obj(t) = ∑T
j=1[(∑

i∈Ij

gi)wj +
1
2
(∑

i∈Ij

hi + λ)w2
j ] + γT (9)

where Ij = {i|q(xi) = j} is an instance set assigned to the j-th leaf. The objective function
could be further compressed as:

Obj(t) = ∑T
j=1

[
Gjwj +

1
2
(

Hj + λ
)
w2

j

]
+ γT (10)

where Gj = ∑i∈Ij
gi, Hj = ∑i∈Ij

hi.

The best wj one can get for the objective function is w∗j = − Gj
Hj+λ .

Therefore, the final objective function can be written as:

Obj(t) = −1
2 ∑T

j=1

G2
j

Hj + λ
+ γT (11)

The smaller the score is, the better the structure is.
XGBoost can also add branches for each leaf node. The loss reduction after the split

can be expressed as [25]:

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (12)

where G2
L

HL+λ is the score of the left node after the cut. G2
R

HR+λ is the score of the right node after

the cut. (GL+GR)
2

HL+HR+λ is the score of combination without the cut. Finally, the best structure
of the model can be obtained which can minimize the objective function by enumerating
different kinds of tree structures.
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4. Model Validation
4.1. Feature Selection and Processing

The real-world travel time data provided by the RITIS website (which was mentioned
above) is used for this study. The quality of the data is precise enough with less than a 0.5%
missing rate (4348 out of 906,048). Therefore, this study simply replaces the missing values
with the mean of its closest surrounding values. The weather condition is also considered in
this study. The weather data of the study area can be found at the www.wunderground.com
website (accessed on 30 November 2017).

Based on previous studies [26,27], the features that influence the accuracy of travel
time prediction may not only include the basic features (such as time of day, day of the
week, month, and weather), but also include the spatial and temporal characteristics of the
segments. Therefore, the travel time information from several steps before and the travel
time information of adjacent segments are also selected and will be used in the model.

For the Categorical Variable, the most commonly used method is One-hot encoding
in the Python software. One-hot encoding is a process by which categorical variables
are converted into a form that could be provided to machine learning algorithms to do a
better job in prediction. For example, the category weekdays with seven variables will be
transferred as dummy variables.

Table 3 below summarizes the basic information on the features used for this study.

Table 3. Summary of the basic information on the features used for this study.

Feature Definition Attribute

ID Segment ID Categorical
L Length of the segment Categorical

TOD The TOD is represented by every 15-min timestep indexed
from 1 to 96 Categorical

DOW The DOW is indexed from 1 to 7 to represent from Monday
through Sunday Categorical

Month The Month is indexed from 1 to 12 to represent January to
December Categorical

Weather Weather type is indexed from 1 to 3 to represent normal,
rain and snow/ice/fog, respectively Categorical

Tt−1 Travel time at time step t−1 (15 min before) Float
Tt−2 Travel time at time step t−2 (30 min before) Float
Tt−3 Travel time at time step t−3 (45 min before) Float

∆Tt−1 Travel time change value at time step t−1 (15 min before) Float
∆Tt−2 Travel time change value at time step t−2 (30 min before) Float
∆Tt−3 Travel time change value at time step t−3 (45 min before) Float

Ti−1
t−1

Travel time of first upstream segment at time step t−1
(15 min before) Float

Ti−2
t−1

Travel time of second upstream segment at time step t−1
(15 min before) Float

∆Ti−1
t−1

Travel time change value of first upstream segment at time
step t−1 (15 min before) Float

∆Ti−2
t−1

Travel time change value of second upstream segment at
time step t−1 (15 min before) Float

Ti+1
t−1

Travel time of first downstream segment at time step t−1
(15 min before) Float

Ti+2
t−1

Travel time of second downstream segment at time step t−1
(15 min before) Float

∆Ti+1
t−1

Travel time change value of first downstream segment at
time step t−1 (15 min before) Float

∆Ti+2
t−1

Travel time change value of second downstream segment at
time step t−1 (15 min before) Float

Tt Travel time at time step t Float

www.wunderground.com
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4.2. Parameter Tuning Process

In the XGBoost model, there are many parameters that should be considered. In order
to optimize the modeling result, it is necessary to explore the effect of different combinations
of parameters on the model performance. Based on previous studies [8,17], the parameters
that could be optimized include, but are not limited to: N_estimators (number of trees),
learning rate (a tuning parameter in an optimization algorithm that determines the step
size at each iteration while moving toward a minimum of a loss function), and Max_depth
(maximum depth of the tree, defined as the longest path between the root node and the
leaf node). Therefore, these parameters are considered to be optimized in this study.

There are several optimization methods considered in previous studies and the grid
search method is the most widely used one. Therefore, the grid search method is selected
as the optimization method with the consideration of time-efficiency. In this study, 80% of
the traffic data is used as training data and 20% of the data is used as the testing data. The
XGBoost model is fitted with various number of trees (N_estimators ranges from 1 to 500),
maximum depth (Max_depth ranges from 5 to 10) and learning rates (Learning rate ranges
from 0.1 to 0.5). The number of stopping rounds is set as 50, which means stopping iteration
after 50 rounds when there is no performance improvement. The XGBoost package in
Python software is used in this study.

Figure 2 below shows the effects of different selected features on the prediction results.
Table 4 below presents the detailed prediction results including the prediction results at
each step, computation time, and optimized results. The mean absolute error (MAE) is
used to evaluate the performance of the model.
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Table 4. Detailed information on selected features.

Learning Rate MAE

Max_depth = 5

Number of trees
1 3 5 10 20 50 100 500

0.1 31.623 25.610 20.744 12.355 4.863 2.107 2.086 2.017
0.2 28.105 17.999 11.645 4.437 2.164 2.110 2.081 2.032
0.3 24.589 12.169 6.374 2.361 2.143 2.111 2.092 2.054
0.4 21.077 7.916 3.586 2.192 2.169 2.140 2.113 -
0.5 17.582 5.019 2.471 2.227 2.204 2.162 2.138 -

Max_depth = 6

Number of trees
1 3 5 10 20 50 100 500

0.1 31.624 25.611 20.746 12.352 4.845 2.051 2.031 1.979
0.2 28.106 17.999 11.638 4.421 2.098 2.055 2.021 1.989
0.3 24.591 12.166 6.355 2.324 2.094 2.066 2.048 2.020
0.4 21.079 7.919 3.553 2.126 2.113 2.084 2.063 -
0.5 17.582 5.011 2.443 2.165 2.140 2.114 2.113 -

Max_depth = 7

Number of trees
1 3 5 10 20 50 100 500

0.1 31.625 25.613 20.749 12.350 4.831 2.012 1.990 1.952
0.2 28.108 18.004 11.639 4.404 2.070 2.015 1.997 1.974
0.3 24.592 12.168 6.339 2.298 2.055 2.024 2.019 2.001
0.4 21.082 7.909 3.530 2.073 2.061 2.048 2.042 -
0.5 17.586 4.995 2.392 2.089 2.075 2.072 2.064 -

Max_depth = 8

Number of trees
1 3 5 10 20 50 100 500

0.1 31.626 25.616 20.754 12.352 4.821 1.985 1.965 1.930
0.2 28.111 18.009 11.637 4.386 2.042 1.984 1.968 1.949
0.3 24.597 12.170 6.333 2.281 2.017 1.999 1.998 -
0.4 21.088 7.906 3.517 2.047 2.030 2.019 2.018 -
0.5 17.594 4.982 2.368 2.070 2.059 2.061 - -

Max_depth = 9

Number of trees
1 3 5 10 20 50 100 500

0.1 31.629 25.620 20.757 12.351 4.807 1.963 1.941 1.915
0.2 28.117 18.016 11.639 4.375 2.012 1.956 1.945 1.935
0.3 24.606 12.171 6.322 2.256 1.992 1.977 1.971 -
0.4 21.099 7.902 3.512 2.029 2.016 2.013 - -
0.5 17.606 4.977 2.355 2.049 2.038 2.050 - -

Max_depth = 10

Number of trees
1 3 5 10 20 50 100 500

0.1 31.631 25.625 20.763 12.352 4.801 1.942 1.919 1.895
0.2 28.120 18.020 11.637 4.371 2.003 1.948 1.943 -
0.3 24.610 12.172 6.318 2.248 1.986 1.974 1.977 -
0.4 21.104 7.898 3.507 2.026 2.011 2.015 - -
0.5 17.612 4.968 2.352 2.037 2.041 2.059 - -

The equation of the MAE is provided below:

MAE =
1
m

m

∑
i=1
|yi − ŷi| (13)
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where,
m = the total number of the data.
yi = the actual travel time value in the test dataset of record i.
ŷi = the predicted travel time value in the test dataset of record i.
Based on Figure 2 above, it can be concluded that the MAE value decreases as the

number of trees increases, and the slopes of different learning rates are also different. In
general, the lower the learning rate is, the higher the initial MAE value (with the number
of tree = 1). For example, when the learning rate equals 0.1, the initial MAE value is about
36.2. In comparison, Figure 2 shows that the MAE values are about 17.6 when the number
of trees is 1 and the learning rate is 0.5.

Figure 2 also shows when the number of trees reaches 50, the value of MAE becomes
nearly the same. However, the data in Table 4 indicate that the results can still be optimized
a little bit if the number of trees keeps increasing. Overfitting is a general problem of
traditional ensemble learning methods. For example, the prediction error usually increases
when the number of trees increases after it reaches the optimized point in the gradient
boosting model [8]. In the XGBoost model, the overfitting problem can be solved as
the algorithm will stop when there is no performance improvement after 50 iterations.
Therefore, the value ‘NA’ in Table 4 means that the computation already stopped before
the number of trees reached those values.

It could be seen that the parameter max_depth does not influence the prediction
results significantly since the trends of the errors are nearly the same. However, the data in
Table 4 show that as the max_depth increases, the MAE decreases a little bit (the optimized
MAEs of max_depth from 5 to 10 are 2.02, 1.98, 1.95, 1.93, 1.91, 1.90, respectively). The
data in Table 5 show that as the max_depth increases, the average computation time of
the model also decreases a lot, which means the larger value of max_depth can not only
increase the accuracy of the model a little bit but also increase the efficiency.

Table 5. Optimized prediction results and computation times.

Learning Rate Optimized Result
(MAE)

Number of
Iterations Computation Time

Max_depth = 5

0.1 2.017 500 25 min
0.2 2.032 500 25 min
0.3 2.054 500 25 min
0.4 2.079 481 23 min
0.5 2.118 217 9 min

Max_depth = 6

0.1 1.979 500 25 min
0.2 1.989 500 25 min
0.3 2.020 500 25 min
0.4 2.051 405 20 min
0.5 2.108 107 5 min

Max_depth = 7

0.1 1.952 500 25 min
0.2 1.974 500 25 min
0.3 2.001 500 25 min
0.4 2.035 231 12 min
0.5 2.064 81 4 min

Max_depth = 8

0.1 1.930 500 25 min
0.2 1.949 500 25 min
0.3 1.994 281 17 min
0.4 2.018 98 6 min
0.5 2.056 73 4 min
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Table 5. Cont.

Learning Rate Optimized Result
(MAE)

Number of
Iterations Computation Time

Max_depth = 9

0.1 1.915 500 25 min
0.2 1.935 500 25 min
0.3 1.969 167 8 min
0.4 2.012 80 4 min
0.5 2.038 70 4 min

Max_depth = 10

0.1 1.895 500 25 min
0.2 1.939 352 18 min
0.3 1.972 156 8 min
0.4 2.010 74 4 min
0.8 2.037 60 4 mins

According to the experimental results, it can be concluded that:
The accuracy level of a slower learning rate with a larger number of trees in the model

is higher than that of a faster learning rate with a smaller number of trees. The number
of trees needed to get an optimized result for the model with a faster learning rate is also
lower than those with slower learning rates.

There is also a need to consider the tradeoff between prediction accuracy and compu-
tational time. Since a large number of trees is being fitted, model complexity also increases
and requires more computational time. Therefore, the selection of the parameters such as
max_depth and number of stopping round is important in the real world.

In addition, the maximum depth of the tree also affects the optimized selection. When
the learning rates and number of trees are the same, a higher maximum depth of the tree
leads to the lower error rates. A higher max_depth is also more efficient than a lower value
since the number of iterations needed to achieve optimized results is lower. In general, a
higher max_depth value means a more complex tree model and requires fewer trees to be
fitted with a given learning rate.

4.3. Prediction Results Analysis

In the machine learning field, the predictor variables, which are the features mentioned
in Table 3, usually have significant impacts on the prediction results. Exploring the influence
on the individual feature can help understand the data better. Higher relative importance
indicates a stronger influence in predicting travel time.

Table 6 presents the relative importance of each feature in the optimized XGBoost
model. Each predictor variable has a different impact on the predicted travel time. Based
on the importance rank of each feature, it can be found that the feature Tt−1, which is the
travel time at time step t−1 (15 min before), contributes the most to the predicted travel
time. This result is expected and consistent with a previous study [8], which demonstrates
that the immediate previous traffic condition will influence the traffic condition in the
future. Therefore, this feature Tt−1 is the most important and highly correlated with the
prediction value.

The results in Table 6 show that time of day is the second ranked feature with the
relative importance value of 34.85%, and this result is also expected. In general, the travel
time variability is also highly correlated with the time of day. The travel time usually
increases a lot during peak hours and becomes stable during non-peak hours.

The third ranked feature is the segment ID with the relative importance value of
12.65%. The potential reason behind this ranking could be that the segment ID indicates
which segment it is. The segment ID contains a lot of potential information such as the
geographic location of the segment. Usually, different segment locations contribute to
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different travel time variability characteristics. Therefore, the segment ID is also a necessary
and important feature in the model.

Table 6. Relative importance of each feature and their ranks in the model.

Feature Relative Importance (%) Rank

Tt−1 38.87 1
TOD 34.85 2

ID 12.65 3
DOW 3.76 4
Month 2.1 5

Weather 1.72 6
∆Ti+1

t−1 0.69 7
Ti+2

t−1 0.6 8
∆Tt−2 0.47 9
Tt−2 0.4 10
Ti−2

t−1 0.4 10
∆Ti+1

t−1 0.36 12
Tt−3 0.33 13
Ti−1

t−1 0.29 14
∆Ti−1

t−1 0.28 15
∆Ti−2

t−1 0.28 15
∆Tt−3 0.27 17
Ti+1

t−1 0.26 18
L 0.24 19

∆Tt−1 0.24 19

Day of the week is the 4th ranked feature in the model; the relative importance value
of day of the week is 3.76%. The feature day of the week is also important in the model since
the travel time is highly correlated with which day of the week it is. Based on previous
studies, the traffic congestion on weekends is less frequent than on weekdays; the travel
time during peak hours on Friday is usually higher than those on other weekdays [28,29].
Therefore, the feature day of the week is important in the model; this result is consistent
with a previous study [8].

Weather is also considered in the model with a relative importance value of 1.72%. In-
clement weather conditions may have a drastic impact on travel time variability. Therefore,
the weather information is also useful in travel time prediction as adverse weather usually
increases travel time. This finding is consistent with previous studies [30,31].

The travel time at time step t−1 (15 min before) is not the only feature with the
consideration of temporal correlation. Several features such as the travel time of the
two steps and three steps ahead (with the relative importance value of 0.40% and 0.33%,
respectively) and the travel time change value of the three time steps ahead (with the
relative importance value of 0.24%, 0.47%, and 0.27%, respectively) are considered in the
model. These features are also used in the models of previous studies which had used
gradient boosting models to predict freeway travel time [8,29]). The time change features
are considered in this study because they could indicate the travel time change trends of
the segments. However, the influences of these features are relatively small. The outcome
is similar to the outcome of a previous study [32].

With the consideration of spatial impact, several features such as the travel time
of the two upstream segments (with the relative importance value of 0.29% and 0.40%,
respectively) and the travel time of the two downstream segments (with the relative
importance value of 0.26% and 0.60%, respectively), one time step ahead are considered in
the model. With respect to the travel time change value, the relative importance values
of the two upstream segments are both 0.28%, and the relative importance values of the
two upstream segments are 0.36% and 0.69%, respectively. Based on these results, it could
be found that the relative importance values of the downstream segments are higher than
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those of upstream segments. It could be explained by the spatial characteristics of the
roadway. If a bottleneck occurs at the downstream segment, the upstream segment will be
influenced shortly.

In order to examine the accuracy and effectiveness of the XGBoost model, this study
comprehensively evaluates the modeling results of the XGBoost model and compares the
results with those of the gradient boosting model. The prediction result of the gradient
boosting model is also optimized using a grid search method. For clarity, the mean
absolute percentage error (MAPE) is used to evaluate and compare the performance of the
two models.

The equation of the MAPE is provided below:

MAPE =
100%

m

m

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (14)

where,
m = The total number of the data.
yi = The actual travel time value in the test dataset of record i.
ŷi = The predicted travel time value in the test dataset of record i.
Table 7 below presents the comparison between prediction results of the optimized

XGBoost model and gradient boosting model. Based on the comparison, it could be
concluded that the XGBoost model outperforms the gradient boosting model with both
the consideration of accuracy and efficiency. The potential reason behind this could be
as follows:

Table 7. Relative importance of each feature and their ranks in the model.

Number of Trees MAPE XGBoost (%) MAPE Gradient Boosting (%)

3 14.64 35.10
10 5.22 24.33
20 5.22 16.78
50 4.87 13.56
100 4.82 11.11
200 4.74 9.38
500 4.72 5.67

Average Computation Time 11.8 min Over one hour

In general, the XGBoost model is a more regularized form of the gradient boosting
model. XGBoost uses advanced regularization terms, which improve model generalization
capabilities. Therefore, the prediction results of the XGBoost model are more accurate
than those of the gradient boosting model. At the same time, the computation time of the
XGBoost model (25 min) is much faster than that of the gradient boosting model (2 h). One
important reason behind the better performance of the XGBoost model could be the parallel
processing function. The gradient boosting model is extremely difficult to parallelize since
it has sequential characteristics. In comparison, XGBoost can allow us to do the boosting
work using distributed processing engines.

Another key reason is that the XGBoost model implements the early stopping function,
which means that one can stop model assessment when additional trees offer no improve-
ment to the prediction results. This function can help us not only prevent the overfitting
problem, but also improve the efficiency of the model significantly.

5. Conclusions

This study aims to develop a methodology to apply the XGBoost model in travel
time prediction. A real-world freeway corridor is selected as the case study to examine
the XGBoost prediction model so that the gaps between the theoretical research and the
application of the developed model can be bridged.
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It is found that the XGBoost model can provide reliable prediction results. The
relationships between several important parameters in the model (e.g., number of trees,
learning rate, and maximum depth of the tree) are discussed in this study. In detail, the
accuracy level of a slower learning rate with a larger number of trees in the model is higher
than that of a faster learning rate with a smaller number of trees. A higher max_depth
value is also more efficient than a lower value since the number of iterations needed to
achieve optimized results is lower.

The relative importance of the features shows that the travel time one step ahead
(15 min before) contributes the most to the predicted travel time. The features such as the
time of day, day of the week and weather also have higher relative importance values in
the model than other features.

The proposed XGBoost-based travel time prediction method has considerable ad-
vantages over the gradient boosting approach. The performance evaluation result shows
the XGBoost-based model can have better outcomes in terms of both prediction accuracy
and efficiency.

Typically, the XGBoost-based travel time prediction model can provide reliable results
with low error rate. However, the impacts of accidents and roadworks on travel time
prediction are also worth exploring. In the future, how to incorporate these features in the
model will be studied if the data can be made available. Furthermore, the performance of
the travel time prediction model is discussed under all conditions as a whole. In the future,
the performances of the model under different traffic conditions (such as non-congestion
conditions and congestion conditions) can be learned and compared.
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