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Abstract: Biochar, prepared from organic waste materials, can improve the quality of contaminated
soil areas. Biochar can be used as an economic centerpiece over other available resources and can
properly utilize large amounts of waste. Soil contaminated with cadmium (Cd) is a worldwide
problem that poses potential agricultural and human health hazards. Moreover, Cd toxicity causes
serious problems for sustainable food production, especially in food crops like barley. High cadmium
concentration in soil is phytotoxic and decreases plant growth and ultimately yields. Biochar and
ascorbic acid in ameliorating Cd stress are economically compatible and consistent approaches in
agriculture. The present study aimed to evaluate biochar’s and foliar-applied ascorbic acid’s influence
on some growth and biochemical characteristics of barley (Hordeum vulgare L.) to Cd stress. The soil
was supplemented with biochar 2% w/w and 20 mg Cd kg−1. The foliar application of 30 mM ascorbic
acid was done on plants. The results revealed that Cd stress decreased chlorophyll a, chlorophyll b,
total chlorophyll, and carotenoids. It also increased oxidative stress indicators, i.e., APX, COD, POD,
flavonoids, anthocyanin, phenolics, and electrolyte leakage, in barley with Cd-contamination. A
significant enhancement in root and shoot length, gas exchange attributes, and chlorophyll contents
validated the effectiveness of Bio + Asa treatments over all other treatments under Cd contamination.
In conclusion, the sole applications of biochar and Asa in Cd contamination are also effective, but
Bio + Asa is a better amendment for Cd stress alleviation in barley plants.

Keywords: biochar; physiological attributes; growth attributes; antioxidants; barley; ascorbic acid;
cadmium-contaminated soil

1. Introduction

The agriculture sector faces many problems, including more food production and
mitigation of environmental stress factors to secure future food demands [1]. Soil contam-
ination by trace elements is one of the predominant abiotic stresses that decrease plant
productivity. In addition, metal contamination deteriorates food quality and affects human
health by entering the food chain. Soil contamination with trace elements is mainly due
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to anthropogenic activities, including overuse of fertilizers, mining, industrial wastes,
and pesticides in agricultural areas. The natural contributors of trace elements to the
environment are the weathering of rocks and volcanic activities [2].

Trace element toxicity in plants includes both biologically essential and non-essential
elements (Zn, Co, Cu, Mn, Cd, Cr, As, and Pb). Plant uptake all these elements only in trace
amounts for normal functions, and they are called micronutrients [3–8]. Whenever any
of these elements are present at elevated concentrations, it causes metal toxicity [2,9,10].
Soils polluted with metal elements pose severe ecological constraints, as these are not
environmentally biodegradable and persistent, ultimately threatening living organisms,
especially humans [2,11–15].

Plant uptake trace elements from the soil through roots and their absorbance depend
upon their bioavailability in soils. Therefore, plant roots are the first organ that experiences
Cd toxicity and enhanced oxygen radicals production and growth inhibition [16]. Cadmium
is the 7th one among 20 metals causing toxicity to plants. The availability of Cd depends
on other cation concentrations, cation exchange capacity, soil pH, soil texture, and organic
matter [17]. By reducing trace elements’ bioavailability, their uptake can be reduced due to
the stabilization of trace metals and organic pollutants in the soil. In recent approaches,
biochar application as a soil amendment of heavy metal toxicity has proved effective and is
widely accepted [18–20]. Biochar minimizes the absorption of trace elements by roots, thus
lowering its toxicity and increasing soil fertility. Additionally, the addition of biochar to
soil increases soil carbon sequestration and biological activities and decreases greenhouse
gas emissions [2].

Alternatively, using several hormones, osmo-protectants, minerals, and vitamins
would be another promising option under abiotic stresses and could protect several crops
such as barley [21]. For example, ascorbic acid (Asa) is a water-soluble vitamin and is well
known to scavenge oxidative stress efficiently, and it reduces the number of free radicals
that are generated as a consequence of several abiotic stress factors [21]. The foliar-applied
ascorbic acid enhances its indigenous production in plant cells, thus mitigating stressful
conditions [22,23]. Ascorbic acid is helpful in the maintenance of photosynthesis, cell
wall expansion, plant hormone production, regulation of antioxidant systems, ion uptake,
biological yield, and harvest index [21,24,25].

Barley (Hordeum vulgare L., Gramineae) is the fourth major cereal grain among cereal
crops worldwide [1,21]. However, its cultivation in Pakistan is continuously decreasing
because of insufficient compost use, poor soil health, and allied abiotic stresses [26]. In
2014, Pakistan produced 67 thousand tonnes, which now in 2019 and 2020 has become
63 thousand tonnes [27]. It is consumed for humans and used as fodder for livestock and
in the malting and brewing process [21,28]. In the current experimental study, the effect
of biochar and ascorbic acid application was studied using a pot experiment on barley
subjected to Cd stress. Their performance was assessed in terms of growth, photosynthetic
pigments, antioxidant activities, and ion accumulation. It was hypothesized that plants
with ascorbic acid and biochar might perform better than untreated barley plants under
Cd stress. In the current study, barley was selected as an essential nutritional crop, as it is
economically important and among the most widely consumed plants.

2. Materials and Methods
2.1. Seed Sterilization

Seeds of barley (Hordeum vulgare L. Genotype B-14011) were obtained from Ayub
Agriculture Research Institute, Faisalabad, Pakistan. All seeds were disinfected using
95% ethanol for 1 min; then, a 70% sodium hypochlorite solution (NaOHCl) for 10 min.
The seeds were washed with distilled water six times.

2.2. Experimental Design

In 2020, a pot experiment was performed in the greenhouse of the Old Botanical
Garden, University of Agriculture Faisalabad, Faisalabad, Pakistan. The treatments con-
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sisted of (a) control, (b) biochar, (c) biochar + ascorbic acid = Bio + Asa, (d) ascorbic
acid spray = Asa, arranged into two groups: (Cd-contaminated and non-contaminated)
and 3 replications in a completely randomized design (CRD).

2.3. Seeds Sowing and Pot Preparation

Barley seeds were sown in plastic pots filled with 5 kg of soil. The sowing season
was January 2020. The seedlings were irrigated thrice a week until the termination of the
experiment. Each 5 kg plastic pot was provided the desired dose of biochar (non-biochar
and 2% w/w of pot soil). The biochar was prepared from pyrolysis of air-dried vegetable
waste and then was powdered and sieved through a 2 mm sieve.

2.4. Cadmium (Cd) Contamination

Cd treatment was prepared by spraying the reagent into the soil. Cadmium nitrate
(Cd(NO3)2·4H2O) was mixed to attain the homogenized concentration of 20 mg Cd kg–1 of
dry soil, keeping in mind the threshold limit in the plant (0.2–1.5 ppm) and soil (3–6 mg kg−1

soil) suggested by the Commission Regulation (EU) [29], the Indian standard [30], and the
WHO/FAO [31].

2.5. Ascorbic Acid (Asa)

The solution of Asa was prepared with a 30 mM strength containing 0.1% of Tween 20
(Polysorbate 20) as a surfactant. Controlled barley plants were only sprayed with distilled
water. The ascorbic acid foliar application was provided four weeks after sowing. The
plants were harvested after 45 days of sowing. The concentrations of Asa, Cd, and biochar
in the present study were considered from the literature.

2.6. Growth Attributes

The lengths of soot and roots were determined using a measuring tape. Immediately
after harvesting, the fresh weight was estimated by using a digital weighing balance. The
samples were preserved at −30 ◦C for a more fresh analysis. Sample plants from individual
treatments were oven-dehydrated at 65 ◦C for 3 days.

2.7. Measurement of Chlorophyll Contents and Gas Exchange Characteristics

Gaseous exchange parameters: the transpiration rate, the stomatal conductance, and
the photosynthetic rate were measured on leaves of three plants. Each replicate used the
infrared gas analyzer (Cl-340 Handheld Photosynthesis System, Washington, DC, USA).
All these measurements were recorded between 11 a.m. and 2 p.m. with a photosynthetic
photon flux density (PPFD) not lower than 1800 µmol m−2 s−1. The total chlorophyll was
estimated following the Lichtenthaler and Wellburn [27] method. In addition, chlorophyll a,
chlorophyll b, and carotenoid contents were measured as stated by the standard Arnon [28]
protocol. For this, fresh leaves (0.1 g) were homogenized in 8 mL of acetone (95%) at
4 ◦C for 1 day in the dark. The optical density was recorded at 646, 663, and 450 nm by a
spectrophotometer (UV-2550; Shimadzu, Kyoto, Japan).

2.8. Electrolyte Leakage

Plant electrolyte leakage (EL) was estimated by incubating leaves at 23 ◦C in dis-
tilled water for 24 h in the dark. Next, the samples were vortexed, and initial electrical
conductivity was recorded by using a conductivity meter. Then, at 60 ◦C, samples were au-
toclaved for 15 min. Then final conductivity of samples was measured after cooling at room
temperature. The following equation was used to calculate the electrolyte leakage [32]:

Electrolyte leakage (EL%) =

(
Initial Electrical Conductivity
Final Electrical Conductivity

)
× 100 (1)
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2.9. Oxidative Stress Indicators

Malondialdehyde (MDA) contents were estimated by grinding 0.1 g fresh samples at
4 ◦C in a 50 mM concentration of 25 mL phosphate buffer with 7.8 pH and 1% concentrated
polyethene pyrrole solution. The homogenous reaction mixture was then centrifuged at
10,000× g for 15 min at 4 ◦C. After this, the solution was heated at 100 ◦C for 20 min and
immediately cooled in ice-cold water. The color intensity was recorded at 450, 532, and
600 nm wavelengths. Lipid peroxidation was indicated as 1 mol g–1 following the protocol
provided by Heath and Packer [33].

MDA (µmol g−1) = 6.45 (A532 − A600)− (0.56 × A450) (2)

The determination of H2O2 levels of barley plant samples was done by homogenously
mixing 3 mL of leaf extract, 1 mL of 0.1% titanium sulfate, and 20% H2SO4 v/v. The solution
was centrifuged at 6000× g for about 15 min. The colour absorbance was recorded at 410 nm
by using a spectrophotometer. H2O2 contents were measured by a 0.28 mmol–1 cm–1

extinction coefficient, followed by Jana and Choudhuri [34].

2.10. Determination of Antioxidant Enzymatic Activities

Peroxidase (POD) enzyme activity in the leaves was found as reported by the Sakharov
and Ardila [32] method by using a guaiacol catalyst. Three mL of the reaction mixture was
prepared with 0.05 mL of enzyme concentrate, 2.75 mL of phosphate buffer with a 50 mM
strength and 7.0 pH, 0.1 mL of 1% H2O2, and 0.1 mL of 4% guaiacol solution. Absorbance
was noted at a 470 nm wavelength. The unit enzyme activity was accounted for as the
contents of peroxidase enzyme present.

Catalase (CAT) concentration in cells was assayed by following the Aebi [33] method.
For this, 3.0 mL of a reaction mixture comprised 100 L of enzyme extract, 100 L of 300 mM
concentrated H2O2, 2.8 mL of 50 mM phosphate buffer, along with 2 mM of ETDA with a
pH = 7.0. The activity of the CAT enzyme was measured at 240 by a decline in absorbance as
by H2O2 loss. Finally, the superoxide dismutase (SOD) activity was estimated by following
the Beauchamp and Fridovich method [35].

2.11. Estimation of Proline, Sugars, and Non-Enzymatic Antioxidants

To estimate proline and soluble sugars and several non-enzymatic antioxidants,
ethanol extracts of leaf samples were prepared using 50 mg of dried leaf material and
were homogenized in 10 mL of 80% ethanol. Then, this solution was filtered, followed by
re-extraction in ethanol. The 20 mL of the final volume was maintained by mixing both
sample extracts, and this mixture was used to determine contents like total soluble pro-
teins [36], anthocyanin [37], phenolics [38], flavonoids [39], total sugars [40], and ascorbic
acid [41] contents.

For the estimation of proline, 0.1 g of fresh leaves were extracted in a 5 mL sulfosalicylic
acid (3%) and then centrifuged (at 10,000× g) for 15 min. After this, a 1 mL aliquot was
taken in a test tube containing 1 mL of glacial acetic acid and 1 mL of acidic ninhydrin
mixture. It was then boiled for 10 min at 100 ◦C and immediately cooled down in an ice
bath and then vortexed for 20 s and cooled down at room temperature. Absorbance at a
520 nm wavelength was recorded using a spectrophotometer [42].

2.12. Analysis of Cadmium Contents

The leaf samples were immersed in HNO3-HClO4 (3:1, v/v) overnight [43]. Then,
5.0 mL of HNO3 and digesting samples on the hot plate were added until a clear solution
was obtained. Cd contents were evaluated using an atomic absorption spectrophotometer.
Cd concentration measurements were estimated from the working curve after calibrating
the instrument with the standards of known concentrations [44].
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2.13. Statistical Analysis

A two-way analysis of variance (ANOVA) was carried out for data evaluation, and the
difference in treatments was determined. A mean comparison test between treatments was
made using the least significant difference test (p < 0.05) [45]. Logarithmic transformations
for data normalization were performed where necessary before analysis. To compute
associations among various analyzed variables, we implemented Pearson’s correlation
analysis. The graphical demonstration of data was carried out by Origin 2021 [46].

3. Results
3.1. Root and Shoot Length

The effect of applied treatments was significant on root and shoot length. The results
showed that Bio + Asa were significantly different from control-treated plants for improv-
ing the root length in Cd-contaminated and non-contaminated soils. In Cd-contaminated
soils, biochar and Asa were statistically alike with Bio + Asa for root length. However,
Bio + Asa were significantly better over biochar and Asa under non-contamination for root
length (Figure 1A). For shoot length, no significant change was noted between Bio + Asa
and biochar under Cd contamination. However, Bio + Asa and biochar significantly im-
proved shoot length over Asa and the control under Cd contamination. Bio + Asa differed
significantly for an increase in shoot length in non-contaminated soils. Application of
biochar and Asa remained non-significant with one another but differed significantly over
the control for an increase in shoot length under non-contaminated conditions (Figure 1B).

Sustainability 2021, 13, x FOR PEER REVIEW 5 of 17 
 

2.12. Analysis of Cadmium Contents 
The leaf samples were immersed in HNO3-HClO4 (3:1, v/v) overnight [43]. Then, 5.0 

mL of HNO3 and digesting samples on the hot plate were added until a clear solution was 
obtained. Cd contents were evaluated using an atomic absorption spectrophotometer. Cd 
concentration measurements were estimated from the working curve after calibrating the 
instrument with the standards of known concentrations [44]. 

2.13. Statistical Analysis 
A two-way analysis of variance (ANOVA) was carried out for data evaluation, and 

the difference in treatments was determined. A mean comparison test between treatments 
was made using the least significant difference test (p < 0.05) [45]. Logarithmic transfor-
mations for data normalization were performed where necessary before analysis. To com-
pute associations among various analyzed variables, we implemented Pearson’s correla-
tion analysis. The graphical demonstration of data was carried out by Origin 2021 [46]. 

3. Results 
3.1. Root and Shoot Length 

The effect of applied treatments was significant on root and shoot length. The rRe-
sults showed that Bio + Asa were significantly different from control-treated plants for 
improving the root length in Cd-contaminated and non-contaminated soils. In Cd-con-
taminated soils, biochar and Asa were statistically alike with Bio + Asa for root length. 
However, Bio + Asa were significantly better over biochar and Asa under non-contamina-
tion for root length (Figure 1A). For shoot length, no significant change was noted between 
Bio + Asa and biochar under Cd contamination. However, Bio + Asa and biochar signifi-
cantly improved shoot length over Asa and the control under Cd contamination. Bio + 
Asa differed significantly for an increase in shoot length in non-contaminated soils. Ap-
plication of biochar and Asa remained non-significant with one another but differed sig-
nificantly over the control for an increase in shoot length under non-contaminated condi-
tions (Figure 1B). 

  

Figure 1. Impact of various treatments on root (A) and shoot (B) length of barley plants under Cd-contaminated and non-
contaminated soils after 35 days of growth in pots. All values are means of 3 replicates ± SD. Different letters on bars are 
significantly different at p < 0.05 according to LSD test. Bio + Asa: biochar + ascorbic acid, Asa: ascorbic acid. 

e
d d

de

c

b

a
b

C
on

tro
l

Bi
oc

ha
r

Bi
o+

As
a

As
a

C
on

tro
l

Bi
oc

ha
r

Bi
o+

As
a

As
a

Cd Contaminated Non Contaminated

0

1

2

3

4

5

R
oo

t L
en

gt
h(

cm
)

A

e
d d

e

c

b

a

b

C
on

tro
l

Bi
oc

ha
r

Bi
o+

As
a

As
a

C
on

tro
l

Bi
oc

ha
r

Bi
o+

As
a

As
a

Cd Contaminated Non Contaminated

0

1

2

3

4

5

Sh
oo

t L
en

gt
h(

cm
)

B

Figure 1. Impact of various treatments on root (A) and shoot (B) length of barley plants under Cd-contaminated and
non-contaminated soils after 35 days of growth in pots. All values are means of 3 replicates ± SD. Different letters on bars
are significantly different at p < 0.05 according to LSD test. Bio + Asa: biochar + ascorbic acid, Asa: ascorbic acid.

3.2. Chlorophyll Contents

Application of treatments significantly affects the chlorophyll a, b, and total chloro-
phyll contents under Cd-contaminated and non-contaminated soils. Chlorophyll a was
significantly decreased in Cd contamination over non-Cd contamination without amend-
ments. A significant increase in chlorophyll a was observed where Bio + Asa was applied
compared to the control under Cd-contaminated soil. Biochar also differed significantly
for improvement in chlorophyll a over Asa and the control in Cd-contaminated soil. No
significant change was noticed among biochar and Bio + Asa for chlorophyll a under
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non-Cd-contaminated soils. However, biochar, Bio + Asa, and Asa significantly enhanced
chlorophyll a in non-Cd-contaminated soils (Figure 2A).
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Figure 2. Effect of various treatments on chlorophyll a (A), chlorophyll b (B), total chlorophyll (C), and carotenoids (D) of
barley plants under Cd-contaminated and non-contaminated soils after 35 days of growth in pots. All values are means
of 3 replicates ± SD. Different letters on bars are significantly different at p < 0.05 according to LSD test. Bio + Asa:
biochar + ascorbic acid, Asa: ascorbic acid.

For chlorophyll b, Bio + Asa, Asa, and biochar remained significantly different from
the control under Cd-contaminated soils. Application of Bio + Asa significantly increased
chlorophyll b among all the treatments in non-Cd-contaminated soils. However, Asa
caused a significant decrease in chlorophyll b over biochar and the control in non-Cd-
contaminated soils. Biochar was statistically alike with the control for chlorophyll b in
non-Cd-contaminated soil (Figure 2B).

The Bio + Asa treatment was significantly best for improvement in total chlorophyll
compared to control plants in Cd-contaminated soil. Sole application of biochar and Asa
also remained significantly better for enhancing the total chlorophyll over the control under
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Cd contamination. However, the biochar application was significantly better than Asa
for enhancement in total chlorophyll in Cd contamination. In non-Cd-contaminated soil,
Bio + Asa was significantly best for total chlorophyll over all the treatments. Biochar also
differed significantly over the control and Asa for enhancement in total chlorophyll in
non-Cd-contaminated soil. However, no significant change was observed between Asa
and the control for total chlorophyll in non-Cd-contaminated soil (Figure 1C).

A significant increase in carotenoids validated the effectiveness of Bio + Asa overall
under treatments in Cd-contaminated and non-contaminated soils. The results also showed
that the sole application of biochar also performed significantly better for enhancing
carotenoids from the control under Cd contamination and non-contaminated conditions.
Application of Asa significantly increased carotenoids in Cd-contaminated soil but caused
a significant decrease in non-Cd-contaminated soil (Figure 2D).

3.3. Gas Exchange Attributes

The influence of treatments was significant on stomatal conductance, net photosynthe-
sis, and the transpiration rate under non-contaminated and Cd contaminated conditions.
No significant change among all the treatments was noted in Cd-contaminated soil for net
photosynthesis. However, in non-contaminated soil, biochar and Bio + Asa remained signifi-
cantly better than the control for the improvement in net photosynthesis. The Asa treatment
remained non-significant for net photosynthesis over the control in non-contaminated soil
(Figure 3A). In Cd-contaminated soils, all treatments were statistically alike for stomatal
conductance. However, Bio + Asa and Asa significantly decreased stomatal conductance
over biochar and the control, for stomatal conductance under non-Cd-contaminated soil
(Figure 3B). For the transpiration rate, Bio + Asa differed significantly over the control
in Cd-contaminated soil. All other treatments were statistically alike for a transpiration
rate under Cd-contamination. In non-Cd-contaminated soil, Bio + Asa and biochar were
significantly different over the control for the transpiration rate (Figure 3C).

3.4. SOD, POD, and APX

For SOD (Figure 4A) and POD (Figure 4B), a significant decrease was noted where
Bio + Asa, Asa, and biochar were applied under Cd contamination and non-contamination.
Bio + Asa and Asa significantly reduced APX over biochar and the control under Cd con-
tamination and non-contamination. No significant change in all the treatments was noted
between biochar and the control for APX under Cd-contamination and non-contamination
(Figure 4C).

3.5. Catalase, Phenolics, Flavonoids, and Anthocyanin

Bio + Asa significantly differed from the control in decreasing catalase (Figure 5A),
phenolics (Figure 5B), flavonoids (Figure 5C), and anthocyanin (Figure 5D) in both Cd-
contaminated and non-contaminated plants. In Cd-contaminated soils, biochar and Asa dif-
fered significantly for catalase, phenolics, flavonoids, and anthocyanin. However, biochar
and Asa were significantly better over control for phenolics, flavonoids, and anthocyanin
under non-Cd-contaminated soil. For catalase, biochar remained non-significant over the
control under non-Cd contamination.

3.6. Ascorbic Acid, MDA, H2O2, and Electrolyte Leakage

Treatments significantly affect ascorbic acid, MDA, H2O2 and electrolyte leakage
under Cd-contaminated and non-Cd-contaminated soil. Bio + Asa, biochar, and Asa signif-
icantly decreased ascorbic acid in Cd-contaminated conditions. In non-Cd contamination,
Bio + Asa and Asa differed significantly, but biochar remained non-significant over the
control for ascorbic acid. In MDA (Figure 6A) and H2O2 (Figure 6B), Bio + Asa, biochar,
and Asa caused a significant decline compared to the control under Cd-contamination and
non-Cd contamination. For electrolyte leakage (Figure 6C), biochar and Bio + Asa caused a
significant decline, but Asa was non-significant over the control in the Cd-contamination
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condition. In non-Cd contamination, biochar, Asa, and Bio + Asa significantly decreased
electrolyte leakage from the control.
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Figure 3. Effect of various treatments on net photosynthesis (A), stomatal conductance (B) and the transpiration rate
(C) of barley plants under Cd-contaminated and non-contaminated soils after 35 days of growth in pots. All values are
means of 3 replicates ± SD. Different letters on bars are significantly different at p < 0.05 according to LSD test. Bio + Asa:
biochar + ascorbic acid, Asa: ascorbic acid.
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Figure 4. Effect of various treatments on SOD (A), POD (B), and APX (C) of barley plants under Cd-contaminated and
non-contaminated soils after 35 days of growth in pots. All values are means of 3 replicates ± SD. Different letters on bars
are significantly different at p < 0.05 according to LSD test. Bio + Asa: biochar + ascorbic acid, Asa: ascorbic acid.
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Figure 5. Effect of various treatments on catalase (A), phenolics (B), flavonoids (C), and anthocyanin (D) of barley plants
under Cd-contaminated and non-contaminated soils after 35 days of growth in pots. All values are means of 3 replicates ± SD.
Different letters on bars are significantly different at p < 0.05 according to LSD test. Bio + Asa: biochar + ascorbic acid, Asa:
ascorbic acid.
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Figure 6. Effect of various treatments on ascorbic acid (A), MDA (B), H2O2, (C) and electrolyte leakage (D) of barley plants
under Cd-contaminated and non-contaminated soils after 35 days of growth in pots. All values are means of 3 replicates ± SD.
Different letters on bars are significantly different at p < 0.05 according to LSD test. Bio + Asa: biochar + ascorbic acid, Asa:
ascorbic acid.

3.7. Proline, Total Soluble Proteins, Root Cd Concentration, and Shoot Cd Concentration

The results showed that the effect of the provided treatments was significant on proline,
total soluble sugar, and Cd concentration in roots and shoots. Bio + Asa were significantly
better over biochar and Asa for decreased proline (Figure 7A) in Cd-contaminated and
non-Cd-contaminated conditions. A significant increase was noted in Bio + Asa for total
soluble proteins, but the no-significant change was noticed among biochar and Asa over
the control under Cd contamination. Bio + Asa and Asa significantly increased soluble
sugars over the control under non-Cd contamination (Figure 7B). Bio + Asa, biochar, and
Asa differed significantly over the control for the decrease in the root (Figure 7C) and
shoot (Figure 7D) cadmium concentration under Cd-contaminated conditions. In non-
contaminated soil, biochar and Bio + Asa were significant, but Asa was non-significant over
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the control for the decrease in the Cd concentration of the roots. However, Asa, biochar,
and Bio + Asa remained significant for the decrease in shoot Cd concentration over the
control in non-Cd-contaminated soil.
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Figure 7. Effect of various treatments on proline (A), total soluble proteins (B), root Cd concentration (C), and shoot Cd
concentration (D) of barley plants under Cd-contaminated and non-contaminated soils after 35 days of growth in pots. All
values are means of 3 replicates ± SD. Different letters on bars are significantly different at p < 0.05 according to LSD test.
Bio + Asa: biochar + ascorbic acid, Asa: ascorbic acid.

3.8. Pearson Correlation

Pearson correlation showed that shoot and root Cd concentration was significantly
negative in correlation with shoot length, chlorophyll a, chlorophyll b, total chlorophyll
contents, stomatal conductance, the transpirational rate, and total soluble sugars in Cd con-
tamination. Attributes, i.e., SOD, POD, APX, catalyse, phenolics, flavonoids, anthocyanin,
ascorbic acid, MDA, H2O2, electrolyte leakage, and proline, were significantly positive in
correlation with shoot and root Cd concentration under the Cd-contaminated condition
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(Figure 8a). In non-Cd-contaminated conditions, a parallel trend was observed. High
Cd in shoots and roots enhanced the antioxidants and decreased the growth attributes,
chlorophyll contents, and gas exchange attributes (Figure 8b).
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Figure 8. Pearson correlation of barley attributes.
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4. Discussion

The current study was designed to investigate the effect of biochar and ascorbic acid
in Cd-contaminated soil. Barley was selected because of its major contribution to food
consumption and, because of Cd accumulation via the food chain, it would be harmful
to health. Biochar can sorb contaminants like Cd on its surface, thus reducing metal
toxicity in plants [47,48]. Additionally, exogenously applied, several osmoprotectants like
vitamins, minerals, and other micronutrients reduce environmental stress and improve
plant vigor [21]. Therefore, in this study, the possible amendments of barley plants to
Cd stress through foliar-sprayed ascorbic acid, biochar, and their combined application
was examined by investigating its various physio-biochemical attributes. In this study,
the application of treatment Bio + Asa proved effective in increasing plant length and
photosynthetic pigments in cadmium stress compared to non-contaminated plants. In the
literature, the increase in plant biomass, height, and photosynthetic pigment contents is
linked with the antioxidant effect of ascorbic acid and biochar addition to soil [2,21].

Ascorbic acid directly reacts with several reactive oxygen species and improves plant
redox status [49]. Our findings are in accordance with other ascorbic acid foliar sprays
related to the plant protection mechanisms from oxidative stress, and the current study is
supported by other scientific reports by Barzegar et al. [49] and Noreen et al. [21], in which
foliar application with ascorbic acid spray enhanced biomass in sweet pepper [21,50].

Biochar application in Cd-polluted soils decreased Cd accumulation in plant tissues
and grains [2]. Trace elements’ removal from the rhizosphere occurs by their sorption
due to the carbonaceous properties of biochar and thus decreases their availability to
plants [2,51]. Similarly, Puga et al. [52] reported that the nutritional contents increased in
Mucuna aterrima and Jack bean shoots with biochar application [52]. Biochar increased
mineral concentrations in rice grown in paddy soil contaminated with trace elements [53].
The current experiment validates this result. An applied treatment mitigates metal stress
symptoms in barley and improves plants’ vigor. Their foliar application up regulates
activities of non-enzymatic antioxidants like ascorbic acid under stressful conditions [21].
Kamal et al. [54] reported that ascorbic acid biosynthesis was enhanced by foliar applica-
tion on cotton under heat stress [54]. Ascorbic acid is generally produced endogenously
in plants during abiotic stress; however, exogenously sprayed application may further
enhance its synthesis under different stress factors like soil metal contamination [55]. In
the current study, a significant positive effect of Bio + Asa treatment was observed in
increasing phenolic, ascorbic acid, and flavonoid concentration in barley during cadmium
stress. Ascorbic acid foliar spray elevated anthocyanin contents.

Several primary and secondary metabolites, i.e., soluble sugars and proline, play an
important role in cell osmotic adjustments. Proline accumulates in high concentrations
during stressful conditions, which is reported in many articles [21,56–58]. Our results
justify these findings. Biochar and ascorbic acid effectively increased proline and soluble
sugar contents in barley in combined treatment and separate applications in Cd stress.

This is an undisputed fact that ROS are ubiquitously involved in cell signalling
and that they regulate several physiological and developmental processes only in small
quantities. Their concentrations become high during abiotic stress that disrupts plant
metabolic activities. Antioxidants are well-known ROS scavengers [16]. In agreement with
these results, enzymatic antioxidants like SOD, POD, APX activities, and catalase contents
of barley plants were increased in Cd stress, and the application of Bio + Asa’s combined
application had significant positive effects.

Antioxidant enzymes reduce the hydrogen peroxide levels and lipid hydro peroxides,
which cause membrane peroxidation, thus maintaining normal cell functions despite
having high levels of ROS accumulated in root cells under Cd stress [16,59]. Our results
justify these facts. In our findings, MDA levels were higher in cadmium stress, and H2O2
was produced in lesser amounts in ascorbic-acid-treated plants in both contaminated and
non-contaminated groups.
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5. Conclusions

In conclusion, the application of ascorbic acid and biochar for the remediation of
cadmium toxicity positively affected barley growth and physiological and yield attributes.
Plant physiological parameters like shoot length and root length significantly improved
with the application of Asa and biochar in mitigating Cd stress. Among all applied
treatments, Bio + Asa for barley had more efficacious effects than all other treatments to
ameliorate metal toxicity. Further investigation is suggested at the field level in different
climatic zones to validate the current results of biochar application as an organic matter
substitute with ascorbic acid for mitigation of cadmium stress in plants.
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