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Abstract: In this paper, a di/dt detection circuit for DC breaker applications is proposed to provide
faster short-circuit and overcurrent fault detection, where DC breakers are required to be designed
for unidirectional fault current conditions, which is a challenge regarding DC microgrid applications
due to some associated problems such as long periods of fault interruption, complex circuit struc-
ture, and low reliability. The proposal, which is based on measurement of di/dt, can detect fault
current conditions for different distances from the point of failure, and is suitable to operation in
both islanding and grid-connected conditions. The proposed circuit was studied theoretically and
experimentally in steady state, as well as under load changes and short circuit conditions to ensure
proper operation, making this solution a fast current fault detection solution, which is a significant
advantage and requirement in DC microgrid applications.
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1. Introduction

Due to the proliferation of distributed energy resources (DERs), microgrids (MGs)
are becoming the future of power generation and consumption due to advantages such
as operation in grid-connected or islanded modes, reduction in losses, and power quality
improvement [1–5]. Mainly, DC MGs are adopted to reduce power processing, ensure
better compatibility with DERs, and ensure better stability [6–10].

Typical DC microgrid components are loads, renewable sources, storage elements,
and bidirectional inverter that acts as the link between the AC grid and the DC bus of
the DC MG [11]. Additionally, energy management devices and controllers are required
to ensure proper operation [11–15]. As with any electrical system, a DC microgrid is
subject to faults; therefore, protection is required [16–18]. In Figure 1, an example of a DC
microgrid is shown, where DC breakers are placed strategically to prevent a failure due to
an electrical fault.
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DC breaker design is challenging due to the many aspects considered, such as
long periods of fault interruption, complex circuit structure, and low reliability, among
others [16–19]. For example, in terms of protection, the unidirectional nature of the fault
current must be considered; therefore, the use of AC protection is not possible. Another
important aspect to consider in DC breaker design is that the short circuit current level is
different when the DC microgrid operates in grid-connected or islanding modes [17,18].
In grid connected mode, the fault current will be high because both the utility and DERs
present inside the DC microgrid feed the fault; in such cases, the current level protection
must be faster than the AC grid case due to the fault current magnitude and rise-time are
high due to ratio of cable inductance in DC microgrid [17]. A communication system is
also recommended to provide efficient coordination in the protection system [19].

To increase the DC breaker’s speed, using solid-state breakers based on SiC devices
was proposed in [20,21]. This method is independent of the topology or technique em-
ployed for the detection.

In [22], the topology for a unidirectional DC breaker based on a thyristor, passive
elements, and coupled inductors was proposed. A “Z” sourced topology was proposed
in [23,24]; this scheme naturally opens the thyristor when a fault occurs. In [25], a dif-
ferent topology, similar to the “Z” scheme, was proposed and considered a thyristor to
open the circuit. In [26], another topology, based on thyristor, was proposed but can
operate bidirectionally.

The designs in these topologies are highly dependent on the parasitic elements of
the DC grid; thus, a false or missed detection may occur. Additionally, the protection
current level is fixed, which means that it is not suitable for operation in both islanding
and grid-connected conditions.

Based on the transient phenomena derivative, fault detection was proposed in [27],
which results in an effective method by measuring local variables. Another method was
proposed in [28], which considered differential measurements, and then multiple points
were measured. An algorithm based on a wavelet transform was proposed in [29], which
enabled efficient fault detection. A method to estimate the fault distance was proposed
in [30], which considered the current’s derivative. These papers only proposed fault-
detection methods and did not propose DC breaker technology; however, a low-cost digital
platform was required to assure proper detection.

In this paper, we propose a method to detect short circuits and overcurrent faults
based on di/dt; the method only considers measurements of bus currents. The proposed
scheme enables detection of the fault at different distances along the bus; additionally,
changing the protection current level is possible. It is suitable to operate in both islanding
and grid-connected conditions, although it is recommended that a communication system
be included. Our proposal offers fast fault detection, and an analogue comparator or a
microcontroller may be employed to assure the speed. A TMS320F28379D microcontroller
from Texas Instruments was employed to attain the advantages of this tool. The proposed
circuit was analysed, designed, and simulated; experimental results are also given to verify
the proposal’s performance.

2. Proposed Topology

The proposed di/dt detection circuit is shown in Figure 2. The circuit determines
whether there is a fault and protects; an analogue filter and a SiC device are employed as
the breaker, and a diode (D) is included as protection element to ensure a safe operation
when the switch is turned off.

The proposed circuit detects short-circuits faults; however, false detection may occur
when the load is varied and if the protection is not designed correctly. Thus, a design
methodology is proposed. Considering that large load variation is a natural behaviour of
DC microgrids, the following load changes were analysed, from 50% to 100%, 100% to 50%,
0% to 100% nominal load, and from 100% nominal load to short circuit.
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The filter output (vA) was compared with the setpoint that specified the di/dt pro-
tection level; this signal can be fixed or changed to operate properly in either islanding or
grid-connected modes and for different currents demanded.

The complete scheme is shown in Figure 3, considering long and short fault distances.
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2.1. Transient Inductor Analysis under a Fault

Figure 4 shows the di/dt detection circuit and DC bus under a fault condition, where
“n” may determine the distance of the fault according to Figure 3. Ln and rn are considered
as the impedance of the cabling, with the cable impedance being equal for each segment,
and the resistor RA and RB of the di/dt circuit detection offering a high impedance to
avoid coupling.
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Applying Kirchhoff’s law, from Figure 4, the following equation can be obtained:

(L + Ln)
diL
dt

= −iL

(
rn + RL + r f ault

)
+ VDC, (1)
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where L is the inductance of the breaker, Ln is the inductance of the cabling, VDC is the
bus voltage, RL is the internal resistance of the inductor, rn is the parasitic resistance of the
cabling, r f ault is the fault resistance, and iL is the current of the circuit.

Solving Equation (1) obtains:

iL =
VDC

rn + RL + r f ault

[
1 − e−( 1

τL
)t
]
+ i(0)e

−( 1
τL

)t, (2)

where i(0) is the initial current, just before the fault, and:

τL =
L + Ln

rn + RL + r f ault
, (3)

The inductor voltage is determined by:

vL = L
diL
dt

, (4)

Considering Equation (4), the inductor voltage is proportional to the inductor current
change, and by substituting Equation (2) into Equation (4) and simplifying, an equation for
the inductor voltage under a fault can be obtained:

vL =
[
VDC − i(0)

(
rn + RL + r f ault

)]
e−( 1

τL
)t, (5)

Figure 5 shows the transient behaviour of the current and voltage inductor L, where
τL is the time-constant that determines when the variables reach their final value, which
was approximately five time-constants. It can be considered that in a half time-constant,
the exponential function exhibits linear behaviour.
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The maximum voltage for the inductor is:

vLMax = VDC − i(0)
(

rn + RL + r f ault

)
, (6)

The maximum current for the inductor is:

iLMax =
VDC

rn + RL + r f ault
, (7)

2.2. Transient Analogue Filter Analysis under a Fault

Two critical cases can be considered when a fault occurs at a short and/or long cabling
distance, and this is because the short-circuit current is different in each case. If the inductor
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voltage is considered linear, the detection time must be lower than half of a time-constant
in any case. An analogue filter was employed to determine the voltage protection; the
simplified circuit is shown in Figure 6.
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The behaviour of this circuit is determined by the following equation:

CA
dvA
dt

=
vL − vA

RA
− vA

RB
, (8)

where CA, RA, RB are the elements of the analogue filter, and vA is the output of the
DC breaker.

Solving Equation (8) obtains:

vA = vL
RB

RA + RB

[
1 − e−( 1

τc )t
]
+ vA(0)e

−( 1
τc )t, (9)

where vA(0) is the initial voltage, just before the fault, and:

τc =
RARBCA
RA + RB

, (10)

Figure 7 shows the behaviour of the capacitor.
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The maximum current of the capacitor is:

IcMax =
VDC
RA

, (11)

The maximum voltage for the capacitor is:

VAMax = VL
RB

RA + RB
, (12)
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In order to detect short circuits and load changes, the capacitor’s behaviour must
be faster than the inductor’s behaviour. For analysis and simplification, the inductor’s
behaviour was considered linear until half time-constant τL, and capacitor behaviour
was faster than the inductor behaviour. Thus, the proposition in the following equation
is mandatory:

τL > 10τc, (13)

According to Equation (3), when rfault is lower, the time-constant will be higher, which
means that the behaviour will be linear for a longer time. To validate Equation (9), which
considered VL as constant, the inductor voltage should be considered the average voltage
for the inductor voltage, which is given for:

vLAverage =
1

t − t0

∫ t

t0

vL(t), (14)

Substituting Equation (5) into Equation (14), considering t0 = 0 and t = 1
2 τL and

simplifying, obtains:

vLAverage =
[
VDC − i(0)

(
rn + RL + r f ault

)][1 − e−0.5

0.5

]
, (15)

Substituting Equation (6) into Equation (15) and simplifying the following equation
is obtained:

vLAverage = (0.786938)VLMAX , (16)

Considering that the capacitor’s voltage will be at full load in five time-constants, the
following equation is given:

∆vA = vLAverage
RB

RA + RB

(
t

5τc

)
, (17)

Substituting Equations (10) and (16) into Equation (17) and simplifying, the following
equation is obtained:

∆vA = (0.786938)
(

VDC − i(0)
(

rn + RL + r f ault

)) t
5RACA

, (18)

This equation approximates the analogue filter voltage based on inductor current
behaviour to detect a load change and a fault. Then, to decide if a fault occurs, it is just
necessary to define the proper value of vA to trigger the protection as required.

2.3. Analysis under No Load to Full Load Conditions

The system must operate correctly under certain operating conditions, not only in a
steady state, but also during load variations. The detection voltage of load variation must
also be considered.

The equations previously obtained are still valid with some considerations, such as
i(0) = 0, vA(0)= 0 and substituting rfault for RNom, Equation (18) becomes:

∆vA = (0.786938)(VDC)
t

5RACA
, (19)

2.4. Analysis under Load Change

The system must support load variations, and this load was connected near the
DC breaker because it has a higher current variation. The equation obtained before are
still valid with some considerations; for example, if there are five time-constants of the
analogue filter transcurred, then the capacitor will be discharged and can be considered
vA(0) = 0 and substituting rfault for REq which is the equivalent resistance of the load,
Equation (18) becomes:
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∆vA = (0.786938)
(

VDC − i(0)
(
rn + RL + REq

)) t
5RACA

, (20)

2.5. Analysis under Steady State

The system must operate correctly in a steady state. In this case, there is not a current
variation; therefore, there is no short-circuit or load change detection due to inexistence. If
there is an overcurrent, this can be detected with a current sensor.

2.6. Analysis under Open Breaker State

When level protection is detected, the SiC transistor will be open, with the current
path shown in Figure 8. In this case, the inductor’s residual energy is conducted through
the diode D and the analogue filter; then, the capacitor is discharged.
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2.7. Analysis under Negative di/dt

When a reduction in load occurs in the system, the di/dt in the inductor will be
negative; the current path is shown in Figure 9. In this case, the excess current in the
inductor is conducted through the diode D and the analogue filter; then, the capacitor is
discharged, and the current demanded for load is transported for the SiC transistor.
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3. di/dt Circuit Design

Considering the previous equations, the design procedure proposed is as follows:

1. Define L based on:

L � Ln, (21)

2. Determine the nominal load with the nominal power and bus DC Voltage:

RNom =
VDC

2

PNom
, (22)
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3. Obtained τL based on Equation (3), but replace rfault for RNom;
4. Define the detection voltage vA;

5. In order to define RA and RB, substitute Equation (10) into Equation (19) and using
t = 0.5 τL = 5 τC and simplifying, the following equation is obtained:

∆vA = (0.786938)(VDC)
RB

RA + RB
, (23)

The recommendation is that RA and RB values will be high impedance to avoid
primary circuit coupling;

6. In order to define the capacitor value using Equation (10) and considering Equation (13):

CA =
RA + RB

RARB
τc, (24)

7. Verify that Equation (13) is still valid with the values selected.

With this procedure, we can determine whether the proposed DC breaker works
completely, not forgetting that approximations are calculated and that the current for the
protection may have slight variations and depends on the distance between the breaker
and the fail.

4. Simulation Results

Using the design parameters presented previously, a scheme was designed for valida-
tion through simulation. In Table 1, the parameters considered in the DC microgrid and
the designed parameter values are shown.

Table 1. Parameter of the DC microgrid and DC breaker.

Parameter Value Specification

rn 10 mΩ Resistance of cabling

Ln 10 µH Inductance of cabling

VDC 380 V DC bus voltage

Rnom 14.4 Ω Load under full load

Pnom 10 kW Nominal power

L 1 mH Inductance of the DC breaker

RL 5 mΩ Resistance of Inductor of the DC breaker

CA 4 nF Capacitance of the filter

RA 51 kΩ Resistance of the filter

RB 1.76 kΩ Resistance of the filter

N Until 20 Sections of the DC microgrid

VA 10 V Filter Output Voltage

The DC breaker was designed and evaluated under different circumstances. First, a
start from no load to full load was performed to verify if the DC breaker delivered false
detections due to a sudden natural start. A second test was conducted to evaluate the
performance, considering a load variation from 50% to 100% nominal power. A third test
was performed from 100% to 50% from nominal power, and finally, a fault test in nominal
power was conducted.
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4.1. Test under 0% to 100% Nominal Power

A DC breaker must be able to operate under no load to full load variation; this means
that false detection should not occur. Therefore, a test to evaluate this was developed.
Figure 10 shows the simulation results, in which a load variation was performed, from no
load to full load.
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voltage, and analogue filter output (blue) with setpoint (red).

The inductor current, the inductor voltage, and the analogue filter output with the
setpoint were graphed. It can be observed that the proposed system operated appropriately,
and no false detection occurred. The filter’s output did not reach the setpoint and achieved
the maximum value (9.85 V) in approximately 17.5 µs, corresponding to a quarter of
the time-constant τL, and the current reached the maximum value in approximately five
time-constants, τL.

4.2. Test under 20% to 100% Nominal Power

A DC breaker must be able to operate under load variation; this means that false
detection should not occur. Therefore, a test was performed to evaluate this. Figure 11
shows the simulation results in which load variation was performed, first from 0% to 20%
nominal power and then 400 ms afterwards from 20% to 100% nominal power.
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4.3. Test under 100% to 20% Nominal Power

In Figure 12, the simulation results in which a load variation was performed are
shown, first from 0% to 100% nominal power and then 400 ms afterwards, from 100% to
20% nominal power.
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Figure 12. Test under 0% to 100% nominal power and from 100% to 20% nominal power variation.
From top to bottom: inductor current (red) and line current (blue), inductor voltage (blue), and
analogue filter output (blue) with setpoint (red).

The inductor and line current, the inductor voltage, and the analogue filter output
with the setpoint were graphed. It can be observed that the proposed system operated
appropriately, and no false detection occurred; it can also be observed that the line changes
from 100% to 20% nominal power, and the residual current of the iL is discharged in diode
D and the analogue filter.

4.4. Test under Nominal Power to Fault

Figure 13 shows the simulation results in which load variation was performed from
100% to fault. The inductor and line current, the inductor voltage, and the analogue filter
output with the setpoint were graphed. It can be observed that the proposed system
operates appropriately, fault detection occurred, and the line current was protected 12.3 µs
after the fault and the current line became zero; then, the iL residual was discharged in
diode D.
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5. Experimental Results

Using the design parameters presented previously, a scheme was designed for vali-
dation in a simulation and experimental test. In Table 2, the parameters considered in the
DC microgrid and the designed parameter values are shown. To open the SiC transistor
breaker, a microcontroller with a comparator and S-R latch was employed; then, the output
filter was connected to a transformer to capture the transient behaviour with a ratio of
5:1 to reduce the voltage, and the microcontroller was capable of handling. The complete
scheme is shown in Figure 14.

Table 2. Parameter of the experimental test.

Parameter Value Specification

VDC 48 V DC bus voltage

Rnom 48 Ω Load under full load

Pnom 48 W Nominal power

L 200 µH Inductance of the DC breaker

RL 0.2 Ω Resistance of inductor of the DC breaker

CA 2.2 nF Capacitance of the filter

RA 390 Ω Resistance of the filter

RB 150 Ω Resistance of the filter

VA 10 V Filter Output Voltage
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The DC breaker was designed and evaluated under different circumstances. First, a
start from no load to full load was performed to verify whether the DC breaker produced a
false detection due to a sudden natural start. A second test was conducted to evaluate the
performance considering a load variation from 50% to 100% nominal power. A third test
was performed from 100% to 50% from nominal power, and finally, a fault test at nominal
power was performed.

5.1. Test under 0% to 100% Nominal Power

A DC breaker must be able to operate under no load to full load variation; this means
that false detection should not occur. Therefore, a test to evaluate this was developed.
Figures 15 and 16 show the experimental and simulation results, respectively, in which
load variation was performed, from no load to full load.
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Figure 16. Simulation results under no load to full load variation. From top to bottom: inductor
current, inductor voltage, and analogue filter output with setpoint.

Figure 15 graphically shows the inductor current, the inductor voltage, and the
analogue filter output with the setpoint. It can be observed that the proposed system
operated appropriately, and no false detection occurred. The filter’s output did not reach
the setpoint and achieved the maximum value approximately in 1 µs, which corresponds
to a quarter of the time-constant τL, and the evolution of the current reached the maximum
value approximately five time-constants, τL.

Figure 16 graphically shows the inductor current, the inductor voltage, and the
analogue filter output with the setpoint. It can be observed that the proposed system
operated appropriately, as in the simulation, and no false detection occurred. The filter’s
output did not reach the setpoint and achieved the maximum value in approximately
1.15 µs, corresponding to a quarter of the time-constant τL, and the current reached the
maximum value in approximately five time-constants τL.

5.2. Experimental Test under 50% to 100% Nominal Power

A DC breaker must be able to operate under load variation; this means that false detec-
tion should not occur. Therefore, a test to evaluate this was developed. Figures 17 and 18
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show the experimental and simulation results, in which load variation was performed from
50% to 100% nominal power.
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Figure 18. Simulation results from 50% to 100% nominal power variation. From top to bottom:
inductor current, inductor voltage, and analogue filter output with setpoint.

Figure 17 graphically shows the inductor current, the inductor voltage, and the
analogue filter output with the setpoint. It can be observed that the proposed system
operated appropriately, and no false detection occurred. The filter’s output did not reach
the setpoint and achieved the maximum value in approximately 1 µs that corresponding
to a quarter of the time-constant τL, and the current reached the maximum value in
approximately five time-constants, τL.

Figure 18 graphically shows the inductor current, the inductor voltage, and the
analogue filter output with the setpoint. It can be observed that the proposed system
operated appropriately, as in the simulation, and no false detection occurred. The filter’s
output did not reach the setpoint and achieved the maximum value in approximately
1.15 µs, corresponding to a quarter of the time-constant τL, and the current reached the
maximum value in approximately five time-constants, τL.
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5.3. Experimental Test under 100% to 50% Nominal Power

Figures 19 and 20 show the experimental and simulation results, in which a load
variation was performed from 100% to 50% nominal power. The inductor and line current,
the inductor voltage, and the analogue filter output with the setpoint are graphed.
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Figure 20. Simulation results from 100% to 50% nominal power variation. From top to bottom:
inductor current (red) and line current (blue), inductor voltage (blue), and analogue filter output
(blue) with setpoint (red).

Figure 19 graphically shows the inductor current, the line current, the inductor voltage,
and the analogue filter output with the setpoint. It can be observed that the proposed
system operated appropriately, and no false detection occurred. The filter’s output was
practically zero, the current inductor residual was discharged into the diode, and the line
current changed to 50% as demanded.

Figure 20 graphically shows the inductor current, the line current, the inductor voltage,
and the analogue filter output with the setpoint. It can be observed that the proposed
system operated appropriately, and no false detection occurred. The filter’s output was
practically zero, the current inductor residual was discharged into the diode, and the line
current changed to 50% as demanded.
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5.4. Test under Nominal Power to Fault

Figure 21 and Figure 22 show the experimental and simulation results in which load
variation was performed from 100% to fault. The inductor and line current, the inductor
voltage, and the analogue filter output with the setpoint were graphed.
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Figure 21 shows the inductor current, the line current, the inductor voltage, and the
analogue filter output with the graphed setpoint. It can be observed that the proposed
system operated appropriately, detection occurred, and the system was protected. The
filter’s output reached the setpoint approximately 0.5 µs, was practically protected in 2 µs,
the current inductor residual was discharged into the diode, and the line current changed
to zero.

Figure 22 shows the inductor current, the line current, the inductor voltage, and the
analogue filter output with the graphed setpoint. It can be observed that the proposed
system operated appropriately, detection occurred, and the system was protected. The
filter’s output reached the setpoint in approximately 0.5 µs and the system was protected,
the current inductor residual was discharged into the diode, and the line current changed
to zero.
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6. Discussion

A DC microgrid has been suggested as an alternative to increase power efficiency and
to handle renewable energy sources. It has several components, including DC protection.
In this paper, a DC breaker is proposed to provide faster short-circuit and overcurrent fault
detection and is suitable to operation in both islanding and grid-connected conditions.

The proposed system can be appropriately operated under normal conditions without
false detection and detects short circuits independently of the DC breaker’s distance. The
setpoint can be easily changed to operate in islanding or grid-connected modes, and offers
a good alternative to other methods.

The DC breakers are in the research and development stage. The available technologies
in the market are bulky, slow, and expensive and are not suitable for a DC microgrid. In the
literature are presented several topologies and methodologies to DC protections that are in
the research state, and the quantity of the components affect the cost, hence, a proposal
with fewer physical components can reduce the cost and be suitable for the market of
DC protections.

6.1. A Brief Comparison with Other Methods

In this section, the proposed DC breaker is compared with other methods and circuits;
this is illustrated in Table 3. As can be observed, the proposed method is versatile because it
is suitable for operation in islanding and grid-connected modes and the protection level can
be adjusted by design; this characteristic may also be possible for more complex systems,
although this is not clear and has not been mentioned in the literature.

Table 3. Comparison with other schemes.

Work Method Physical Device
Component

Design
Complexity

Operating in
Islanding

and
Grid-Mode

Insensitive
to Load

Variations
Speed

[21] Self-powered
SiC device

Flyback converter,
MOSFET, PWM circuit and

passive components
High No No 0.5–2 µs

[22–26] Z topology,
Thyristor

Thyristor, coupled inductor,
and passive components Medium No Not clear 2–180 ms

[27] Local
measurement Not mention Medium Not clear Yes 100 µs

[28] Differential
measurement Not mention Medium Not clear Yes 100 ms

[29] Wavelets Not mention Complex Not clear Yes 450 µs

[30] Differential
inductor Not mention Medium Not clear Yes 5 ms

Proposed di/dt
transient

1 inductor, 1 SiC MOSFET,
small passive components

and a microcontroller
Low Yes Yes 1.9 µs

Another important aspect in DC protection systems is the insensitivity to the fault
distance of the DC breaker; more complex systems can operate appropriately under this
circumstance, although the proposed system also does.

The proposed method is also insensitive to load variations. No false detection occurred
and the system exhibited excellent performance; therefore, it is suitable for operation
correctly in a DC microgrid. The proposed system’s speed is another essential characteristic,
which only a few other methods can match.
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6.2. Digital Platform

In addition to the analogue devices shown in Figure 2, for the DC breaker, a micro-
controller is suggested to compare the setpoint with the measured voltage, vA, and then to
turn off the breaker. The microcontroller will enable communication with the DC microgrid
management system, whereby the setpoint can be changed according to the island or grid
mode, and can also be changed to rapidly detect an overcurrent. In addition, if no setpoint
has changed, then an OR gate connected to a comparator with a current sensor can be
implemented to avoid an overcurrent.

In order to provide a short-circuit and overcurrent fault detection A comparator and a
flip-flop analogue should be used. If a microcontroller is considered, then it must have a
comparator circuit. In addition, the microcontroller may have a communication protocol
for management of the microgrid; a CAN protocol is suggested because it has a bit rate
up to 1 Mbps. The bandwidth may have less depending on the type of control strategy
used; the main strategies are centralised, decentralised, and hierarchical control—of these,
centralised control requires the greatest speed in communication.

7. Conclusions

In this paper, a di/dt detection circuit for a DC unidirectional breaker based on
inductor transient behaviour was analysed, and a design methodology and simulations
were presented. Finally, the performance of the proposal was verified by experiments.

The di/dt circuit rapidly detects load changes and short circuits with a few compo-
nents and can be improved by adding a current sensor to detect an overcurrent; in addition,
the set point can be easily changed to operate in islanding or grid-connected modes.

The presented topology is currently under study in different conditions, such as
the bidirectionality for other types of loads and the coordination with other breakers in
different scenarios in island and grid-connected modes for a DC microgrid.
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